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COMMUTING SKEW ELEMENTS IN RINGS 
WITH INVOLUTION 

I. N. HERSTEIN l AND PJEK-HWEE LEE 

We shall be concerned here with rings with involution and their 
skew elements. Let fi be a ring with involution * and let K = 
{x G R | x* = —x} and S = {x G R | x* = x} be the sets of skew and 
symmetric elements, respectively, of R. We shall also be concerned 
with a special subset, KQ, of K defined by Ko = {x — x* | x G R}; we 
call the elements of Ko skew-traces. We shall consistently use the 
notation Z, or Z(R) to denote the center of R a n d / to denote the Jacob-
son radical of R. 

In a recent paper [ 1], Herstein has shown that if every a G Ko 
satisfies ania) = a, n(a) > 1, then any two elements in K must commute. 
On the other hand, Lee has shown in [2] that if R is a semi-simple 
ring, in which 2R = R, and if given a G K then a — a^p^a) G Z, 
where pa(t) is a polynomial with integer coefficients which depend on 
a, then the structure of R is that of a subdirect product of fields and 
2 X 2 matrices over fields, where the involution is completely described. 
As a consequence it is true, in Lee's situation, that any two elements 
in K must commute. It is easy to change the proof of Lee's Theorem 
8 to obtain that even if R is not semi-simple, then ab — ba EL J for all 
a, b G K. We shall show this — in fact in a slightly more general 
form — below. 

In this paper we shall show that this result of Lee can be consider­
ably sharpened, for it will turn out, in fact, that in rings satisfying 
Lee's condition on the elements of Ko (and not necessarily on all of K) 
we must have ab = ba for all a and b in K. Of course this also extends 
Herstein's result mentioned earlier, at least for rings in which 2R = R. 

Our aim is to prove the 

THEOREM. Let R be a ring with involution * such that 2R = R. 
Suppose that, given a G Ko then a — a^J^a) G Z where pa(t) is a poly­
nomial with integer coefficients which depend on a. Then uv = vu 
for all u,v G K. 
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REMARK 0. If R is a *-prime ring such that 2R = R, then R is 2-
torsion free, so 2K = K and therefore KQ = K. 

Before getting down to the proof of the theorem we make a slight 
improvement in Theorem 8 of [ 2]. We claim that if R is semi-simple 
and a — a^pj^a) G Z for all a G KQ, then, if 2R = R, any two elements 
in K must commute. 

We prove this by indicating the changes needed in the proof that 
Lee gave. Let F be a primitive ideal of R. If P* ^ P then (P* + P)IP 
is a non-zero ideal in the primitive ring R = RIP. Moreover — as Lee 
shows — every element in (F* + P)IP is the image of a skew trace in 
R, hence every element u in (P* + P)IP satisfies a relation u — u^^u) 
£ Z(B). This forces R to be commutative — Lee's argument here 
carries over. On the other hand, if P* = P, then since 2R = R, 
2R = R where R = RIP. Since by Remark 0, K„ = K, any two 
elements in K commute by Lee's Theorem 8. So, if u, v G K then 
uv — vu G P. Since uv — vu ELP for all primitive ideals F of R and 
because R is semi-simple, C\ P — 0, we have ut; = vu for all w, t> G K. 

We now return to our theorem. The theorem will be a consequence 
of the lemmas we are about to prove. However, we first make a few 
preliminary remarks which shall be used throughout. 

1. Since skew-traces in RIU are images of skew traces in R, if 
U* = 17, the hypothesis on elements of KQ carries over to the skew-
traces in RIU. 

2. We may assume that R is generated by K. 

3. Since 2R = R, if 2x G Z then x G Z. 

4. If a G Ko, then in the polynomial a^p^a) we may assume that 
only odd powers of a occur. For, if b = a + m ^ 2 + m2a3 + • • • + 
mka

k G Z, then b* = —a + mio2 -h • • • £ Z, hence b — b* = 
2(a -h m2a3 + • • •) G Z. By remark 3, a + m2a3 + m4a5 -f • • • G Z, 
as claimed. 

5. Since a2k + ì = afcaa*, if a G Ko, then a2fc+1 G afcKoafc C Ko; thus 
we have a — appaia) G Z where, by remark 4, a^pj^a) involves only 
odd powers of a, and so a^pj^à) G KQ. Hence a2pa(a) — q(a2pa(a)) 
(a2pa(a))2 G Z for a suitable polynomial q with integer coefficients. 
This gives us, on adding to a — cPpJ^a) G Z, that a — a4t(a) G Z 
for a suitable polynomial f(a) with integer coefficients. Continuing in 
this way, we get a — arfa(a) G Z for r arbitrarily high. 

6. In view of remark 5, all nilpotent elements in KQ are in Z. 
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Recall that a ring R with involution is *-subdirectly irreducible 
if the intersection of all its nonzero *-ideals I/, (i.e., 17* = U), is a 
nonzero ideal of R. Thus, in this case, R has a minimal *-ideal M j£ 0 
and M C U for all *-ideals U ̂  0 of R. Since every ring with 
involution is a subdirect product of *-subdirectly irreducible rings, to 
prove our theorem it is sufficient to prove it for *-subdirectly irreduc­
ible rings. Thus we assume henceforth that R is a *-subdirectly 
irreducible ring, with 2R = R and in which our running hypothesis 
on Ko holds. 

We shall use the commutator notation [x, y] = xy — yx and 
[A, B] for the additive subgroup of R generated by all [a, b], where 
a E A, b E B. 

Let M ^ 0 be the minimal *-ideal of R, and let A(M) = {x G R | 
xM = Mx = 0 } . A(M) is a *-ideal of R. Our first objective is to show 
that if [K,K\ / 0 then A(M) ^ 0. Recall that / is the Jacobson 
radical of R. 

LEMMA 1. If [K,K\ ^ 0, then jfO and / C A(M). Hence 
M 2 = 0. 

PROOF. AS we indicated in our improvement of Lee's Theorem 8, 
[ K, K] C / ; hence, since [ K, K\ / 0, we have that / ^ 0. Because 
/* = J,JD M. 

If M H Ko 7^0, let a ^ O G M f l K o . Thus 0 - 0 ^ ( 0 ) = 
b G Z H M ; by remark 4, we may assume that b G Ko. Since a EL J, 
a ^ a^p^a), hence b ^ 0. Now fo/ = /fo is a *-ideal of R since fo* 
= — b G Z. If bj j£ 0 we must have fo/ = M. Therefore bj = fo for 
some j G / ; this gives b = 0. Thus bj = Jb = 0. This tells us that 
W = {x G R I x/ = /x = 0} is not 0; therefore W, being a *-ideal of 
R, contains M. This gives M J = / M = 0, and so / C A(M), as 
claimed. 

On the other hand, if M (1 KQ = 0, then x = x* for all x G M. If 
s / 0 Ë M then y s EL M for any J/ G R; hence (ys)* = t/s, which 
gives us y s = sy* for all y G R. Thus sR = Rs is a *-ideal of R, as is 
sj = Js. If sj j£ 0 then sJ=M follows, and so sj = s for some j G / . 
This gives 5 = 0 ; hence here too, M/ = JM = 0 results. Hence 
/ C A ( M ) . 

We pass to 

LEMMA 2. [K, K\ C Z. 

PROOF. If [K9K\ = 0 then it certainly lies in Z. So suppose that 
[ K, K] ^ 0 . Our aim is to show that if a, b G K then c = ab — ba is 
nilpotent for then, by remark 6 since e E KQ is nilpotent it must be 
inZ. 
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Suppose then that c = ab — ba ^ 0 is not nilpotent. Let [/ be a 
•-ideal maximal with respect to exclusion of thejpowers of c, and let 
R= RIU. Since a power of c, the image of c in R, falls in every non­
zero *-ideal of R, R is *-prime, hence semi-prime. Since c = [3, T>] 
^ 0, in R, [K, K\ ^ 0, hence by Lemma 1, R cannot be •-sub-
directly irreducible, for if it were, its minimal *-ideal would be nil-
potent._So the intersection ofthe nonzero *-ideals of R is 0. 

Let V ^ 0_be_a *-ideal of R; thus cn G V for some n ^ 2. However, 
since c G [K, K] C Ko, by remark 5, c — cnq(c) G Z(R) for some 
polynomial q with integer coefficients. Thus, for any x G R, ex — 
xc = cnq(c)x — xcnq(c) G V, which is to say, ex — xc is 
in every nonzero *-ideal ôf R. But then ex — xc = 0, and so 
c G Z(R). 

Because R is *-prime and c ^ 0 G Z(R), since c* = — c, c 
cannot be a zero-divisor in R; since c = [3,5] ^ 0, 3 (f Z(R), 
hence ä cannot be nilpotent (remark 0 and 6). Therefore c32 is not 
nilpotent; now ca2 = oca G KQ since C G K Q and 3 G K. The 
argument used for c works equally well for cä2; for, if V ^ 0 is a 
•-ideal of R, then cn G V, hence (c32)n = en32 n G V. This gives 
us_that c3 2 GZ(R) , and since c / 0 G Z ( R ) , we get that ä2 G 
Z(R). Therefore 0 = [ä2, E] = 3 [3, 5] + [â ,5]3 = 2äc . By Re­
mark 0, R has no 2-torsion. We get, therefore, that ac = 0 and 
so a = 0. This clearly contradicts that c = [3, 5] ^ 0 . We showed 
now that c = [a, b] must be nilpotent, hence is in Z. Thus [K,K\ G Z. 

We get some information on A(M) now. 

LEMMA 3. If x G A(M), then x — x* G Z. 

PROOF. If [K,K] = 0 , since R is generated by K we would be 
done. Suppose, then, that [K, K] ^ 0. By Lemma 1, A(M) / 0. 

Let x f 0 £ A(M) and let a= x — x*. Since a G KQ, a — a^piß) 
G Z for some polynomial p(t) with integer coefficients. If b G K by 
Lemma 2, ab — ba G [ K, K] C Z. Thus ab — ba = a^iaty — 
ba2p(a) = q(a)(ab — ba), where q(i) is the derivative of t^pit). Thus 
q(a) is a multiple of a, hence is in A(M). 

If ab — baj£ 0, since it is in Z and is skew, ab — ba generates a 
nonzero *-ideal of R which thus contains M. If y ^ 0 G M then 
t/ = r(ab — ba) + n(ab — ba) where r G R and n is an integer. Thus, 
since q(a) G A(M) and ab — ba = q(a)(ab — ba), 

0 = yq(a) = r(ab — ba)q(a) + n(ab — ba)q(a) 

= r(ab — ba) + n(ab — ba) = y ^ 0. 
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With this contradiction we have ab = ba for all b E K. Since K 
generates R we then have that a = x — x* must be in Z. This proves 
the lemma. 

We need one more preliminary lemma prior to proving our theorem. 

LEMMA 4. If a ^ 0 is in [ K, K\ and xa = 0, then x E A(M). 

PROOF. By Lemma 2, 0 / O £ Z ; since a* = —a, and a G Z, a 
generates a nonzero *-ideal T of R. Then T~D M. But since xa = ax 
= 0, we have xT = Tx = 0, hence xM = Mx = 0, whence x G A(M). 

We have all the pieces now to prove the theorem. 

Proof of the theorem. We may suppose that R is *-subdirectly 
irreducible and generated by K, and that [K, K\ ^ 0. Since [K, K\ 
C / C A(M), R = RIA(M) is commutative. 

We claim that R is 2-torsion free. For, if R has 2-torsion then 2M 
= 0 follows. Hence RM = (2R)M = R(2M ) = 0, and MR = 0; that 
is, R = A(M). By Lemma 3 we then have x — x* G Z for all x G R. 
If k G K then 2fc = fc - k* G Z, hence, by remark 3, fc G Z. This 
gives [ K, K\ = 0 in contradiction to [ K, K] ^ 0 . We now have, then, 
that KQ = K, and our hypothesis on the elements of Ko holds on all 
elements of K. 

By Lemma 3 and Remark 3, then, all elements in K fì A(M) are in 
Z. Since K Cf Z we must have that A(M) jt R, and so R = RJA(M) 
^ 0. Note that R is also 2-torsion free, for if 2x = 0 in R then 
2x G A(M) hence 2xM = 0. But 2M = M, giving us xM = 0; similarly, 
Mx = 0. Thus x E: A(M) whence x = 0. 

Since JNK, K\ ^ 0 and K H A(M) C Z we have a,bEK, a $ 
A(Af), b f A(M) such that ab — ba j^ 0. We claim that the image, 
3, of a in R is invertible in R. Since a — azp(a) G Z and ab — ba E 
[K, K] C Z by Lemma 2, ab — ba = a2p(a)b — ba2up(a) = aq(a)(ab 
— ba) where g(a) = ap'(a) + 2p(a) and p'(f) is the derivative of p(t). 
If x G R then (x — xaq(a))(ab — ba) = 0; since ab — ba^ 0 is in 
[K, K], by Lemma 4, x — xaq(a) E A(M). In R this translates into 
äq(ä) = 1, where q is a polynomial with integer coefficients. Thus 
a is indeed invertible in R. 

By the above there is a non-constant polynomial with integer co­
efficients—in fact t2q(t) — t will do —which, when evaluated at a, 
falls in A(M). Let /(f) be such a polynomial of minimal odd degree; 
then since f(a) E A(M), f(a)* = / ( — a) is also in A(M), hence 
f(a) — / ( — a) G A(M). In short, we may assume, since fl is 2-
torsion free, that f(a) is a polynomial involving only odd powers of 
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a. Thus f(a) G A(M) f i K C Z . Therefore, 0 = f(a)b - bf(a) 
= ff(a)(ah — ha), where f'(t) is the derivative of f(t), since 
ab — ha G Z. By Lemma 4, af'(a) G A(M); since / ' ( f ) is of lower 
degree than f(t) and af'(a) G A(M), we easily get that na G A(M) 
for some integer n > 0. Thus naM = 0, and so a(nM) = 0. Since 
a tfp A(M) we conclude that nM = 0. By the *-irreducibility of R we 
quickly sharpen this to pM = 0 for p some prime, p ^ 2, and R 
= RIA(M) is of characteristic p,p ^ 2. 

Since a E. K, pa E. K; however, pa G A(M), hence p a E K f l A(M) 
C Z. If fcGK, by Lemma 2, [a, k] G Z hence [ap,fc] = 
pap~l[a, k] = ap~l[pa,k] = 0 since pa G Z. Thus ap centralizes K; 
but because K generated R, we can conclude that aP G Z. 

Let a, fo G K be as above, that is, ab — ha ^ 0. If c G K, c ^ 
A(M) is in Z then c2a G K and [c2a, b] = c2[a, b] ^ 0 since c2a£J: 
A(M) (using Lemma 4). The argument above then shows that c2a is 
invertible in R, hence c in invertible in R. In short, every skew ele­
ment in R is invertible in R. 

If 5 7̂  0 is symmetric in R then ~sa j^ 0 is skew, so is invertible 
in R. Therefore ~s is invertible in R. Since â is algebraic over the 
prime field — for äq(ä) = 1 — the ring generated by a2 over the 
prime field is finite. Every nonzero element in this ring is symmetric, 
so is invertible (in this sub ring). That is, a2 generated a finite field. 
Hence, since the characteristic of R is p, (a2)pn — a2 for some n > 0. 
This gives us (âpn — a)(âpn + â) = 0; since p is odd, each of 
apn ± a is skew, so is invertible or 0. We thus get that apn = â 
or W}n = — â. In R this translates into ap"-h a G A(M) or a?" 
— a G A(M). But since a?" + a and apn — a are skew, we get, via 
Lemma 3 and Remark 3, that either apn 4- a G Z or apn — a G Z. In 
either case, since Û P E Z we are left with a G Z. But then [a, fo] = 0 
contrary to [a, b] ^ 0. With this the theorem is proved. 
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