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ON POLYNOMIAL AND POWER SERIES RINGS 
OVER A COMMUTATIVE RING 

ROBERT GILMER l 

1. Introduction. Let R be a commutative ring with identity and let 
X be an indeterminate over R. The polynomial ring R[X\ and the 
ring R[ [X] ] of formal power series over R are basic objects of study 
in the theory of commutative rings. One of the reasons that the poly­
nomial ring is important is the following fact: If S is a commutative 
ring containing R as a subring, and if s G S, then the "substitution map­
ping" f(X)-> f(s) is a homomorphism of R[X] into S. By extension 
of this result to the case of polynomial rings in finitely many indeter-
minates over R, we see that each commutative finitely generated ring 
extension R[sx, s2, ' ' ',$n] of R is isomorphic to a residue class ring 
of R[Xi, ' ' *, Xn]. The power series ring plays an important role in 
the theory of topological rings. For example, under suitable topological 
restrictions on S, a "substitution mapping" f(X) —> f(s) of R [ [ X] ] 
into S can be defined that is a homomorphism; here/(X) = ^ "-^fiX*, 
and f(s) is the limit of the sequence {^"=0 fa*} n=i m S. 

We consider here the following questions concerning polynomial 
and power series rings. 

1 A. What are the zero divisors of R [ X] ? 
2A. What are the nilpotent elements of R [X] ? 
3A. What are the units of R[X\? 
4A. Determine the set of R-automorphisms of R [ X]. 
5A. What is the (Krull) dimension of R[X] ? 

Questions IB, 2B, • • • are the analogues of the preceding questions 
for the power series ring R[ [X] ] . A word of explanation concerning 
our point of view is in order. We seek answers to the preceding ques­
tions in terms of the coefficient ring R; thus in questions 1A, 2A, 3A, 
our answers will be given in terms of the coefficients of the polynomial 
in R[X], and on question 5A, we relate the dimension of R[X] to the 
dimension of R. Questions 1-3 can be regarded primarily as tools for 
considering other questions, not as ends in themselves, whereas results 
on questions 4 and 5 play more of a dual role — they are useful in con­
sidering other problems, but they are also of independent interest. 
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2. Zero divisors, nilpotent elements, and units. We continue to use 
the notation of the preceding section; R denotes a commutative ring 
with identity and X is an indeterminate over R. 

If <j> is a homomorphism of R onto a ring S, then <f> induces a homo-
morphism <f>* of R[X] onto S[X] defined by <t>*&?=0 nJO) = 
5)f=o <Kri)^*- If A is the kernel of </>, then the kernel of <j>* is the set of 
polynomials ^ 2 r̂ X* such that r* £ A for each i; we denote this ideal 
byA[X] . Hence 

R[X]/A[X] = (R/A)[X], 

and from this isomorphism, we draw several conclusions: (1) <j> is one-
to-one if and only if $* is one-to-one, (2) A is prime in R if and only if 
A[X] is prime in R[X], and (3) if A is a maximal ideal of R, then 
A[X] is not maximal in R[X], but each proper prime ideal of R[X] 
properly containing A[X] is maximal in R[X] (in other terminology, 
A[X] has depth one [59, p. 240] ). Similar remarks apply to R[ [X] ] ; 
$ induces a homomorphism <£** : R[ [X]] —• S [ [X]] defined by 
</>**( E o nX*) = 2 S <Kn)#. The kernel of <£>** is the ideal A[ [X] ] of 
R[ [X] ] consisting of all power series ^ uX1, with f j E A for each i. 
Therefore R[ [X] ]/A[ [X] ] = (R /A) [ [X] ] , </>** is an isomorphism if 
and only if <f> is an isomorphism, A[[X]] is prime in R[[X]] if and 
only if A is prime in R, and if A is maximal in R, then A[ [X] ] + (X) 
is the unique maximal ideal of R[ [X] ] containing A[ [X] ] . 

(2.1) ANSWER TO QUESTION 1A. If f= 5)?=o/i^ G R[X], ^ n 
/ i s a zero divisor in R[X] if and only if there is a nonzero element r 
in R such that rf = Qfor each i between 0 and n. 

This result is due to N. H. McCoy [42]. Half of the result is obvious; 
fis a zero divisor in R[X] if the condition given is satisfied. W. R. 
Scott [50] has given an elegant inductive proof to establish necessity 
of this condition. It is interesting to note that a proof of McCoy's 
theorem can be based on a result established independently by R. 
Dedekind [14] and F. Mertens [43] in 1892; we hasten to add, 
however, that this result, which Krull in [37, p. 128] calls the 
Hilfssatz von Dedekind-Mertens, is a much deeper theorem than 
McCoy's theorem on zero divisors. The following statement is a 
general form of the Dedekind-Mertens Lemma given by J. Arnold and 
the author in [8, p. 559] (see also [46], [22], and [24, §24] ). 

(2.2) Assume that S is a subring of the commutative ring T, and let 
{Xx}xGA be a set of indeterminates over T. IfhE.T[ {Xk}], denote by 
Ah the S-submodule of T generated by the coefficients of h. If 
fgE.T[ {Xx}], then there is a positive integer k such that 
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To obtain a proof of McCoy's Theorem from the Dedekind-Mertens 
Lemma, we consider the case where S = T = R. If g is a nonzero 
element of R[X] such that fg = 0, then either AfAg = (0) or AfAg ^ 
(0). In the first case, each nonzero coefficient of g annihilates each co­
efficient of / In the second, we choose t > 1 such that A/Ag = (0), 
while A/~lAg T^ (0); each nonzero element of A/~1Ag annihilates 
each coefficient of/, and hence the proof is complete. 

If D is the ring of algebraic integers in a finite algebraic number 
field and i f / G D[X] , then the ideal Af of D generated by the co­
efficients of / has classically been called the content of f A well 
known theorem in algebraic number theory [41, p. 68] states that if 
D is the ring of algebraic integers in a finite algebraic number field, 
then the content of the product of two elements of D [ X] is the product 
of their contents — that is, Afg = AfAg for all f g G D [ X ] . The 
author [22] and H. Tsang [56] have proved independently that 
among integral domains / with identity, Prüfer domains (the reader 
unfamiliar with the theory of Prüfer domains may consult Chapter IV 
of [24] ) are characterized by the property that Afg = AfAg for all 
f , g G / [ X ] . Tsang has also investigated the condition Afg = AfAg 

over a commutative ring R with identity; she calls a ring R with this 
property a Gaussian ring. 

If r G R, we say that r is regular if r is not a zero divisor in fi. An 
ideal A of fi is regular if A contains a regular element of fl. One con­
sequence of (2.1) is that / is not a zero divisor in R[X] if the content 
off is a regular ideal of R. In particular, a primitive polynomial over 
R —that is, a polynomial with content fi —is not a zero divisor in 
R[X]. (The reader is warned that the terms regular element and 
primitive polynomial are used in several different ways in ring theory; 
see, for example, [33, p. 7] and [57, p. 91].) The sets Sp = 
{fGR[XÌ \Af=R] and Sr = {/G R[X] | Af is a regular ideal 
of R} are regular multiplicative systems in R[X], and fi[X]S;, = 
R[X]sr- The ring fl[X]S;„ which was introduced by Krull in [39], 
md which M. Nagata in [44, p. 18] denotes by R(X), has proved to 
be of interest in several different areas of commutative algebra; see 
[13, p. 62], [3], [32, p. 218], [31, p. 757]. 

Another consequence of (2.1) is the following result. 

(2.3) If Q is a ?-primary ideal of R, then Ç[X] is P[X]-primary in 
R[X]. 

PROOF. By definition, Q[X] is a primary ideal of R[X] if and only 
f each zero divisor of R[X]/Ç[X] is nilpotent. Since R[X]IQ[X\ = 
R/Ç)[X], it is therefore sufficient to prove (2.3) in the case where 
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Q = 0. In this case, if / = ^ofiX1 is a zero divisor in R[X], then 
there is a nonzero element r of R such that rfi = 0 for each i. Hence 
each fi is a zero divisor in R, and because (0) is a primary ideal of 
R, each fi is nilpotent so that / = ^ofiX1 is also nilpotent. This 
proves that Q [X] is a primary ideal of R[X\. Since Q[X] is contained 
in P[X], a prime ideal, it follows that VQ[X] is contained in P[X]. 
But since V Ç = P, it is clear that P[X\ is contained in VQ[X] , so 
that F [X] = V Ç [ X ] , a n d Ç [ X ] is P [X] -primary. 

(2.4) PARTIAL ANSWER TO QUESTION IB. If f=^0°i=ofiXiG 
R[[X] ] , then f may be a zero divisor in R[[X]] although one of 
the coefficients of f is a unit of R. If R is Noetherian, then the 
analogue of (2.1) is valid; namely, f is a zero divisor in R[[X\] 
if and only if there is a nonzero element r in R such that rf= 0 for 
each i. 

The results of (2.4) were proved by D. Fields in [18]. To estab­
lish the first assertion of (2.4), Fields takes R to be S[Y, {Xi}l=0]/A, 
where S is a commutative ring with identity, {Y} U {X;}o is a set of 
indeterminates over S, and A is the ideal of S[ Y, {Xj}S] generated by 
the set {X0Y} U {X* - X m Y } %0 . If t/ = Y + A and if *< = X{ + A 
for each i, then the polynomial f = y — X Œ. R[X] has a unit co­
efficient, but / is a zero divisor in R [ [ X] ] since fg = 0, where 
g = 5^ °i=o XiX* ^ 0. To prove the assertion of (2.4) concerning 
Noetherian rings, we need some information on Question 2B, and 
hence we delay our further remarks on the remainder of (2.4). 

It is easy to prove that an element / = ^ o i ^ * of R[X] is nil-
potent if and only if each f is nilpotent in R. A rather sophisticated 
proof of this result uses the fact that / is nilpotent if and only if 
/ G V(0) = n a F a , where {Pa} is the family of prime ideals of R[X]. 
Moreover, since Pa D (Pa Pi R)[X], where Pa H R is prime in R and 
(Pa PI R)[X] is prime in R[X], it follows that V(0) = nß(Qß[X] ) = 
(nßQß)[X] = N[X], where {Qß} is the set of prime ideals of R, and 
hence N = (~^ßQß is the set of nilpotent elements of R. (We remark 
that S. A. Amitsur in [2] has investigated the topic of radicals of 
polynomial rings over a noncommutative ring.) 

It is interesting to examine the proof in the preceding paragraph in 
seeking an answer to Question 2B. Thus, if {Qß } is the family of prime 
ideals of R, then {Qß [ [ X] ] } is a family of prime ideals of R [ [ X] ] 
and Dß(Qß[[X]] = (ClßQß)[[X\] = N [ [ X ] ] . Hence V(0) Ç 
N[[X]] —that is, if / = ^ofX1 is nilpotent, then each fi is nil-
potent. In attempting to prove the converse, we encounter the fact 
that for an ideal A of R[ [X] ] , A need not contain (API R)[[X]] ? 
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although A does contain (A fl R) ° R[ [X] ] , the extension of A D R 
to R[ [X] ] . Thus, if B is an ideal of R, the containment B ° R[ [X] ] 
Ç B[ [X] ] may be proper. In fact, B ° R[ [X] ] = { /E R[ [X] ] | A ,̂ 
the ideal of R generated by the coefficients of / , is contained in a 
finitely generated ideal contained in B}. Therefore, B° R[[X]] = 
B[ [X]] if B is finitely generated. On the other hand, if B is count-
ably generated, say R = ({foj}o)> but not finitely generated, then 
2 o biX* is in B[ [X] ], but not in B ° R[ [X] ]. Upon examination of 
our determination of the set of nilpotent elements of R[X] we see, 
however, that the possible proper containment (Qß Ci R) °R[ [X]] C 
(Qß H R)[ [X]] is no real problem to us in answering Question 2B 
if the ideal (Qß fi R) ° R[ [X]] is prime in R[ [X]] for each prime 
ideal Qß of R [ [X] ] . Unfortunately (from one point of view), this 
condition fails, and in fact, / = ]£ ofiX1 need not be nilpotent if 
each f is nilpotent. (In Example 2 of [18], Fields shows that / 
need not be nilpotent even if there is a positive integer m such that 
fm = (0) for each i.) We state in (2.5) the most complete answer we 
know to Question 2B; (2.5) contains as a special case the answer to 
Question 2A that we have already derived. 

(2.5) PARTIAL ANSWER TO QUESTION 2B. If f — Xo/iX* is a nil-
potent element of R[ [X] ] , then each fi is nilpotent — that is, AfQ N, 
the nil radical of R. If Af is nilpotent of order k, then fk = 0; in 
particular, if Af is finitely generated, then f is nilpotent. If R has 
nonzero characteristic, then f is nilpotent if and only if there is a 
positive integer m such that fim = 0 for each i. In general, nilpotence 
of f does not imply nilpotence of Af, and the condition fim = 0, 
for a fixed positive integer m and for each i, does not imply that f 
is nilpotent. 

Proofs of the assertions of (2.5) can be found in [18]. In [5], J. 
Arnold proves that / is nilpotent if there is a positive integer k such 
that bk = 0 for each element b in Af, this statement generalizes the 
result that / is nilpotent if Ay is nilpotent. As corollaries to (2.5), we 
obtain the following results. 

(2.6) If A is an ideal of R and if B = VA, then V(A[ [X]] ) Ç 
B[[X]];ifA contains a power of B, then V(A[ [X] ] ) = B[ [X] ]. If 
A is B-primary and if A contains a power ofB, then A[ [X] ] w ß [ [ X ] ] -
primary. 

(2.7) Assume that the ring R is Noetherian. An element f of 
R[[X]] is nilpotent if and only if each coefficient of f is nilpotent. 
If A is an ideal of R with radical B, then B [ [ X] ] is the radical of 
A [ [ X] ] ; if A is B-primary, then A [ [ X] ] is B [ [ X] ] -primary. 
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We prove the assertion in (2.6) concerning primary ideals. By 
passage to the residue class ring R[ [X] ] IA[ [X] ], it suffices to prove 
that if (0) is B-primary in R, where B is nilpotent, then the zero ideal 
of R[ [X] ] is B[ [X] ] -primary. To do so, we prove that each element 
/ of R[[X]] - B[[X]] is not a zero divisor in R[ [X] ] . Some co­
efficient of / is not in B, and hence is a regular element of R. We 
choose the integer i so that f0, ' ' ',fi are in B, while fi+l is not in 
B. Then fo> ' ' ',f% are nilpotent, and hence g = f0 + fYX + • • • + 
fiX{ is nilpotent — say gr = 0. We write / as g + Xi + lh, where the 
constant term of h is fi+l, a regular element of R. It is clear that h 
is a regular element of R[ [X]], and hence hr is also regular. But / 
divides gr + (Xi+lh)r= X(i+1)r/ir, and consequently, / is regular in 
R[ [X] ] . This completes the proof of (2.6). We observe that the 
hypothesis 'A contains a power of B' has been used in the proof only 
to conclude that B[[X]] = V(A[[X]]) ; the conclusion that no ele­
ment of R[ [X] ] — B[ [X] ] is a zero divisor with respect to A[ [X] ] 
(that is, A[[X]] : ( / ) = A[[X\] for each / in R [ [ X ] ] -
B [ [X] ] ) depends only upon the assumption that A is B-primary. 

We return to (2.4) and to Question IB. We first prove the assertion 
of (2.4) concerning the analogue, in R [ [ X ] ] , of McCoy's Theorem 
for a Noetherian ring R. Thus we let (0) = P ^ Q i be an irredundant 
primary decomposition of (0) in R, where Q{ is Prprimary. By (2.7), 
(0) = HinCi[[X]] is a primary decomposition of the zero ideal of 
R[ [X] ] , where Q[ [X] ] is P{[ [X] ] -primary; it is clear that this inter­
section is irredundant. Since the rings R and R [ [ X] ] are Noetherian, 
U^Pi is the set of zero divisors of R and U 1

n F i [ [X]] is the set of 
zero divisors of R[[X]] [59, p. 214]. Thus, if f is a zero divisor 
in R[ [X] ] , then / G P,[ [X] ] for some i. Since (0) : P{ D (0) [58, p. 
132], there is a nonzero element r of R such that rPi = (0), and hence 
rf=0 also. 

Much more is known about Question IB than is included in (2.4). 
Although McCoy's Theorem does not carry over to arbitrary power 
series rings, some results about zero divisors of R[[X]] can be ob­
tained by imposing special conditions on the coefficient ring or on the 
elements of R[[X]] under consideration. For example, our proof of 
(2.6) shows that if / = ^ j=oi/X>'> where f0, • • 'J{ are nilpotent 
and fi+l is regular, then / is not a zero divisor in R[ [X] ] . More 
generally, M. O'Malley in [48, Thm. 2.1] has proved that if ft 

is a unit of R and if Plû=i (/o>/i> * ' '>ft-i)n = (°)> m e n / i s n o t 

a zero divisor in R[ [X] ] . 
In [30], Gilmer, A. Grams, and T. Parker have conducted an 
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investigation in depth of the area of zero divisors of R[ [X] ]. Their 
considerations center around the problem of determining sufficient 
conditions on R in order that McCoy's theorem should be valid in 
R[ [X] ] ; one such condition given in [30] is that R should have 
zero nil radical. We have already observed that McCoy's theorem in 
R[X\ follows from the Dedekind-Mertens Lemma. Hence the Dede-
kind-Mertens Lemma does not generalize completely to R[ [X]]. On 
the other hand, a special case of Theorem 3.6 of [30] is the fol­
lowing result. 

(2.8) IffG R[ [X] ], if g G R[X], and if k is the number of non­
zero coefficients of g, then Af

k~lAfg = AfkAg, where for hE. R[[X\], 
Ah is the abelian group generated by the coefficients ofh. 

As an immediate corollary to (2.8), we have the following result on 
zero divisors in R[ [X] ]. 

(2.9) Z / / G R [ [ X ] ] , if g G R[X], and if fg = 0, then there is a 
nonzero element rinR such that rf=Q. 

As a final result concerning Question IB, we cite part of Proposition 
2.1 of [30]. 

(2.10) If R is zero-dimensional and if Af = R, then f is not a 
zero divisor in R [ [ X] ]. 

The reader should not be misled into the erroneous conclusion that 
questions concerning power series rings are inherently more difficult 
than the corresponding questions for polynomial rings. Our Question 
3 is a case in point. It is quite easy to prove that the element f = 
j °i=o/i^ is a unit of R[ [X] ] if and only if f0 is a unit of R. The 
units of R[X] are a bit more difficult to determine, but they too have 
been completely described. The following result is due to E. Snapper 
[55 I, p. 683]. (In the introduction to [55 I ] , Snapper makes the fol­
lowing statement. "The author wishes to express here his obvious in­
debtedness to Krull's beautiful work. All ideas which can be found in 
CPI through CPIV have their origin in the papers [3], [4], and [5] of 
Krull." In the preceding sentence, 'CPI through CPIV refers to the 
series of four papers [55] published by Snapper under the titles 
Completely Primary Rings I, II, III, IV; the references [3], [4], [5] are 
to Snapper's bibliography, not ours. The papers of Krull in question 
are those listed in our bibliography as [35]. These papers deal 
principally with primary rings, and indeed Satz 6, page 92, of [351] 
is the special case of (2.11) in which R is a primary ring. 
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(2.11) ANSWER TO QUESTION 3A. The element f=fo + f\X + 
• • • + fnX

n is a unit of R[X] if and only if f0 is a unit of R and 
fu ' ' '> fnare nilpotent. 

Because the proof of (2.11) illustrates a useful technique, we give a 
proof here. Since the sum of a unit and a nilpotent element is a unit, 
/ is a unit of R[X] if f0 is a unit of R and fx, • • -,/n are nilpotent. 
Conversely, if fg = 1, where g £ R [ X ] , then we observe that 
<M/)<Mg) = 1 f° r e a c h prime ideal P of R; here <£P is the canonical 
homomorphism of R[X] onto (RIP)[X]. Since (RjP)[X] is an integral 
domain, it follows that <f>p(f) is a unit of RIP for each prime ideal 
P of R - t h u s f0 $ P, while /* G P for each i ^ 1. It follows that 
jò is in no proper prime ideal of R, and hence / 0 is a unit of R, while 
fif for i ^ 1, is in each prime ideal of R, and is therefore nilpotent. 

3. Endomorphisms and automorphisms. In discussing endomor-
phisms of R[X] and R[[X]] in this section, we restrict to R-endo-
morphisms; that is, to endomorphisms <f) such that <f>(r) = r for each 
element r in R (for more general considerations, see [23, Th. 4] ). 
An R-endomorphism <f> of R[X] is uniquely determined by <f>(X) — 
if 0 (X)=f , then <t>(f(X)) = f(t) for each /(X) in R[X]; more­
over, if t = ^r=o £»X* is a n element of R[X], then the map <f)t : R[X] 
-^•R[X] defined by <t>t(f) = f(t) 1S an R-endomorphism of 
R[X] that sends X onto t. To determine the R-automorphisms of 
R[X], it therefore suffices to solve the following problems. 

(1) Determine necessary and sufficient conditions on t in order that 
<f>t should be onto. 

(2) Determine necessary and sufficient conditions on t in order 
that <i>t should be one-to-one. 

Since R[t] is the range of <j)t, <f>t is onto if and only if R[t] = R[X] — 
that is, if and only if X G R[t]. In [23, p. 329], Gilmer proves that 
<l>t is onto if and only if tx is a unit of R and th for i ^ 2, is nilpotent. 
Gilmer's proof that the preceding conditions are sufficient in order 
that <f)t be onto is too complicated to repeat here, but the proof of 
necessity of these conditions uses the same method that we employed 
in the proof of (2.11), namely: from the relation X G R[t], conclude 
that 4>P(X) G (RIP)[j>p(t)] for each prime ideal P of R, then use the 
(well known) fact that the conditions are necessary in the case where 
the coefficient ring is an integral domain [59, p. 30]. 

Gilmer answers (2) in Theorem 2 of [23] : <\>t is one-to-one if and 
only if t — t0 is a regular element of R. We consider this condition to 
be satisfactory because of McCoy's Theorem referred to previously. 
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We observe that if (f*t is onto, then <f>t is one-to-one, for tx is a unit of 
R, and hence t — t0 is a regular element of R[X] by (2.1). By use of 
(2.11) and the fact that X is a regular element of R[X], we can state 
our observations in the following form. 

(3.1) ANSWER TO QUESTION 4A. Let t = 5^=0 U^{ be an element 
of R[X], and let $t be the R-endomorphism of R[X] which maps 
f(X) onto f(t) for each element f(X)Œ.R[X]. Then <j>t is onto 
if and only if (t — t0)IX is a unit of R[X] ; <f>t is one-to-one if and 
only if (t — t0)IX is a regular element of R[X]. The set ofR-automor-
phisms ofR[X\ is {<j>t \ ti is a unit of Rand tiy i = 2, is nilpotent}. 

In considering Question 4B, one encounters numerous difficulties 
that are not present in the case of polynomial rings. For example, if 
t = ^l=o tiX* G R[[X\], then it isn't clear that there exists an R-
endomorphism of R[[X]] that maps X onto t, and if such an R-
endomorphism exists, it isn't clear that such an endomorphism is 
unique. It is true, of course, that if 0 is an R-endomorphism of R[ [X] ] 
such that 0(X) = t, then <f>(f{X)) = f(t) for each polynomial 
f(X)G.R[X]. This leads to the problem of defining, in some 
"natural" way, f(t\ where f(X) = ^%fiX

i is in R[ [X] ] . There 
certainly is an obvious way to begin. 

/o = /o 

fit2 = fik2 + WohX + f2(2t0t2 + *!2)X2 + • • • 

A straightforward calculation shows that for each positive integer j , 
the coefficient of X*, for iêj, has the form aj0 + a^fa + • • • - + • 
Ojj-ito-t'*, where each ajk is in R. Moreover, if i^j<m, then 
ajk ~ amk f° r 0 = k ê j — i. It follows that there is a natural way to 
define f0 + fxt + f2t

2 •+• • • • if, for example, t0 is nilpotent. More 
generally, what seems to be needed in order to be able to define the 
sum f0 + fxt + f2t

2 + • • • is a topology on R in which each se­
quence of the form r0, r0 + r^0 , r0 + rfa + r2t0

2, • • • converges. This 
leads us to a consideration of a topological ring — that is, a ring R with 
a topology O such that the operations of addition and multiplication, 
when considered as functions from RX R into R, are continuous (here 
RX R has the product topology O X Ü). Because we wish to focus 
our attention upon Question 4B, we shall be very utilitarian and quite 
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restrictive in our treatment of topological rings at this point; for more 
general treatments, see [11] or [60, Chap. VIII] or for a treatment 
directly related to Question 4B, [47, §3]. If b G R, then the family 
9 = {<f>} U {r + (bn) | r G R, n G Z} of subsets of R is closed under 
finite intersection, and hence is a basis for a topology 'Jj, on fi; more­
over, Db satisfies the first axiom of countability. Under the topology 
Ö h, R is a topological ring; Ö h is a Hausdorff topology if and only if 
H n=l (bn) = (0). Each sequence {r0, r0 + r̂ fo, r0 + rx& + r2fo

2, • • •} 
is a Cauchy sequence in the (b)-adic topology, and hence if (R, Ob) 
is a complete Haudorff space, then the sequence {r0 + r±b + • • • + 
rifoi}°i=o has a unique limit in R, which we denote by ^°5=o rft* ^ e " 
turning to Question 4B, we see that if R is a complete Hausdorff space 
in the (f0)-adic topology, then for each element / = ^jZfX* m 

R [ [ X ] ] , we can define the sum fo + f\t + • • • to be a uniquely 
determined element of R[ [X] ] ; we denote this element by f(t). Is 
the mapping <j>t: f(X)->f(t) an R-endomorphism of R[[X]]? If 
so, is it the unique R-endomorphism of R [ [ X] ] mapping X onto t? 
O'Malley proved [47, pp. 66-67] that the answer to each of these 
questions is affirmative. (We emphasize that <f>t is defined only if R is a 
complete Hausdorff space in the (£0)-adic topology.) That brings us to 
the problem of determining conditions under which (f)t is onto and/or 
one-to-one. Once more, a solution (complete for onto, and partial for 
one-to-one) is contained in [47, p. 74] : The mapping <}>t is onto if 
and only if ix is a unit of R; if the initial coefficient of t — t0 is regular 
in R, then <f>t is one-to-one; in particular, <f>t is one-to-one if </>e is onto, 
and hence <̂  is an automorphism of R[ [X] ] if and only if tx is a unit 
ofR. 

The topological considerations of the previous paragraph lead to 
the following question which, at first glance, seems a bit ambitious. 

(*) If there exists an R-endomorphism <f> of R[[X]] mapping X 
onto t = ^ o UX\ must R be a complete Hausdorff space in the 
(t0)-adic topology? 

Under the hypothesis of (*), O'Malley [47] proved that t0 

belongs to the Jacobson radical of R and that R is complete in the 
(£0)-adic topology if the (£0)-adic topology on R is a Hausdorff top­
ology. Therefore, we modify (* )to (** ). 

( * * ) / / there exists an R-endomorphism <j> of R[[X]] mapping 
X onto t = X o UX\ does it follow that l ì l=l (t0

n) = (0)? 

Since t0 belongs to the Jacobson radical / of R, the answer to (** ) 
is affirmative if Pi * = 1 / n = (0); this condition is satisfied, for example, 
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if R is Noetherian [44, p. 12]. O'Malley proved that the answer to 
(**) is also affirmative if t0 is regular in R; moreover, if <f> is an 
automorphism; then n i

e c(f0
n) = (0) if and only if (to) [ H x °°(t0

n)] = 
H i ™(ton)- This leads, of course, to a third form of ( * ): 

(***) If there is an R-automorphism of R[[X\] that maps X 
onto^%tiX\ doesitfollow that(tQ)[H^ito")] = n i

0 0(f0
n)? 

In [29, p. 18], Gilmer gives an example of a commutative ring R 
with identity containing an element b such that (fo)[n i

00 (bn)] C 
Hi00 (bn). Then by applying Theorem 2.3 of [29], which we pres­
ently cite at (3.2), we obtain a negative answer to (*** ). 

(3.2) Assume that the commutative ring R with identity contains 
an element a0 such that a0 [ O x °°(a0

n)] C H^Oo"). If <x= ^ o ^ ^ 
where axis a unit ofR, then the ring S = R[ [X] ] 1(a) has the property 
that S [ [ Y] ] admits an S-automorphism mapping Y onto an element 
s0 - Y, where H t °° s0

nS / (0). 

We give (3.3) as a summary statement of our results on Question 4B. 

(3.3) PARTIAL ANSWER TO QUESTION 4B. Let R be such that either R 
is Noetherian or R is an integral domain or D *= 1 (rn) = (0) for each 
element r in the Jacobson radical of R. If t = ]j£ o UX1 is an element 
of R[ [X] ] , then there exists an R-endomorphism <f> of R[ [X] ] sending 
X onto t if and only if Ris a complete Hausdorjf space in the (t0)-adic 
topology. If such a <f> exists, it is unique; moreover, 0 is an auto­
morphism ofR[[X\] if and only iftx is a unit ofR. 

In Theorem 3.2 of [29], Gilmer proves that there is an fi-auto-
morphism <f> of R[ [X]] mapping X onto t if and only if R[ [X]] = 
R © tR[ [X] ]. While this result is easy to state and to understand, it 
is not easy to apply. O'Malley and C. Wood [49] have also given 
some equivalent topological conditions for the existence of such an 
R-automorphism 0. 

4. Dimension theory. Let S be a commutative ring. If F0 C Px C 
• • • C Fn is a finite chain of proper prime ideals of S, we say that this 
chain has length n. If S has no proper prime ideal, we say that S has 
dimension — 1; otherwise, the (Krull) dimension ofS, which we write 
as dim S, is defined to be the supremum of the set of lengths of finite 
chains of proper prime ideals of S. Thus, a field has dimension 0, 
Zl(n) has dimension 0 for each integer n > 1, and a principal ideal 
domain has dimension 0 or 1. 

If P0 C Pi C • • • C Pn is a chain of proper prime ideals of the com­
mutative ring Rwith identity, thenP0[X] C PX[X] C • • • C Pn[X] C 
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Pn[X] + (X) is a chain of proper prime ideals of R[X] andP 0 [ [X]] C 
• • • C P n [ [ X ] ] C P n [ [ X ] ] + (X) is a chain of proper ideals of 
R[ [X] ] . Therefore, dim R[X] è dim R + 1 and d i m R [ [ X ] ] ^ 
dim R + 1, and in particular, R[X] and R[ [X]] are infinite-dimen­
sional if R is infinite-dimensional. Is the converse also true? Equiva-
lently, if R is finite-dimensional, are R[X] and R[[X]] finite-dimen­
sional? We discuss the polynomial and power series cases of these 
questions separately. 

If dim R = n < °°, then it is clear that the dimension of R[X] is 
finite if and only if there is a uniform bound on the length of a chain 
of prime ideals of R[X] lying over a fixed prime ideal of R. We ob­
serve that such a bound must be at least one, for if P is a proper prime 
ideal of R, then P[X] C P[X] + (X) is a chain of prime ideals of 
R [ X], each lying over P in R. A result that is fundamental in relating 
properties of R to those of R[X] is that a chain of prime ideals of 
R[X] lying over a fixed proper prime P of R has length at most one. 
To prove this statement, we observe that since each prime ideal of 
R[X] lying over P contains the prime ideal P[X], is suffices, by pas­
sage to RIP and R[X] /P[X], to prove the following statement. 

( V) IfD is an integral domain with identity, and ifP and A are non­
zero ideals of D[X\ such that P is prime, PGA, and P D D = (0), 
then A (ID? (0). 

To prove (V), we let N = D — {0}. The ideal P extends to a non­
zero proper prime ideal P° D[X]N of the quotient ring (D[X] )N = 
DN[X], where DN = K is the quotient field of D. But K[X\ is a 
Euclidean domain, hence a principal ideal domain, and therefore 
P« D[X] N is a maximal ideal of D[X]N . Since P = P° D[X] N (1 D, 
it then follows that P° D[X]NCA° D[X]N, A° D[X\N= D[X]N, 
and hence A meets N nontrivially — that is, A fi D ^ (0) [59, Chap. 
IV, §8] . 

As we have already observed, the following statement ( V V ) follows 
from (V); cf. [24, Prop. 25.1, p. 340]. 

( V V ) If Pi C P2 C P3 is a chain of three proper prime ideals of 
R[X], then Px Pi R C P3 n R. 

From (VV) , it follows easily that dim R[X] ^ 2(dim R) + 1, and 
consequently, if dim R = n, then n + 1 = dim R[X] ^ 2n 4- 1. Can 
these bounds be improved upon? In general, no. In [53, p. 605], 
A. Seidenberg proves that if n and k are nonnegative integers such 
that n + l = fc^2n+l, then there is an integral domain D with 
identity such that dim D = n and dim D [ X] = k. On the other hand, 



POLYNOMIAL AND POWER SERIES RINGS 169 

for some special classes of rings R, dimR[X] = dim R H- 1. For 
example, Krull [40, Satz 13, p. 376] establishes this equality for a 
Noetherian ring R, and Seidenberg [53, Th. 4, p. 606] proves that 
dim R[X] = dim R 4- 1 if R is a Prüfer domain. An easy proof that 
dim R[X] = dim R + 1 if R is Noetherian can be based on an exten­
sion of Krull's principal ideal theorem [36, pp. 11, 12], [38, p. 220]; 
see, for example, [24, p. 343]. Moreover, this proof easily extends 
to power series rings over a Noetherian ring [19, p. 603]. We sum­
marize our results on the dimension of R[X] in the following result. 

(4.1) PARTIAL ANSWER TO QUESTION 5A. The rings R and R[X] are 

simultaneously finite-dimensional. If dim R = n < °°, then n + 1 = 
dim fl[X] ^ 2n 4- 1; these bounds are, in general, the best possible. 
If the ring R is Noetherian or a Prüfer domain, then dim R[X] = 
dim fl + 1. 

Although we have labeled (4.1) as a "partial" answer to Question 
5A, this is primarily due to the fact that more is known about the ques­
tion than we have stated in (4.1) (see, for example, § 25 of [24] ); 
no one seems to be up in arms about the incomplete state of knowledge 
concerning Question 5A. 

For several years, the question as to whether finite-dimensionality of 
R implies finite-dimensionality of R[[X]] was open. The question 
has recently been answered in the negative by Arnold [5]. In fact, 
Arnold proves that V[ [X]] is infinite-dimensional if V is a rank one 
nondiscrete valuation ring. Arnold's work follows an earlier paper 
[19] of Fields, who proved that dim V[[X]] = dim V + 1 if V is 
a discrete valuation ring of finite rank. Before Arnold's paper [5] 
appeared, Fields had proved that dim V [ [ X ] ] ^ 3 i f V i s a rank one 
nondiscrete valuation ring, and under the same hypothesis on V, 
Arnold and J. Brewer [7] had proved that d imV[[X]] ^ 4. A 
reason, of course, for considering the case of valuation rings (or Prüfer 
domains) is the fact, already mentioned, that dim D[X] = dim D + 1 
if D is a Prüfer domain. Incidentally, Arnold has proved that Fields' 
result concerning discrete valuation rings does not carry over to the 
global case. More specifically, if D is an almost Dedekind domain that 
is not Dedekind (an almost Dedekind domain is an integral domain / 
with identity such that JM is a discrete valuation ring of rank at most 1 
for each maximal ideal M of J [20], [24, § 29] ), then dim D = 1 and 
dim D[ [X] ] = oo [5, Example 2] . 

An important condition that has arisen in Arnold's work on the di­
mension of R[[X]] is what he calls the SFT-condition, which we 
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proceed to define. If A is an ideal of the ring S, then A is an ideal of 
strong finite type (an SFT-ideal) if there is a finitely generated ideal 
B contained in A and a positive integer k such that ak G B for each ele­
ment a in A; S is a ring of strong finite type (an SFT-ring) if each ideal 
of S is an SFT-ideal. In [5], Arnold proves that dim R[[X]] = oo 
if R is not an SFT-ring; for R a Prüfer domain, he proves the converse 
in [6] ( [6] is a beautiful paper, but it is far from elementary) — in 
fact, if R is a Prüfer domain that is an SFT-ring, then dim R [ [ X] ] = 
dim R + 1. Once again we summarize our results in a single statement. 

(4.2) PARTIAL ANSWER TO QUESTION 5B. If Ris infinite-dimensional, 
then so is R[ [X] ] . If dim R = n < oo y then dim R[ [X] ] = n 4- 1 if 
R is Noetherian or if R is a Prüfer domain of strong finite type. If R 
is not of strong finite type, then dim R [ [ X] ] = <» . 

Several questions concerning the dimension of R[ [X] ] remain open. 
Among these, we mention the following. 

(1) If R is a finite-dimensional SFT-ring, is R[[X]] finite-dimen­
sional? 

(2) Is it possible for the dimension of R[ [X] ] to be finite, but dis­
tinct from dim R + 1? 

(3) If R is a finite-dimensional Krull domain (see [12] and [24, 
§ 35] ), is R[ [X] ] finite-dimensional? 

Before leaving Question 5, we ask: Why does the proof that finite-
dimensionality of R implies finite-dimensionality of R[X] fail to gen­
eralize to power series rings? If we examine the material immediately 
preceding and following (V), we see that a couple of problems arise. 
One is the fact, already encountered, that for a prime ideal F of R, 
P° R[[X]] need not be prime in R[ [X] ] . The second problem is 
that R [ [ X ] ] N may be properly contained in RN[[X]] for a regular 
multiplicative system N in R. In fact, if R is an integral domain and if 
N= R- {0}, then Gilmer in [21] proves that R[ [X] ] N = RN [ [X] ] 
if and only if each sequence of nonzero ideals of R has nonzero inter­
section. In [54], P. Sheldon has extended this result to more general 
multiplicative systems. In particular, (Z[ [X]] )z-{0} is properly con­
tained in Q[ [X] ] , where Q is the field of rational numbers, for 
1 + (1/2)X + (1/4)X2 + • • • + (l/2")Xn + • • • is in the second set, 
but not in the first. 

5. Extensions and generalizations. Extensions of the results dis­
cussed in the three preceding sections —at least for commutative 
rings — are obtained by considering polynomial and power series rings 
in an arbitrary set {Xx} of indeterminates over R and/or dropping the 
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assumption that R contains an identity element. For power series 
rings, one immediately comes upon the fact that three different "rings 
of formal power series" in an infinite set of indeterminates over R have 
been considered in the literature [28, p. 543]; moreover, [45] con­
tains a variant of each of the three rings mentioned in [28]. Actually, 
this causes very few problems in regard to Questions 1-5, but for dif­
ferent reasons on different questions. 

McCoy's theorem on zero divisors carries over to arbitrary poly­
nomial rings over an arbitrary commutative ring [24, p. 337] ; one 
proof can be obtained from an extension of the Dedekind-Mertens 
Lemma to this case. The analogue of McCoy's theorem is valid for 
power series rings S [ [ {Xx}] ] , where S is an Noetherian ring (not 
necessarily with identity) and {Xx} is finite. The paper [30] pre­
viously referred to contains some contribution to Question 1 in the 
case of power series rings in more than one variable over a non-
Noetherian ring; we do not elaborate on those results here. 

A polynomial / G S [ {Xx}] is nilpotent if and only if each coefficient 
of / is nilpotent. The first two conclusions in (2.5) do not depend on 
the hypothesis that R contains an identity or that the set of indeter­
minates in question has cardinality 1. Moreover, an examination of the 
proof of Theorem 1 of [18] yields a partial generalization of the 
statement in (2.5) concerning a ring of nonzero characteristic. 

It is true in general that a polynomial f EL R [ { X X } ] over a com­
mutative ring with identity is a unit if and only if the constant term of 
/ is a unit of R and each other coefficient of / is nilpotent; our 
proof of (2.11) establishes this result. The answer to Question 3B also 
carries over to arbitrary power series rings, namely: If/ G R [ [ {Xx}] ], 
then / is a unit if and only if the constant term of f is a unit of R. 

Gilmer determined the set of S-automorphisms of S [ X], for S a com­
mutative ring containing a regular element, in [23] ; we do not give 
the results of [23] here. The problem of determining the R-auto­
morphisms of R[{XX}], even for |{XX}| = 2 and R an algebraically 
closed field (even the field of complex numbers), is very difficult. A 
consultation of [1], [16], [17], and [51, § 130] will indicate the dif­
ficulties involved. No work on an extension of the results of (3.3) has 
apparently been attempted. 

If {Xx} is infinite, then S[{XX}] and S[[{XX}]] are infinite-dimen­
sional. On the other hand, if | {Xx} | = m < °o, then except for a change 
in bounds in (4.1) (in the second sentence, n + 171= dim R[X1? • • -, 
Xm] g (n + l)(ro + 1) - 1, and in the third, dim R[XU • • -, Xm] = 
n + m), that result carries over to polynomial rings in finitely many 
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indeterminates (see [34, p. 17], [24, § 25], and [53, p. 606] ). For R 
finite-dimensional, there are numerous results and existence theorems 
(see [34, Chap. I l l ] , [52], [53], [4, p. 325], and [10, § 5] ) concerning 
the sequences of integers n0 = dim R, nY = dim K[XX], • • -, nk = 
dim R[Xl9 - - -, Xk], - - - and nx — n0, n2 — n1? • • \ In [10], E. 
Bastida and Gilmer call the first of these sequences the dimension 
sequence of R; the second is the difference sequence of R. P. JafFard 
[34, p. 42] has proved that the difference sequence is eventually a 
constant less than or equal to n0 + 1. For a zero-dimensional ring, 
only the sequence 0 ,1 , 2, • • • can be realized as a dimension sequence. 
For % = 1, the possibilities are: 

1, 2, 3, • • • 

1, 3, 5, • • -, 2k + 1,2fc + 2,2fc + 3, • • • k ^ 1 

1, 3, 5, • • • 

Arnold and Gilmer [9] have recently determined all sequences of 
positive integers that can be realized as the dimension sequence of a 
ring; their main result is the following. Let <£ be the set of strictly in­
creasing sequences {a*}3 such that the difference sequence {bi}\, 
where b{ — a{ — a{_ly is nonincreasing, is bounded above by a0 + 1, 
and is eventually constant — that is, Ö0 + 1 = &i = b2 = ' ' ' = bk = 
bk+l = • • • ̂  1 for some integer k. For sx = {ßijo, ' * % sm = 
{ömi}o> define t= {^}o to be the supremum of the finite set 
{«!, • • *, sm} in the cardinal order— that is, t{ = max{ali? a2i, ' ' ', ami} 
for each i — and let !£> be the set of all such sequences t, as {sl5 • • -, sm} 
ranges over all finite subsets of <£. Then £> is the set of dimension se­
quences of commutative rings; moreover, each element of 5b is, in fact, 
the dimension sequence of an integral domain. 

No work, per se, seems to have been done on the dimension of 
S[X1? * * -, Xn], where S is a commutative ring without identity. But 
some results on this topic are inherent from other considerations 
(see, for example, § 3 of [25] ). 

Other than the result dim R[ [Xl5 • • *,Xm]] = dim R + m, if R 
is a Noetherian ring with identity, which follows by induction from 
(4.2), there seems to have been no work to date on the dimension 
theory of K[ [X1? • • -, Xm] ] for m > 1. Of course, there is one trivial 
observation in this connection — R[ [X1? • • *,Xm]] is infinite-dimen­
sional if R[ [Xi] ] is infinite-dimensional. 

There are, of course, generalizations of polynomial and power series 
rings to consider — semigroup rings, graded rings, Rees rings, etc.,— 
but for one survey article, we seem to have said enough already. 
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