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SOLITONS AS APPROXIMATE DESCRIPTIONS 
OF PHYSICAL PHENOMENA 

HARVEY SEGUR* 

ABSTRACT. Those partial differential equations that exhibit soliton 
solutions often arise as approximate models of physical systems. 
These approximations restrict the range of experiments in which one 
might hope to identify and observe solitons in the original system. 
In two typical examples, it is shown which restrictions are implied 
by the approximation scheme, and what experimental data would be 
required to identify a soliton in the physical system. 

1. Introduction. Solitons are special solutions of certain models of 
physical systems. (For the purpose of this discussion, we may define a 
soliton to be a localized travelling wave solution of a nonlinear partial 
differential equation that asymptotically preserves its shape and velocity 
upon interaction with any other localized disturbance.) The review 
paper by Scott, Chu and McLaughlin [10] gives an extensive list of the 
physical systems in which solitons arise, and the list has grown consid
erably since the time (1973) of that publication. However, every wave 
is not a soliton, and it might be appropriate to reiterate in these Pro
ceedings the limitations on the initial data and the time scales required 
to observe the behavior of solitons. It is hoped that such a summary 
might be especially helpful in the interpretation of experimental obser
vations of wave interactions, from which the existence of solitons is in
ferred (sometimes incorrectly). 

The two main points of this paper are the following. 
(1) Partial differential equations that exhibit solitons arise as approx

imate models of certain physical systems. The time scale over which 
the model is valid is dictated by these approximations in terms of the 
initial data. Only observations made within this time scale provide in
formation about solitons. 

(2) Partial differential equations that exhibit solitons (on — oo < x 
< oo) also exhibit decaying oscillations. Even though these oscillations 
vanish as t —» oo, at any finite time (when experimental data is taken) it 
may be difficult to determine experimentally what part of the data 
should be attributed to solitons and what part to the oscillations. 

These considerations apply to any problem which is modelled by an 
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equation with solitons. However, in order not to confuse the discussion, 
we restrict our attention to two examples, the Korteweg-deVries equa
tion 

(!) Ut + UUx + Uxxx = ° 

as a model of the Fermi-Posta-Ulam problem (FPU, 1955), and the non
linear Schrödinger equation 

(2) iut + uxx + 2\u\2u = 0 

as a model of the evolution of almost monochromatic waves of moder
ate amplitude in a weakly nonlinear, dispersive system. 

In either of these systems, the solution consists of waves which prop
agate as linear waves on a short time scale; the emergence of (non
linear) solitons occurs only on a long time scale. That these waves re
tain their identities despite interactions that occur quickly (i.e., on a 
short time scale) suggests not that the waves are solitons, but that they 
are linear waves whose interaction time is too short for them to affect 
each other significantly. It is only when the interactions occur slowly 
(i.e., on a long time scale) and the waves still retain their identities that 
solitons are suggested. Consequently, in physical or numerical experi
ments which are intended to observe solitons, observations must be 
made over this long time scale in order to be conclusive. (Precise 
meaning of "long time" and "short t ime" depends on the particular 
problem, as the examples below will show.) 

On the long time scale, solitons separate in space, and each acquires 
its characteristic shape. However, the envelope of the oscillations also 
acquires a characteristic shape, the amplitude of which decays slowly 
(algebraically) in time. Depending on the problem, these two shapes 
may or may not differ significantly. In solutions of (1), there is no con
fusion between the solitons and the oscillations. On the other hand, de
pending on the initial conditions, it may be impossible to examine the 
solution of (2) at any single time and determine experimentally which 
wave packets are solitons and which are not. Obviously, this problem 
can complicate any experimental search for solitons. 

It should be stated at the outset that the main points of this paper 
are not new. The have been stated or implied in previous papers by 
Zabusky and Kruskal [16], Su and Gardner [14], Hammack and Segur 
[3], Kruskal [7], Newell [8], Rogers and Mei [9], Segur and Ablowitz 
[12], and Segur [13]. However, because of their implications in relating 
solitons to observations of physical systems, perhaps they are worth not
ing again. 

2. The KdV model. Let us consider first an FPU problem, which de
scribes the motion of a one-dimensional chain of identical masses, con-



DESCRIPTIONS OF PHYSICAL PHENOMENA 17 

nected by weakly nonlinear springs. The governing equations are 
myi„ = k(Vi+i - 2?/i + î/i-iX1 + a(?/i+i - î / i- i» 

for i = 1, 2, • • -, N — 1, with y0> yN given. 
In the numerical experiments by FPU, the nonlinear effects were rela
tively small and the energy remained largely in the lowest modes (i.e., 
the long waves). 

Zabusky and Kruskal [16] replaced the original discrete model with a 
continuum model, by expanding yi+1 and yi_1 in terms of yt by means 
of a Taylor series (cf. Kruskal [7]). The continuous analogue of (3) is 

(4) 
kh2 l h2 \ 

This approximation can be made either by letting N-+ oo, h fixed, or 
by letting 2V—* oo, h—* 0, (N/i) fixed. In the first limit, (4) is defined on 
( - c o < x < oo), and one ultimately obtains the KdV equation in the 
form solved by Gardner, Greene, Kruskal and Miura [2]. We restrict 
our attention to this problem. 

For definiteness, we assume that the initial data has a typical ampli
tude, a, and typical wavelength, D. In terms of these parameters, the 
following assumptions have been made in deriving (4): 

(i) long waves (to justify truncating the Taylor series), 

(ii) weakly nonlinear springs, 
aha < D. 

Neglecting both of these small effects, yields the linear wave equa
tion: 

(5) y0u = c2y0zx, 

where c2 = kh2/m. The solution is well known: 

/ r / X — Ct \ I X + Ct \ 
(6) !/o(*,<) = 0 / ( — ^ - j + a g ( ~ D )> 

where /, g = O(l). This solution is also an approximate solution of (4) 
for a limited time: 

(7) Ü = A ( J L _ )1/% = o(i). 
D D\ m I w 

During this time, the right-running (f) and left-running (g) waves do not 
interact because the nonlinear effects are simply too weak to influence 
the motion significantly over such a short time. This defines the "short 
time scale" mentioned above. 
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In order to determine the long time scale, we formalize the approx
imation procedure used by Zabusky and Kruskal by introducing a small 
parameter 

/ox oiha 
(8) £ = — « 1, 

and by making the additional assumption 

(9) ( 4 r ) 2 = 0(£) = 2 4 £ > 
so that the two small effects are of comparable size. W e need two (di-
mensionless) time scales: 

(10) t1=-, r=-t, 

and a perturbation expansion of the solution of (4): 

, , r / x — ct ct \ 
y(x, t; c) = af ^ —^— ; — t J 

(H) . v 

+ ag(^^;-jtj +<y1 + 0(f). 

Substituting (11) back into (4) and eliminating secular terms; one ob
tains necessary conditions for (11) to remain uniformly valid on a "long
time scale": 

These conditions are as follows. 

(i) In terms of the variables 

x — ct o €Ct r 

the right-running wave must satisfy the KdV equation: 

(la) uT + uu^ + u^ — 0. 

(ii) In terms of 

x + et œ 

- ' T = -pr*> V = &e> 
D D 

the left-running wave must also satisfy the KdV equation: 

(lb) - V T + W „ + V„„„ = 0. 
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(iii) In this same notation, 

/. U & g„ = o(i). 
The last condition assures that the two wavetrains, / and g, are too 
weak and too localized to affect each other, even on this long time 
scale. The first two conditions then determine how each wave evolves 
(independent of the other) as it interacts with itself. 

Solitons emerge only on this long time scale, a point that is not al
ways observed in interpreting experimental results. For example, in the 
numerical experiments by K. Miura, discussed by Jackson (these Pro
ceedings), waves traveling in opposite directions are observed to pass 
through each other (on a short-time scale). This observation does not 
necessarily suggest that solitons exist in this system, but only that the 
system is weakly nonlinear and hyperbolic. The observed interaction is 
virtually linear. 

The "Boussinesq equation" 

(13) 4>„ - <t>u + 6(<t>\x + 4 w = 0, 
is sometimes proposed as a preferable alternative to the KdV equation, 
because it not only possesses soliton solutions but also allows waves to 
travel in either direction. As a model of either (3) or (4), it is accurate 
only to 0(c2). Consequently, the time scale over which it is a valid 
model is given by (12), the same as for the KdV equation. Thus, if one 
interprets the "KdV model" to mean not just (1), but the entire per
turbation scheme, starting with (5), that ultimately yields (1) then the 
KdV and Boussinesq equations are equally valid approximate models of 
(3), or (4). 

Typically, the KdV model arises in an autonomous system that is 
non-dissipative, weakly nonlinear and weakly dispersive. In such a sys
tem, the solution can be described in terms of: 

(i) a short time scale, during which the appropriate model is the 
wave equation, (5); and 

(ii) a long-time scale, during which the appropriate model is the 
KdV equation, (1), for each of the two solutions of (5). This point was 
first noted explicitly by Su and Gardner [14]. 

3. The nonlinear Schrödinger model. The nonlinear Schrödinger 
equation, (2), is comparable to the KdV equation, (1), in that it also de
scribes the evolution on a long time scale of a wave that satisfies a lin
ear equation on a short time scale. In either case, the original system 
must be nondissipative. The difference between the two models is as 
follows. 

(i) If the problem is weakly dispersive and weakly nonlinear (as was 
(4)), then the zeroth order approximation is the linear wave equation 
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(5), and one can expect the KdV equation (1) to appear at the next or
der. 

(ii) If the problem is fully dispersive and weakly nonlinear, then the 
zeroth order approximation is linear and dispersive, and one can expect 
the nonlinear Schrödinger equation to appear at higher order. 

The derivation of (2) is well documented in the literature (e.g., New
ell [8], Hasimoto and Ono [5], or any of the appropriate references in 
Scott, et al. [10]. We mention here only the main points of the deriva
tion. The basic problem has the form 

(13) L (_^,_jL) , = e R m 

where L is a linear differential operator with constant coefficients, N is 
a nonlinear operator, and £ « I . The small parameter, c, might be ex
hibited explicitly in the equation or it might be implied by the initial 
data, as in (4). 

The zeroth approximation of (13) is 

(14) L*0 = 0, 

a solution of which is 

(15) i/,0 = Aei(kx-^ + (*). 

Here (*) denotes complex conjugate, and 

(16) co = co(fc) 

is the dispersion relation corresponding to the operator L. We require 
that co be real for real k (nondissipative), and that d2o)/dk2 ¥= 0 (dis
persive). The general solution of (14) is obtained by integrating over all 
solutions of the form (15). However, since the problem is dispersive, 
usual group velocity arguments show that for large times the wave 
number (k0) will be the dominant wavenumber in the region given by 

(17) ^ik^' 
where dcc/dk is the group velocity of that wavenumber. Thus, for each 
wavenumber, fc0, this problem will have three time scales: 

(i) t{ — l/co(fc0), the period of a wave; 
(ii) tu — L/(do)/dk(k0) — du/dk(k^j), the time required for the sta

tionary phase points of two different wave numbers, k0 and kv to sepa
rate by a distance L; and 

(iii) tiii9 the time required for the small nonlinear effects to produce 
a significant cumulative effect. 

The nonlinear Schrödinger equation ordinarily is derived by assuming 



DESCRIPTIONS OF PHYSICAL PHENOMENA 21 

ti ^ tu ^ tin anc* asking how a slowly-varying plane wave evolves in 
time. Thus, the analysis will incorporate the assumption that we have 
focused on a single wavenumber, k0, that is well-separated in space 
from other wavenumbers. We introduce the multiple scales 

x = x, x, = ex, 
(18) 

t = t, tx — et, T = €% 
and an expansion of the solution of (13): 

(19) xp(x, t; c) = xP0 + c ^ + €2^2 + • • • 
where 

(15a) ^ = A(xv tl9 T)e«k<*-^ + (*). 

Notice that use of the variables x and x1 effectively restricts the range 
of wavenumbers present to 

(20) \k - k0\ = O(ek0). 

Eliminating secular terms at O(c) yields 

(21) A - A(fc T), 

where the variable 

(17a) € = x, - - ^ - W i 

represents simply the effect of linear group velocity. Nonlinear effects 
first arise at 0(e2), where the elimination of secular terms yields the 
nonlinear Schrödinger equation: 

(2a) iAT + i - ^ - ( f c 0 )A a + C|A|2A = 0, 

where C is a constant depending on N(^) in (13). 
Thus, the nonlinear Schrödinger model, like the KdV model, is not 

simply the differential equation (2) but an entire perturbation pro
cedure for a certain class of problems. In applying the model to a 
physical problem, the entire procedure must be utilized in order to 
make the results meaningful. Failure to include any of the restrictions 
can lead to erroneous conclusions. 

We close this section with an example of the type of difficulties that 
one encounters by separating the equation (2) from the perturbation 
procedure that leads up to it. Hasimoto and Ono [5] derived (2) as a 
model of deep water waves, and Yuen and Lake [15] verified the model 
experimentally. One of their experiments shows the interaction of two 
wave packets (which appear to be solitons) traveling in opposite direc-
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tions. The interaction is observed to be very weak. This observation, 
however, neither supports nor denies the hypothesis that the wave 
packets are solitons. These two waves interact on such a short time 
scale that no significant nonlinear effects can occur; the observed inter
action is simply linear. The observed interaction of two wave packets 
can test the model only if the wavenumbers of the two packets, k0 and 
k, satisfy (20). Otherwise, there is no need for a nonlinear theory, be
cause the time required for the interaction is too short. 

4. Solitons and oscillations. The outstanding feature of the solution 
of either (1) or (2) on — oo < x < oo is that the initial data (which 
must be smooth and vanish rapidly as |x| —• oo) evolve into a definite 
combination of permanent waves and decaying oscillations. The ampli
tude of the oscillation decays algebraically in time, so that after a suffi
ciently long time only the permanent waves remain. Consequently, and 
justifiably, most workers have concentrated on these permanent waves. 
However, the results of a physical or numerical experiment contain 
some combination of permanent waves and oscillations, and one may 
not have the option of concentrating on the permanent waves. There
fore, the purpose of this section is to emphasize the differences between 
solitons and oscillations which would permit identification of each in a 
wave record or computer print-out. As above, in order to keep the dis
cussion simple, we restrict our attention to the two cases, (1) and (2), 
although the same question would arise in any problem in which one at
tempts to identify solitons experimentally. 

In the case of the KdV model, (1), the question is relatively simple. 
The only permanent waves that can arise are solitons, each of which is 
a positive wave traveling with positive velocity. (In the light of the de
rivation of (1) given above, this statement should be interpreted to 
mean "positive velocity, relative to the linearized wave velocity, c") 
The oscillations, on the other hand, take on both positive and negative 
values and travel with a negative group velocity (Segur, [11]). For any 
initial data, therefore, the solitons can eventually be identified purely 
by location: x > 0, with the oscillations located at x < 0. 

A second test is that the solitons must be entirely positive, and a 
third test is actually to compare the shape of the observed wave with 
that required: 

u(x, t) = 3csech2{(c/4)1/2(x - ct + x0)}. 

All of these tests require that one wait until the solitons and the os
cillations have separated in space. At earlier times, it is much more dif
ficult to make this identification (cf., Hammack and Segur [3]). 

For the nonlinear Schrödinger model, (2), the problem is more diffi-
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cult, even if all the permanent waves are solitons. The solution for an 
isolated soliton is 

us(x, t) = 2TJ sech{2îî(x + 4f*)} 

*exp{-2i(£x + 2(f2-Tr2)£)}. 

Thus, the soliton is an envelope of oscillations, with amplitude, 2?], and 
speed, — 4£. To a good approximation, one can replace £ ~ x/4t in the 
phase, because the envelope vanishes elsewhere. Thus, (23) becomes ap
proximately 

us(x, t) ~ 2TJ sech{2rj(x + 4£f)} 
(24) 

*^{^-( ( f )s +w)} 
By way of contrast, in the absence of any permanent waves, the 

decaying oscillations take the form 

u0(x, t) = r1/2R(x/f, f) 

•-{*(( T M ¥))}• 
where 

*(!••)-£* H !(-£ )l" M ^)-
and b/a(k) depends on the initial data (Segur and Ablowitz, [12]). One 
can show that b/a(k) —* 0 as \k\ —* oo; as a special case, let us assume 
that 

—(k) = 0 \k\> K 

—Ik) ^ 0 |*| < K 
a 

At any particular time, f0, it would be almost impossible to tell the 
soliton solution, (24), from the oscillations, (25). Each consists of a 
single packet of waves, oscillating at nearly the same frequency. The 
envelope in (24) has a definite shape, but nothing prevents the packet 
in (25) from having the same shape. Thus, without comparing two or 
more wave records, at different times, one cannot conclusively identify 
a soliton in this problem. 

By comparing wave records at two or more times, one obtains two 
complementary methods to differentiate (24) from (25): 

(i) The amplitude of the oscillations decreases in time whereas the 
amplitude of the soliton does not; 
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(ii) The physical region of support of the oscillations, \x\ < 4Xf, in
creases linearly in time, whereas the region of support of the soliton is 
constant. 

In a physical problem with slight dissipation and which is only ap
proximately modelled by (2), even these two tests may fail (e.g., Yuen 
and Lake [15]). 

The main point of this section is that, even in cases where the exact 
solution is known, it may be difficult to identify solitons experimentally. 
When one seeks to determine experimentally whether a given physical 
system does or does not have solitons, without knowing an appropriate 
analytical model, the problem may well be impossible. In such a case, 
it would seem that a blend of theory and experiment is essential for 
further progress. 
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