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ABSTRACT. It is not the intention of this article to cover, in detail, 
all of the material presented in my lecture notes at the Conference. 
Rather, it is the plan to attempt to point out (a) the universal na
ture and origin of the partial differential equations which the in
verse scattering transform enables one to solve and (b) the rich po
tential for examining partial differential equations which are close, 
in some perturbation sense, to integrable ones. Several examples are 
investigated. We discuss the synchronous response of a nonlinear 
Schrödinger soliton to an applied field and also examine the effects 
of density gradients, damping and diffusion. We also consider the 
behavior of a kink of the sine-Gordon equation in the presence of an 
impurity and finally develop 4TT pulse solutions of the double sine-
Gordon equation which are formed by a pair of synchronized 2ir 
pulses. 

1. Introduction. One of the significant advances in mathematical 
physics over the past decade has been the discovery by Gardner, 
Greene, Kruskal, Miura and Zabusky [1,2, 3] of (1) a new nonlinear 
transform and (2) the soliton. The transform (the Inverse Scattering 
Transform or 1ST) works in precisely the same way as the Fourier 
transform does in linear problems; namely, it transforms the dependent 
variable which satisfies a given partial differential equation to a set of 
new dependent variables whose evolution in time is described by an in
finite sequence of ordinary differential equations. For special classes of 
partial differential equations, these equations are separable and hence 
trivially integrable. 

Compared with the Fourier transform, there are two major differ
ences. The first is that the basis is no longer fixed (like e±ikx) but moves 
in a way which depends on the unknown variable. The second differ
ence is that the spectrum (and here we are considering partial differen
tial equations over infinite spatial intervals) no longer simply consists of 
the continuum of real wavenumbers k but includes, in addition, a finite 
number of isolated complex wavenumbers. It is the complex wave-
numbers which give rise to the entities known as solitons. They are 
truly nonlinear quantities and have no linear analogue. 

Indeed the general solution of any member of one of the aforemen-
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tioned classes of partial differential equations can be qualitatively de
scribed in terms of the various spectral components. The soliton (a term 
coined by Zabusky and Kruskal) in a solitary wave, that is, a localized, 
stable, permanent waveform (it may contain internal oscillations), with 
the crucial additional property that its identity (amplitude, velocity, 
shape, internal frequency) is preserved even after collision with one of 
the other solution components. This invariance is derived from the in
variance of the eigenvalue with which it is associated. The only inter
action memory is a shift in the position of the soliton relative to where 
it would have been had it traveled without collision. In a two soliton 
collision, the phase shift is a simple function of the two eigenvalues. On 
the other hand the "solitary wave" (for example, the hyperbolic tangent 
solution of the equation <f>tt — <j>xx — <j> + X<f>3 = 0) is subject to dis
tortion on collision. The component of the solution associated with the 
continuous spectrum is in general not localized, does not have a per
manent wave form and, as it disperses, decays algebraically in time in 
close analogy with the long time behavior of linear dispersive waves. 
There are, however, some features of this solution component which 
are distinctly nonlinear, particularly the structure of self similar regions. 

One of the major reasons for the widespread and interdisciplinary in
terest in 1ST is that the special classes of integrable equations include 
such a wide variety of useful and universal equations which are central 
to many areas of mathematical physics and whose solutions are impor
tant to our general understanding of nonlinear wave phenomena. To il
lustrate the point, we will consider a list of these equations and at the 
same time discuss the historical development of 1ST over the last ten 
years. 

It is perhaps fitting that the 1ST method itself was first developed 
through the studies of the Korteweg-deVries equation (KdV), 

(1-1) </e + «W* + «J.*, = °> 
which arises so very naturally as the leading approximation in all con
servative wave systems which are weakly dispersive and weakly non
linear. It was first suggested by Korteweg and deVries as being relevant 
to the description of long surface gravity waves whose slope is small 
and approximately equal to the cube of the depth-to-wavelength ratio. 
The wave is large enough so that it initially attempts to break, but the 
water is deep enough so that dispersive effects are eventually impor
tant. Imagine then an initial local disturbance. The first response of the 
system is to divide the arbitrary initial disturbance into leftward and 
rightward traveling waves according to the D'Alembert solution of the 
linear wave equation. Both the left and the right traveling profiles 
(which are now separated) eventually distort due to the combined ef-
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fects of nonlinearity and dispersion. It is this evolution and this balance 
which is described by (1.1). There are many natural contexts in which 
similar dynamics can arise; long internal gravity waves [4], elastic 
waves [5], ion-acoustic waves in a cold plasma [6], waves on vortex 
tubes [7], and longitudinal vibrations of a discrete mass string [8]. The 
equation came to the attention of Zabusky and Kruskal [3] through 
their studies on lattices and on the Fermi-Pasta-Ulam [9] results on heat 
conduction in solids. 

We reiterate: If the dynamical system has the properties of (1) weak 
dispersion (of order c), (2) weak nonlinearity (of order c), and (3) initial 
data prescribed on compact support on an order one spatial interval, 
then: (1) the propagation for times of order one is described by the lin
ear wave equation, and (2) the propagation along each of the (separate) 
characteristics on time scales of order e - 1 is described by the KdV 
equation (except in those few cases where the quadratic (and strongest) 
nonlinearity is not present under which circumstances the equation 
with the cubic nonlinearity (the modified Korteweg-deVries equation or 
MKdV) obtains). 

It is also fitting that the second equation to which 1ST was applied 
was also of universal character. In a beautiful 1972 paper, Zakharov 
and Shabat [10] showed how the nonlinear Schrödinger equation (NLS), 

(1.2) qt - iqxx ± 2iq*q* = 0 

fits into the formalism. These authors used heavily the ideas of Lax 
[11], who had reformulated the principal results of GGKM in an oper
ator theoretic notation and in addition had found several of the other 
integrable equations in the Korteweg-deVries family. This universal 
equation (discovered in various contexts by authors in the late fifties 
and early sixties [12, 13, 14, 15, 16, 17]) describes the slow temporal 
and spatial evolution of the envelope qf(e(X — cgT), e2T) (X, T real space 
and time, cg the group velocity) of an almost monochromatic wavetrain 
(centered on wavenumber k) in a weakly nonlinear and strongly dis
persive system. For context free and very general derivations, see [16] 
or [17]. This equation simply comes up everywhere, from the modu
lation of high intensity electromagnetic signals in media where the re
fractive index is amplitude dependent, to the break up of deep water 
gravity wave envelopes. (It should be pointed out that in more than 
one dimension, waves with the linear dispersion relation co = c\k\ are 
strongly dispersive; the (vector) group velocity depends on the direction 
of k and the dispersion tensor d2co/dkrdks is nonzero). One of the most 
dramatic applications of (1.2) is in the context of deep water gravity 
waves. Indeed, one can show that if the minus sign in (1.2) obtains, 
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then the monochromatic wavetrain solution q = q(t) is unstable to x de
pendent perturbations (an instability first discovered by Benjamin and 
Feir [18]) and the wavetrain breaks up into separated and localized 
pulses. In some sense, this provides an explanation of a fact known to 
everybody with a surfboard, namely, that every tenth (seventh, elev
enth) wave is the largest. Imagine the following experiment. A paddle 
is oscillated in a periodic manner (say, the Fourier spectrum contains a 
number of distinct frequencies) and excites several wavepackets (of 
width c), each being centered on a distinct frequency. Since the system 
is strongly dispersive, the packets move with different group velocities 
and separate on a time scale c_1. For times on the order of c -2 , each 
packet feels the combined effects of dispersion (which tends to split up 
the packet) and nonlinearity (just like a simple weakly nonlinear os
cillator, the nonlinearity is manifested as a third order self-modal 
co + io — co = co interaction of strength €2), and the envelope q(x, t) is 
modulated according to (1.2). What happens is that the initial envelope 
q(x, 0) is decomposed into a series of solitons (given by 

(1.3) q(x, t) = 2TJ sech2(0o - i\x - 4frt)e~2ie r-^2-^-2** 

in which the parameter f = £ + vr\ is one of the complex eigenvalues 
discussed before) and radiation which disperses and decays [19]. [We 
have assumed that the paddle oscillates for a long but finite time. 
Should it continue to oscillate, the solitons and radiation regroup into 
an almost uniform wavetrain, break up again, and so on.] It is probably 
fortunate, at least for ocean travellers, that the unidirectional soliton so
lutions of the higher dimensional analogues of (1.2) are unstable to per
turbations in directions perpendicular to the x direction [20, 21, 22]. 
However, there are circumstances in which such instabilities may be in
hibited (for example, an ocean current with a large horizontal shear 
would act as a one-dimensional wave guide) and in these circumstances 
one can indeed expect the total energy of the system to be concen
trated in intense patches in the form of (1.3). 

We emphasize that the NLS equation is the most canonical equation 
of all. It arises (often in multidimensional form; simply replace x by 
f — c(£ _ 2gTj9 zg — Vco and the factor in front of the dispersion term 
d2q/dxrdxs is the dispersion tensor (-i/2)(d2u/dkrdks)) as the envelope 
equation in all dynamical systems which are (1) strongly dispersive but 
where the envelope contains an order c spread of wavenumbers, and (2) 
weak nonlinearity of order c. It is irreducible; the NLS equation devel
oped from examining an almost monochromatic solution of the NLS 
equation is again the same NLS equation. Indeed, the KdV equation it
self, in circumstances where the dispersion is stronger than the non-
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linearity (as often happens after sufficient time behind the front 
x = (gh)1/2 t) and where the wavenumber is locally constant, will re
duce to the NLS equation. [It is an interesting turnaround that the 
envelope-hole solutions of the stable NLS equation, i.e., long wave, 
small amplitude perturbations on a Ceikx~m solution, are described by 
the KdV equation.] Furthermore, the NLS equation provides a useful 
approximation for examining much more complicated equations when a 
low amplitude, almost monochromatic situation prevails, an approx
imation we have found [23] to be extremely useful. 

Once Zakharov and Shabat had demonstrated that the method of 
GGKM could work for equations other than the Korteweg-deVries 
equation and therefore was not simply a fluke, there was renewed in
vestigation of many other equations of the class which showed the im
portant property common to (1.1) and (1.2) — namely, an infinite num
ber of conserved quantities. In rapid succession Wadati [24] solved the 
modified Korteweg-deVries equation, 

(14) qt + Gq2qx + qxxx = 0 

and Ablowitz, Kaup, Newell and Segur (AKNS [25, 26, 27]), Lamb [28] 
and a little later Faddeev and Takhtadzhyan [29] (see also [29a]), solved 
the sine-Gordon equation, 

(1.5a) uxt = + sin u 

(1.5b) uTT — uxx + sin u — 0 

The method used by AKNS was novel in the sense that it was the spec
tral analogue of the Lax formulation and had the distinct advantage 
that all the necessary computations were simple and algebraic. In fact, 
the method generated, in a most natural way, classes of integrable 
equations and showed how each member of these classes could be iden
tified with the dispersion relation of its associated linear version [27]. 
The fact that (1.4) has an infinite number of conservation laws and con
served quantities has been established by Miura [30], who discovered a 
remarkable transformation between solutions of (1.1) and (1.4). Indeed 
this transformation not only holds between (1.1) and (1.4) but also be
tween solutions of corresponding members of the Korteweg-deVries and 
modified Korteweg-deVries families [27], the correspondence being es
tablished by the common dispersion relation [31]. The fact that the 
sine-Gordon equation (1.5) has an infinite number of conservation laws 
and conserved quantities was established by Kruskal [32] who also 
found that the sine, sinh and Klein-Gordon equations (which turn out to 
be the only integrable ones) are the only ones of the class 

(1.6) uu - uxx + V(«) = 0 



30 A. C. NEWELL 

which possess this property. In a sense, then, the sine-Gordon equation 
is the simplest nonlinear model of type (1.6) which possesses the prop
erty of Lorentz invariance and possesses soliton solutions (the sinh-
Gordon equation does not have any soliton solutions), properties which 
suggest its relevance as a field theory model. It also arises in many oth
er contexts (see the article by Scott, Chu and McLaughlin [33]), and is 
a particularly useful model in those systems which are intrinsically one 
dimensional, whose kinetic energy is of the form J (1/2) <j>t

2 dx, and 
whose potential energy consists of a strain energy J (1/2) <j>x

2 dx and a 
periodic potential f V(<f>) dx. In the marvelously simple mechanical 
analogue demonstrated by Al Scott at the conference, <|>(x, t) is the local 
displacement angle of the pendulae with respect to the torsion spring 
to which each pendulum is affixed, (1/2) <j>x

2 is the torsion potential and 
the gravitational potential is proportioned to l-cos<£. The resulting 
Lagrangian leads directly to the equation of motion (1.6). Phenome-
nological models incorporating these simple ingredients have been pro
posed to explain crystal dislocation [34] and also some of the remark
able electrical conducting properties of the TTF-TCNQ organic 
compounds [35] and based on these models several interesting predic
tions have been made [23]. 

It is not widely appreciated that (in some sense) the MKdV equation 
is also of universal character. It is often of interest to examine the long 
time spatial behavior of a dynamical system to which a forced os
cillation eio3t is applied. Solutions of the form \p(x, y, t) = Re (^(*, y)eioit) 
can lead to a partial differential equation in x, y which is hyperbolic in 
character and takes the form 

(1-7) *„ - *w + « * ( O A + «W,,.,) = 0, 

in which the nonlinear term has arisen from a cubic 
eìiùt . e-io)t . e%o)t _ e%at interaction. Indeed just such an equation de
scribes the bending of the lower hybrid cones, the study of which is 
central in the problem of plasma heating [see the article by Morales 
and Lee, this volume]. In this context, the nonlinear term is generated 
by the interaction of the ponderomotive force (the d.c. rectification of 
the convection terms in the ion and electron momentum equa
tions — analogous to Reynolds stresses) with the fluctuating density 
field. The higher derivative dispersive terms are due to thermal dis
persion. The usual perturbation methods (i// = \p0(x — y, ty) + t\pt + 
• • •) will reduce (1.3) to the complex modified Korteweg-deVries equa
tion (CMKdV) for \px = q, £ — x — y, r = ty 

(1.8) <7r + toV)ê + Qm = °-
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In the event that the initial data are real, (1.8) reduces to the in-
tegrable MKdV equation (1.4). In general then, the MKdV equation will 
arise in those circumstances in which the fundamental solution contains 
a sinusoidal factor (which can only reproduce itself by a third order in
teraction) depending on time or another direction. For example, long 
atmospheric waves in a horizontal shear flow with vertical density 
stratification [72] (which introduces a vertical dependence of sinusoidal 
character) will be governed by the MKdV equation, whereas with no 
density stratification these waves are described by the KdV equation 
[73]. 

One particularly valuable application [36] of the AKNS approach, 
closely related to the sine-Gordon equation, is the problem of coherent 
pulse propagation, mathematically described by the Maxwell-Bloch 
equations, 

Ex = J - » g(a)X(«, x, T) da 

(1.9) 

XT + 2ia\ = -EN,NT= J-(EA* + E*X), 
Zi 

which describe the passage of an optical pulse envelope (electric field 
E(x> T)) of an optical wave through a resonant, inhomogeneously broad
ened (g(a)) medium where the difference in energy levels corresponds 
(almost) to the frequency of the carrier wave. McCall and Hahn [37] 
had discovered that pulses with very special profiles could propagate 
through these resonant media in a lossless and coherent fashion. As one 
can guess, these pulses turn out to be solitons, and there are two types. 
One corresponds to a single eigenvalue and leads to a pulse-like solu
tion whose area is 2TT. The other corresponds to an eigenvalue pair, has 
zero area, and has been named the OTT pulse or breather in the liter
ature. Although McCall and Hahn had a good qualitative understanding 
of the nature of the general solution, the 1ST solution proved to be 
very useful in predicting the precise behavior in a quantitative manner. 

Besides the obvious value of providing a way to compute the exact 
solution to the initial value problem, there are three further key fea
tures of the general 1ST method which this example serves to illustrate. 
First, unlike all previous examples of integrable system, this problem 
does not contain an infinite number of conserved quantities. There are 
an infinite number of local conservation laws, but the only globally 
conserved quantities in the electromagnetic field are the shapes of the 
solitons (277- and OIT pulses) into which the initial profile is decomposed. 
The reason for that is that the radiation is trapped by the medium. Un-
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like previous examples, there are also two distinct dispersion relations 
connected with this problem [for more discussion of this point see [38], 
39]], and the difference between the dispersion relations is the factor 
which causes irreversible behavior. The second feature which this ex
ample illustrates is that much information about the system may be ob
tained without solving each stage of the inversion procedure explicitly. 
Kaup's article in this volume will illustrate this point very clearly. The 
third point is that in the sharp line limit (where g(a) is the Dirac delta 
function), (1.9) reduces to the sine-Gordon equation (1.5), in which limit 
the two nonsingular dispersion relations relax to the singular dispersion 
relation 

1 

The fact that the dispersion relation of the Goursat problem (1.5a) is 
singular has important consequences which are discussed in reference 
[40]. In a sense, then, we can also think of the sine-Gordon equation as 
typifying the class of integrable systems which have dispersion relations 
<o = \/k (or (K2 + 1)1/2). 

At approximately the same time, a parallel study on differential-
difference equations was being developed by Flaschka [41] who solved 
the equations for the Toda lattice 

P = e-<Q»-Q»+i) _ e-(Qn-i-QJ 

where Qn is the position of the nth particle in the lattice, one of sever
al models vital to our eventual understanding of the heat conduction 
process. These ideas have been extended by Moser [42], Calogero [43], 
and Ablowitz and Ladik [44] who have also developed the theory for 
partial difference equations, a development which could be very signifi
cant in the theory of numerical computation. 

In late 1973, Zakharov and Manakov [45] introduced a matrix oper
ator of higher order and found a way to express the 3-wave interaction 
problem 

(1.11) _ ^ i _ + Ç . VA, = 0tA V * , 

(/, k, i cycled over 1, 2, 3) in the Lax formalism, and once again an exact 
solution was found for a set of canonical equations. These equations are 
central to all weakly nonlinear systems which support a continuum of 
dispersive waves, since the quadratic nonlinearities can cause a reso
nance between three resonant wavetrains with amplitudes, 
Ap / = 1, 2,3, whose wavevectors kj and frequencies <o; satisfy con-
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servation of energy and momentum (the "resonant conditions"): 
^1 + ^2 + ^3 — ^' cox + co2 + (o3 — 0. Interactions of this kind are im
portant in Rossby and Baroclinic waves [46-49], in internal gravity 
waves [50], plasma waves [51] and many other areas of continuum 
physics. Both Kaup [52] and Zakharov and Manakov independently de
veloped the inverse formulae for solving these equations in the one-di
mensional case, and Kaup describes many of the interesting con
sequences in his second article in this volume. 

A closely related system is the model which simulates the interaction 
between long waves (amplitude A(x, £)) and short waves (envelope am
plitude B(x, £)). The equations are an extension of the nonlinear 
Schrödinger equation to account for the effects of a long wave and take 
the form 

3A 2s d BB* JB_ _ , d2B dA n 

dt dx dt dx2 dx 
(1.12) 

+ iA2B - 2isB2B* 
This exactly solvable model was developed [53] in order to investigate 
further the very novel idea of Benney [54], who suggested that long 
waves might be driven by the recurring instability of (say, wind driven) 
short waves which, together with the long wave, form a resonant triad. 

This partial list of extremely important equations illustrates the tre
mendous relevance and importance of the inverse scattering transform. 
It also very strongly suggests that the soliton is ubiquitous in nature (in 
the oceans, atmosphere, plasma, lattices, superconductors, superfluids, 
elementary particles), at least in those situations which are to a good 
approximation one dimensional. There has been much effort [55, 56, 
57] (reference [55] is important; in it Zakharov and Shabat describe 
their formalism for deriving larger classes of integrable equations) to ex
tend the ideas to higher space dimensions, and while there has been 
some success in writing interesting three-dimensional equations in the 
Lax formalism, neither a higher dimensional soliton (local) nor a fully 
satisfactory inverse scattering theory has been worked out. Nevertheless, 
some remarkable properties associated with two dimensional local solu
tions have been reported. Zakharov and Synakh [22] have described 
how the radially symmetric solutions of the two dimensional NLS equa
tion are unstable, and their numerical work predicts that the non-
linearity dominates and that the amplitudes become infinite in finite 
time. This behavior contrasts markedly with what one might expect 
from a two-dimensional water wave. Here one would conclude that the 
focusing effect of the nonlinearity would be unable to sustain a local 
solution against the combined effects of wave and geometric dispersion. 
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The aim of the remainder of this paper is not only to summarize the 
1ST method (the detailed lecture notes can be found in reference [39]) 
and to point out how and why it works, but to emphasize that it is 
very natural to describe systems which are "close" to integrable ones in 
terms of the normal mode parameters (the scattering functions) of their 
closest integrable neighbor. 

2. Summary of the Method. In this section we will outline very 
briefly the most important features of the method and lay the necessary 
groundwork for examining the singular perturbation approach. For sim
plicity, we take the generalized Zakharov-Shabat eigenvalue problem 

ü i* + ^ i = <?(*, t)v2 (Z.lj 

on the interval — oo < x < oo. Both q(x, t) and r(x, t) are assumed to be 
absolutely integrable. 

The inverse scattering transform is simply the mapping between the 
potentials q and r and the scattering data S defined by (2.1), the latter 
consisting of the spectrum of (2.1) (the whole real f axis and a finite 
number of complex f points) and the asymptotic behavior of the corre
sponding eigenfunctions. More precisely, if <j> and <j> are solutions of 
(2.1) with asymptotic behavior (1, 0)Te~^x and (0, — l)Te^x as x—» — oo, 
then the scattering data for real f are the coefficients describing the re
spective asymptotic behaviors (a(f, t)e~^x, 6(J, t)e^x)T and (ß(J, t)e~^x, 
— ö(J, t)el$x)T of <f> and <j> as x—* -fco. For an absolutely integrable r and 
q, a and à are analytic in the upper and lower complex f plane respec
tively and their zeros (Jfc, ffc) are the complex eigenvalues. If q and r 
have compact support (which for this discussion we will assume), then 
all the scattering functions, a, ä, b and 6 possess analytic extensions for 
all complex f and the values of b(f, t) (bk(t)) and ß(f, t) (ßk(t)) at Jfc and 
ffc, respectively, provide the remainder of the scattering data. The de
termination of the set 

s = {(K, sk%=1, (K &#=!. «(f). m «(ft m 
is called the direct scattering problem and the reader may verify many 
of the properties of the transform by explicitly calculating the scatter
ing data for the potentials 

Indeed it can be shown [39, 58, 60] that the direct transform is sim
ply a canonical transformation between the conjugate coordinates q and 
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r in physical space and the sets of conjugate coordinates (2i£Ä, In bj^^, 
(2iffc, In Ëk)$=1, ((l/tf) In aä, In fo(£)) in scattering space. The following 
two-form is preserved: 

f°° S —inaàAStnb{Ç)dè 
77 

+ 2«(2tffc)A«lnfifc. 

For a special class of Hamiltonians, the flow represented by q and r is 
integrable and in this case the conjugate coordinates in scattering space 
are simply action-angle variables. All this is described in [39]. Let us 
just emphasize here that the scattering function lna(x, t) plays a central 
role in the Hamiltonian formulation. It should be mentioned here that 
the Hamiltonian formulation of the Korteweg-deVries equation was first 
developed by Gardner [59] and Zakharov and Faddeev [60]. 

The inverse problem consists of a set of formulae (which are linear 
integral equations) from which the potentials q and r may be recovered 
in terms of the scattering data S. There is one note of caution. The 
scattering data cannot be prescribed arbitrarily, as in general this may 
lead to nonunique and nonabsolutely integrable solutions. However, for 
those cases for which the scattering data correspond to the constraint 
r = ±q* or r = ±q on the potentials, the problem is uniquely in-
vertible. For more discussion on this question see [27, 39, 581. 

The next question is naturally: how can one find the time evolution 
of the scattering data S, and for which classes of flows q(x, t) and r(x, t) 
is the time evolution of S simple and integrable? To answer this we 
simply take the variation of (2.1), and determine the infinitesimal 
changes 8vv 8v2 due to the infinitesimal changes 8q, 8r and ôf. The be
havior of 8vt, 8v2 as X—* +oo will give us the variation of the scatter
ing data. It turns out that the variation of the scattering data is the nat
ural inner product between the vector (8r, —8q)T and the squared 
eigenfunctions (t/^2, \p2

2)T a n d their £ derivatives. Dual expressions for 
the variation of the scattering data as inner products between the vec
tor (8q, 8r)T and the squared eigenfunctions (<£2

2, — <t>1
2)T and their f de

rivatives can also be found. (The eigenfunctions \p = (\pv \p2) and 
xp — ($1,^2) a r e defined as solutions of (2.1) with respective asymptotic 
behavior (0, 1)V** and (1, Qfer** as *-» +00.) Now, Kaup [61] has 
shown that for certain classes of functions the squared eigenfunctions 

y 8rA8q dx = 

(2.3) 
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form a basis, and thus we may invert these expressions (with the help 
of the orthogonality relations between (^x

2, \p2
2)T and (<j>2

2
> — <J>1

2)7) and 
obtain the following generalized Fourier expansions for (or, — 8q)T and 
(8q, 8r)T respectively. 

u)-;£Hv)u>) 

«ti V i,,v A -h' h 

and 

+ tTT"/ 8^k *y \ _ ^ 2 / k 
1 «7 A 

(5)-iX:HS)(tf) 

(Mb, -»2«( £ ) ( £ ) . 

it ' " ^2 

+ h. ST A ( ** ) 

In addition, we may also write expansions for the vectors (r, q)T and 

(9, -0 r : 
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(-;)-:•£{!(-t-)+è.(3-)}* 

( * J = - Ì J C { | ( £ : ) - I ( | : ) } * 

<"* +2i 2 £ ( # ). 

The squared eigenfunctions satisfy the equation, 

\ * 9
8 / 2t 

_9_ 
9* 

2r 

(2.5a) 

and its adjoint, 

J" 0 0 / * 0 0 

J" 00 3 /"oo 

* dyr Yx +2r J' dyq 

(2.5b) \-29j_.dy9 " a l +2? J-»^' 3x 

( £ ) = <(£)• 
respectively. We note that the relation expressing the preservation of 
the two forms (2.3) is found from (2.4a) and (2.4b) by taking the inner 
product for two different S's and using the orthogonality relations. We 
note further that in the small q, r limit, the equations (2.4) reduce 
exactly to the expansions for the ordinary Fourier transforms with ker
nels e*2***. 
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From (2.4) and (2.5) it is straightforward to obtain the equations of 
motion which lead to separable equations in scattering space and which 
are thereby integrable. We simply identify those operators B which op
erate on each f-component in the expansion for (r, q)T separately. For 
these operators, the equation 

(2.6) 8(_p = B(Q 

simply expresses the variation of the scattering data (which are the 
coefficients in the expansion (ôr, —Ôq)7) in terms of the scattering data 
at the same f (which are the coefficients in the expansion for B(r

Q)). The 
complete class of operators B with this property is not known (we con
jecture that it is the closure of all ratios of polynomials of LA) but the 
largest known class is discussed in [38, 39]. We may note straightaway 
the simplest example which occurs when B is equal to any entire func
tion of LA. In fact, for B = 4i(Z/)2, the equation (2.6) becomes the gen
eralized nonlinear Schrödinger equation; for B = 8i(^)3, the modified 
Korteweg-deVries equation. 

Calogero has pointed out that by simply writing S as the pseudo-
directional derivative 

(2.7) S = F(LA) A + &(£/) • v 7 , 

fully three dimensional equations may be obtained. The equations for 
the scattering data are given in [39]. 

One new contribution of the notes to the Arizona meeting (written 
up in [39]) is the analogous expressions for the potential q(x, t) of the 
Schrödinger equation 

(2-8) Vxx + (J* + q(x, t))V = 0 

in terms of appropriate squared eigenfunctions and their derivatives. 
These expressions are somewhat more complicated than (2.4) for a num
ber of reasons, one of which is that the dual and adjoint eigenfunctions 
are no longer the same. Nevertheless, the same ideas go through. 

In summary, the whole method closely resembles, and is indeed a 
natural extension of, the ideas of Fourier analysis and normal mode ex
pansions. In order to complete the analogy we present the nonlinear 
analogue of Parseval's relations (see (58]) or what are also called the 
trace formulae. They are found by identifying the terms of two asymp
totic expansions in J for that ubiquitous scattering function In a(£, £), 
one written in terms of the original potentials and the other in terms of 
the scattering data. We write down these expressions for the case 
r — —q*: 
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(2-9) Cm = Si m + 2̂ i ^ » r _ 1 lnö0*^' m = ** 2' ' ' '' 
where the first three members of the set {CTO}~=1 are: 

i r°° i r°° 

(2.10) 

and the rest can be found from recurrence formulae [58] (following the 
ideas of Zakharov, Faddeev and Shabat [10], [60]). Indeed for most in-
tegrable flows, the ( C m } ^ = 1 are the conserved quantities; in fact, they 
are also the flow generators. Namely, each Cm, taken in turn as a Ham-
iltonian, generates that flow which can be identified with the dispersion 
relation ö(£) oc çm-i p o r eXample, the Hamiltonian for the nonlinear 
Schrödinger equation is simply — i j'^(qq*^ + q2q*2) dx. In each 
such flow, all of the other conserved quantities and potential Ham-
iltonians {Cn}~_1 are also conserved. 

The trace formulae serve many useful purposes beyond identifying 
the form of the Hamiltonian in scattering space. One particular use is 
in a discussion of the solution behavior, particularly the component 
arising from the continuous spectrum. Another is the determination of 
the slow rate of change of the action variables in terms of the slow rate 
of change of the conserved quantities in problems which are close to 
being integrable. 

3. A Singular Perturbation Theory. Given the background of the pre
vious section, it now becomes possible to investigate the behavior of so
lutions of equations which are perturbations of a member of the in
tegrable class. Kaup [62] was the first to exploit these perturbations and 
he has calculated the initial effect of damping in the nonlinear 
Schrödinger equation and in coherent pulse propagation systems. The 
author of the present paper has been engaged in developing a singular 
perturbation theory whereby one develops uniform asymptotic expan
sions for the scattering functions over time scales inversely proportional 
to the small coupling coefficient multiplying the "nonintegrable,, term 
in the equation. Of particular importance is the development of the 
concept of "resonance" or at least the extension of this concept from 
weakly nonlinear to strongly nonlinear systems. 

A "weakly" nonlinear system will correspond to the situation when 
no discrete eigenvalues are present and the system is analyzed in terms 
of the various functions connected with the continuous spectrum. We 
know that if we attempt to perform a regular perturbation expansion in 
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the coupling coefficient, it becomes nonuniform due to resonances be
tween waves obeying the conservation of momentum and energy condi
tions 2f_1 kx = 0, S f . j coi = 0, (N — 3, 4, 5, • • • ). The expansions are 
renormalized and the nonuniformities are removed by allowing the 
scattering functions (in linear problems, the Fourier coefficients) to be 
slowly varying functions of time. (Small insert: the strength of the non-
uniformity is a function of the model and one obtains different answers 
if one assumes a discrete model, a continuous model or a continuous 
random model. See [63]). 

What we are principally after in this discussion is the mechanisms for 
sustaining "resonances" between soliton solutions, with the ultimate 
idea of describing interactions between strongly nonlinear "particles." 
Now the word resonance does not really apply because it is primarily a 
linear concept and amplitude independent. Namely, one can excite a 
linear oscillation by tuning to its natural frequency, and its amplitude 
grows without bound. In a nonlinear system, the oscillator or soliton 
will detune after its amplitude is changed. Therefore, what is more apt 
to happen is that nonlinear normal modes synchronize, much in die
sarne way that two coupled Van der Pol oscillators do. Below we 
briefly describe some interesting results we have obtained in connection 
with the phase locking of a nonlinear Schrödinger soliton to an external 
applied field. One might also expect that, if two solitons travel at ap
proximately the same speed, then under certain conditions they can be
come phase locked due to the effect of the nonintegrable term. We 
have succeeded in showing that this happens in what we feel to be a 
typical model-the "double" sine-Gordon equation, 

(3.1) uxt = sin ii — e/A0 sin u/2, 

and the synchronized states bear a close resemblance to the wobblers 
which Bullough and Caudrey [64] have discovered numerically and 
which are described in this volume. 

We are going to discuss briefly the following six examples. More de
tails are given in [23] and [65]. 

(3.2) 1. a. qt - iqxx - 2iq*q* = - eTq + eEe", 

(3.3) b. qt + qx = - eTq, 

(3.4) c. qt - iqxx - 2iq2q* = -2ie8v(x)q, 

(3.5) d. qt - iqxx - 2iq2q* = e(Xq - ßq2q* + yq„), 

X 4- T X — T 
(3.6) 2. a. uxx - uTT = uxt = sin u + cg(X), x = —^— , t = —^— , 

(3.7) b. uxx — uTT — uxt — sin u — eju,0 sin u/2. 
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The integrable (e = 0) parts of these six equations are all members of 
the class (2.6) obtained by setting the operator B — — 2Q(Lil), where 
the function ß(f) is closely related to the dispersion relation of each of 
the equations. For example, if r — — q* and fl = — 2if2 we obtain the 
nonlinear Schrödinger equation; for r = — q and ß = if, we obtain l.b 
with e = 0; for r = — q and fl = i/4f we obtain 2.a,b with c = 0. The 
method of solving the nonintegrable systems (c small but nonzero) is to 
map the solutions of each into the scattering space associated with the 
integrable system. We will then find that the scattering data 

(3.8) S = S ( ( (Jfc(t), ßk(t) =-JL-}»=1, b*/a (fc t) } 

evolve in time according to the formulae, 

(3.9) Skt = 0 + eP, 

(3.10) ßM + 2fc sktßk = 2Q(fk)i8fc + eÇ, 

(3.11) ( — I = 20(f) - + eK, 
\ a I1 a 

where P, Q and fi are nonlocal expressions involving infinite integrals 
over products of the perturbation terms and the squared eigenfunctions 
[see [38] or [39] for exact formulae]. The method then is to solve 
(3.9, 11) iteratively, with the zeroth order solution consisting of the nor
mal modes (solitons, breathers, radiation) of the integrable system. It is 
to be expected that in most of the interesting cases, the resulting 
asymptotic expansions in powers of c will be nonuniform in time. Using 
well known ideas of singular perturbation theory, multiple scaling, the 
WKBJ method, matched asymptotic expansions, etc., we can make 
these expansions uniform by choosing (a) the slow time (e~a time scale, 
a > 0) behavior of those parameters (such as the eigenvalues) which in 
the integrable system were fixed and (b) the appropriate asymptotic ex
pansion sequence in c. The advantage of our approach is that the scat
tering space of the exactly integrable problem provides the most natu
ral framework in which to describe the motion of the perturbed system. 
If one solves (3.2-7) by a perturbation approach directly using the in
tegrable techniques to find the zeroth order solution, one is often led at 
the next order to partial differential equations in which it is difficult to 
interpret the meaning of secular terms. Of course, if the resulting par
tial differential equation is synthesized using the natural basis of the in
tegrable system, the results obtained will be precisely the same as those 
obtained by the direct method described above. 
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For purposes of explicit calculation, it is usually practical only to in
clude in the zeroth order state a single or multisoliton solution. The 
single soliton solution of the system (2.6) is given by 

(3.12) q(x, t) = 2 ^ sech 20 e-2i<0+*/4) 

where £x = ^ + vql9 ßx = - 2 T Î ^ - 2 ^ " - 2 ^ , 0= -^X + Ö, <t> = fa 
+ <f> and to leading order the time dependence of the parameters £l5 1715 

0 and <f> are 

(3.13) tlt = rilt = O,0t= - 0 „ ^ = - Q i 

where 0(f J = 0r(£1? T?^ + i fy(£l5 ^î)- H the soliton solution is to con
tinue to dominate over long times (namely if the energy in the contin
uous spectrum measured by b*/a(i, t) is to remain small), we must first 
ensure that the perturbation terms eR in (3.11) do not lead to an et or 
larger algebraic growth in b*/a. The cause of such a growth will be 
the time dependence of eR. If the perturbation terms are — Tq or Eei(T, 
then we can show that the (fast) time dependence of R is contained in 
the factors e-

2i{^+{^-^^ and eia, e-
i<J-4i$, respectively. Secular 

growths in b*/a will only occur if these phases resonate with the fun
damental frequency 20(£). Thus the criterion that the energy in the 
continuous spectrum remains small is that for any £, — 00 < £ < 00, to 
within 0(c), 

(3.14a) 20(© * - 2 i f à + - ^ — ^ - 0 ) , 
Vi 

(3.14b) 2fì(|) * iat, 

(3.14c) 20(f) ^ -iot- 4%. 

In example 1, these criteria hold for la, c and d. However, in lb., 
0 (0 : = & Q(?i) = «1 - îïi and hence - 2 i ( * + (^ - 1/^)0), = 
— 2t( — f + I — |) = 2i£ and the resonance occurs for all f. Hence the 
initial condition q — 2TJ0 sech 2-q0x will not propagate like 2i)0e~2€Tt 

sech 2i]0c~2crf(x — t) as we would predict if the soliton remained domi
nant. Rather, the continuous spectrum is excited to an order one magni
tude in order that the solution can propagate as 2T70

—cr* sech2rj0(x — t), 
the exact solution. I am grateful to Herman Flaschka who suggested 
this example. 

In each of the other examples (in la., we insist at > 0), the resonance 
(3.14) does not occur. In la., the time evolution of the soliton parame
ters 17, f, 0 and <j> (we will now omit the subscripts 1) is given by 
(T = et) (see reference [23]) 
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ÌJT = -2TÏ) - y sinx sech — 

£T = T- I sin x sech — 
2TJ 2-17 

(3.15) Xr = 0 - 4(£2 + îî2) 

TT£ u ^ F 7r 2 £^ / 2 ^-sechê77/2ï? l 
+ ^ - s X s e c h - [ - — l + ^ J 2TJ 2i7 L 2T? 

77-E $7T 
—^ sech — 
4Ì|2 2TJ 

(6/V)T= - 4 £ - ^ 2 s e c h i ^ 

F 77̂  / g - ^ / 2 u _ sech $77/27? \ 1 

L 4 V 1 + er**'* / J 
where x = a + 20 + 2£/TJ 0 and a, = fì > 0. We immediately see that 
(|TJ)T = — 2r(frj) which shows that, depending on initial conditions, ei
ther £ or 7} tends to zero. Assuming that £ = 0 we find that, 

(3.16a) Vr= -2Tri- y sin x 

(3.16b) X r = ß_ 4 77 2 

(3.16c) (0/Î])T - 0. 

Note, since 0 — —t\(x — 0/TJ), the equation for 6 is really an equation 
for the position of the envelope. Here we have taken £ = 0 and (3.16c) 
shows that the central position of the soliton remains stationary, where
as (3.16a), (3.16b) admit the solution i\ = (fl/2)1/2, sin x0 = 
— 2T(ty1/2/7rE as a stable node as long as the applied frequency fl lies 
in the window 0 < ß < (?r2£2)/4r2. 

We discuss these results and several pertinent and interesting appli
cations in references [23, 65]. For now, we simply point out that the 
theory has allowed us to describe the long time (c-1) behavior of any 
soliton belonging to any member of the family (2.6) which is non-
resonant in the sense of (3.16). Further we have seen that the different 
frequency ranges excite different normal modes. If fl < 0, then the con
tinuous spectrum and in particular the modes ±(l/2)( —fl)1/2 are ex
cited. If fl > 0 and fixed, then there is no soliton excitation until the 
amplitude E is large enough so that fl lies in the frequency window at 
which point the soliton synchronizes and acquires an amplitude inde
pendent of the forcing amplitude E. 

If the external field E is neglected altogether, the soliton slowly 
decays according to TJ1T = — 2Tr\, £lT = 0, with its height and speed 
changing. However, as 17 approaches zero, which occurs only when 
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T( = et) is very large, the continuous spectrum at the wavenumber £x is 
strongly excited. This reflects the fact that the NLS soliton requires a 
nonzero area ( f ^ \q\dx) in order to be generated. Thus, when the ei
genvalue approaches zero, an almost monochromatic wavepacket, 
which itself is described by the same NLS equation, is formed; gradu
ally, it too disperses and decays. The mathematics describing this transi
tion requires some elementary ideas of matched asymptotic expansions 
although this exercise has not yet been carried out. 

Example lc. takes account of medium inhomogeneities (such as den
sity changes in a plasma, depth changes in deep water) which are con
tained in 8v(x). If 8v(x) = ax, then Chen and Liu [66] have shown that 
by a simple transformation q(x, t) - <#>(* + 2at2, t)e-2iaxt-{4i/3)a2t\ <j> sat
isfies the unperturbed nonlinear Schrödinger equation. Thus, solitons be
have like linear waves in traversing spatial inhomogeneities; namely, 
they are turned around by a denser (a > 0) medium. On the other 
hand, if 8v(x) = ßx2, the equation cannot be handled exactly but a per
turbation analysis shows that 

(317) " ' = ( U ' = \&>VT=-4to>*r 

Thus, the NLS soliton (or indeed the soliton of any member of the fam
ily (2.6)) is trapped in a density minimum (ß > 0), and repelled from a 
density maximum. 

Case Id. is of importance in examining the post bifurcation behavior 
of the envelope q of the most unstable wave in a system which sup
ports a continuum of wavenumbers. The equation is very general and 
was first derived by Newell and Whitehead [67] and used by Stuart, 
Stewartson and Hocking [68] in their investigation of parallel flow in
stabilities. Suppose that the following situation prevails: (1) the critical 
parameter R (Reynolds number) marginally exceeds critical, i.e., 
R = Rc(l + €2x) (2) the dispersion parameter d2œ/dk2 is much larger 
than the diffusion parameter cPR/dk2 (the curvature of the dispersion 
relation exceeds the curvature of the R vs. k stability curve at the criti
cal wavenumber) (3) the imaginary part of the nonlinear coupling 
coefficient is larger than the real part. In this case we may treat the 
Newell-Whitehead equation as a perturbation of the nonlinear 
Schrödinger equation and obtain the following uniform description for 
the motion of the eigenvalue of a single soliton. It is 

(3.18a) nT = T, ( 2X - ( f ß + | y ) T,2 - 8Y£2) 

file:///q/dx
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(3.18b) £T = - = 1 i)% with R = e*. 
6 

This is a most interesting result for it shows that on the time scale 1/c, 
the real part of the eigenvalue decays to zero, and in fact suggests that 
all isolated eigenvalues converge to the single point (at which time a 
new description would be necessary), 

(3.19) g = 0, n = (3X/16/3 + 4Y)1/2. 

This means that in the initial value problem, whereas the original pro
file splits up into pulses (solitons) with different velocities cg — 4^ (the 
equation itself is written in the frame of reference of the group velocity 
cg of the critical wave), the dispersion is halted by the effects of diffu
sion (d2R/dk2) and eventually all the solitons phase lock in momentum 
space. This has important consequences for long wave-short wave inter
actions and the mechanism of Benney [54] for the excitation of long 
waves, for it suggests that the short wave envelope continues to stay 
locked with the phase velocity of the long. It is not an unexpected re
sult, as in some sense one expects the wave-number k with the fastest 
growth rate to be dominant over the sidebands k — 2£. [see [69]]. 

In example 2, the unperturbed equation is the integrable sine-Gordon 
equation. In 2a., we examine the effect of an impurity described by 
g(X) on a kink (2IT pulse) 

(3.20) u(x, t) = 4 tan"1*?-2* 

when e = -rix - (l/4ij)t + 0O_= - ( 1 - V 2 ) " 1 7 2 ^ 
V = - 1 + 2 / (4ÎÎ 2 + 1). By setting <f> = TT/4, we find ß -
equations (3.9), (3.10) become 

(3.21a) Vt= -e/8f_lg(X)uxdx, 

(3.21b) tt= - i- -c/8 £lxg(XKdx. 

There are two cases of interest. The first involves a kink which moves 
slowly with respect to the fixed impurity and thereby undergoes a 
strong interaction (an order one change over long time). Since the kink 
velocity is slow, V is small and we write rj = 1/2(1 + JLM//), 0 < //,< 1. 
Setting the time scale T — vi, 0 < v < 1 and writing 6 + t)t = x> we 
find that a balance is achieved when /x = v — c1/2. Then 

(3.22a) ^ T = - 1 / 4 Xlg(XK<**> 

-VT) + e0, 
- 2ir] e~2e and 
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(3.22b) Xr = *. 

Finally we note that (3.22a) can be written in the form 

(3.23) *T = - - ^ , U(x) = - I S_l g(X)M(X, x) dX, 

since the phase of u is approximately — (1/2)X + x- Hence, the kink 
simply acts as a Newtonian particle under the influence of the potential 
U. For example, if g(X) = aô(X - X) - a8(X + X), the potential U is 

(3.24) U(x) = % tan" V - 2 x __ « tan"1*-*"2* 
2 2 

The kink is trapped in a periodic motion if a < 0 and is repelled if 
a > 0 . 

These results were first obtained by Fogel, Bishop, Krumhansl and 
Trullinger [70]. Their method was to perturb the sine-Gordon equation 
about the kink solution and to solve the resulting inhomogeneous 
Schrödinger equation (with sech2 potential) in terms of the complete set 
of eigenfunctions which are known for that particular operator. Their 
method is restricted by the fact that perturbations about other types of 
multisoliton solutions would not be possible. In addition, their analysis 
was algebraically complicated, and the particular form of the impurity 
(used in our example above) was crucial. On the other hand, by expand
ing in the correct basis (the squared eigenfunctions), the analysis be
comes relatively straightforward. 

The second case involves a fast-moving kink. Here after a small 
amount of calculation (see [65] for details), we can show that the kink 
behaves like a relativistic particle under the influence of a scalar poten
tial. In fact, 

d_ V 
dT (1 - V2)172 

d_ 1 

dT (1 - V2)172 

where 

(3.25) C7(Xo, T) = - | J ! £(*)"(* - VT - Xo) dX. 

Finally we examine example 2b., which is perhaps the most novel re
sult. Let us suppose that in the c = 0 limit, there are two 277 pulses 
given by the double soliton (4ir pulse) solution, 

axn 
u 

= - — U 
dT 
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1 _ ( [il !£2 J ^201+202 

(3.26) «(x, t) = 4 tan-* ' ̂ t+V 

where 0j — —y\fc + 0j9 0j— —t/4rij + 0;O. In laboratory coordinates 
0,. = - (1 /2)( ÎJ ; . + 1/411,.) (X - V,T - X.). It is fairly clear that a strong 
interaction will only take place when i\1 and TJ2 are close; i.e., the kinks 
remain together long enough for a strong interaction to take place. 
Treating the parameter ß = (Ì]1 — Î?2)/(7?I + ^2) a s s m a U> w e obtain the 
following perturbation series for the energies (the eigenvalues 17.) and 
the positions /^ = (l/2vqfli

2) e-2**" of the two pulses: 

(3.27a) Vlt=-,2t=^^f2+Om 

(3.27b) ft, = ±-ßl + Ä ^ _ I . „ ^ + o(c In ß), 

(3.27c) ft, = J L f t - J&L & + - 1 T , 2 A + 0(< In /?). 

More details can be found in [71]. We note that the average 
rj = (rj1 + TJ2)/2, which is proportional to the total energy of the sys
tem, is conserved in agreement with the basic equation (3.7). We ob
serve that if the two pulses are widely separated, with the TJ2 pulse a 
transition from — 277 to 0 to the left (in X, T space) of the T^ pulse, 
sending u from 0 to 2T7, then 

(3.28) „ „ = ^ a n d T , 2 ( = +f* . 

This agrees precisely with the equation (3.7), since 

(3.29) A f °° 11 2 = 16 ^ = +4Mo€ [ cos £ 1 W=& 

and if the jump in w is from 0 to 277 we obtain the opposite sign from 
when it makes the transition from —277 to 0. Recalling that 
7]lt — — 2TJ17, where T is real time, we note that for ju0 > 0, the right
most pulse increases (with T) its value of TJ and thereby decreases its 
velocity V — —1 + 2/1 + 4TJ2 whereby the left-most pulse increases its 
velocity. Hence, we would expect a possible phase locking only when 
/jt0 > 0 which as we shall see is exactly what happens. 

Returning to a perturbation analysis of (3.27) we see that for 
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1 » ß > 0(c1/2), a WKBJ type analysis will show that the pulses interact 
without a strong exchange. On the other hand, when ß — 0(c1/2), we 
can develop singular perturbation solutions by introducing the following 
changes of variables: 

(3.30) ß = £1/2fo(r), T = €1/2t, ßj = b^e^W. 

For 0 < ß <0(c1 /2), the expansions break down and a further inner ex
pansion is needed which will use for a basic description (3.26), the solu
tion corresponding to a double zero of a(f). However, unless the initial 
speeds of the two pulses are this close, this description is not required. 

One obtains the following result: 

bi - b2 = + — (bi + b2) K 
Mo 

(3.31) 
bt + b2 = const. e-<1/2^b 

and z — b2 satisfies the following equation, 

(3-32) ^ _ ^ . + ^ _ f t j ) = o. 

Equation (3.32) may be integrated once, 

(3.33) - \ z T
2 = z-bi0- Qe1'^*-^. 

Mo 

We can write C for the present model in terms of z0 = b2(0), which de
scribes the initial difference in velocities, and v = b1(0) — b2(0)/b1(0) + 
b2(0), — 1 < v < 1 which gives the initial separation. Then (3.33) be
comes 

TÏ2 

-^z2 - z —pe?'*10, p - (1 - v2)zQe~ZQ/^ 
Mo 

and the solution oscillates between the two real positive roots of the 
right hand side zt and z2. The point z = ju0, zT = 0 is a stable center 
and in general for 0 < C < JH0, the solution orbit is a stable periodic 
one about this center. The largest stable orbit occurs for C just less 
than /x0, for which value z1 is very small and z2 large. In the present 
model in which only two pulses are included, C is always less than /x0 

(equality occurs only when v = — 1) and the two pulses always syn
chronize for ju0 > 0. (Whereas the solution behavior depends consid
erably on the sign of /x0, the sign can be readily changed in the equa
tion by letting u —» u + 2TT.) We can define the stability of the 
synchronized state or the binding energy of the two pulses to be the 
minimal distance between the given orbit and the largest stable orbit. 
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Given the existence of these phase-locked pulses, we can play the fol
lowing game. Imagine a perfect universe with field equation (3.7) with 
€ = 0 whose solutions interact only by shifting position but not charac
ter and identity (the solitons). Now suppose the perfect inverse is per
turbed into a "real world" described by (3.7) with e ¥= 0 and the par
ticles of the real world consist of synchronized collections of 
noninteracting particles of the perfect universe. However, the particles 
of the real world can interact strongly. One can well imagine that a so
lution consisting of four synchronized pulses can interact with a solu
tion consisting of four synchronized pulses to split into a number of 
pulses with different identities. Such a decomposition will naturally de
pend on the binding strength (or related stability) of each particle. 
Studies along these lines are continuing. 

There has been also some progress made on the original question 
posed in this section. Miles [74, 75] has found that there is a critical 
angle at which the interaction between two almost parallel solitons 
[solitary waves!] of the water wave equation breaks down. Indeed if 
one looks at the Hirota solution [76] for the Kadomtsev-Petviashvili 
[77] equation, it is clear that something dramatic occurs when the crite
rion for resonance associated with linear waves is satisfied! We are 
presently attempting to describe the meaning of these singularities in 
the Hirota solution in terms of changes in the momenta and positions 
of the three solitons. One expects that the nonlinear concepts of syn
chronization and phase locking are also valid here. 

Whereas it is evident at the present time that many of the latter sug
gestions are pure conjecture and highly speculative, it is also clear that 
the singular perturbation approach is a powerful way in which to ob
tain information about systems which are close to being integrable. 
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