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APPLICATIONS AND PROOF OF A UNIQUENESS THEOREM 
FOR LINEAR INVARIANT FAMILIES OF FINITE ORDER 

DOUGLAS MICHAEL CAMPBELL 

Let S be the set of all univalent analytic functions in the open unit 
disc of the form f(z) = z + a2z

2 + • • \ One of the most important 
results concerning such normalized univalent functions, which has not 
only been extensively used to solve many extremal problems in S, 
but also to demonstrate the essential uniqueness of the solution, is the 
well known fact that 

(0.1) M g 2, 

with equality only for rotations of the Koebe function, k(z) = 
zl(l - zf. 

In this paper we continue our theme [1], [2], [3], [4], that many 
of the classical results for the family S find not only a more general but 
also a more meaningful setting in the context of linear invariant 
families of locally univalent functions of finite order (defined in § 1). 
The impetus for such an investigation is to be found in Ch. Pom-
merenke's fundamental papers [13], [14] which form the beginning 
of this subject. 

If f(z) G S, then equality holds in (0.1) only for rotations of the 
Koebe function, while if f(z) €E M, a linear invariant family of finite 
order a, then equality can hold in 

(0.2) K| g a 

for functions other than rotations of the generalized Koebe function. 
Thus we do not always have unique solutions to the extremal problem 
max{|a2| : / £ M}. In §2, we show that the extremal problem 
max{r : each / in Ua maps \z\ < r univalently onto a convex domain} 
does not have a unique solution. Theorem 1 gives an elementary proof 
that there is a unique solution to the radius of convexity problem in S. 

Since so many of the uniqueness results for S have classically been 
derived from the uniqueness properties of inequality (0.1), and in light 
of the existence of nonunique solutions to extremal problems in Ua, 
it is a reasonable question to ask if uniqueness results are possible for 
the families Ua. We therefore prove Theorem 2, which is a unique­
ness result for the fundamental distortion theorem of Ua . Theorem 2 is 
applied in § 4 to show that the generalized Koebe function is the 
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essentially unique solution for many of the extremal problems in the 
families Ua. The results of § 2 and 4 suggest that some of the well 
known uniqueness proofs for S rely on techniques which are 'tricks' 
peculiar to univalent function theory. 

Let M(r,f) denote the maximum modulus of f(z) on \z\ = r. 
Hayman [8] and Krzyz [10] investigated the functions (1 — r)2M(r,f) 
and (1 — r)3M(r9f) for f(z) in S. In §5 we apply the theorems of 
§3 and § 4 to generalize their results to functions in Ua. Theorem 8 
asserts a piquant relation between r i n v ì i — r)aM(r,f) and 
limr_J>1(l — r)a+lM(r,f) for functions in Ua D S. We conclude with 
an application of our sharpened distortion theorem to majorization-
subordination theory problems. Theorem 11 and theorem 12 represent 
a sharpening of our earlier results [4] which are extensions them­
selves of theorems due to MacGregor [11], Goluzin [5], and Tao Shah 
[16]. 

1. Preliminaries. Let D denote the open unit disc. A family of func­
tions M is said to be a linear invariant family if the following two con­
ditions are fulfilled [13, p. 112] : 

1. All functions f(z) in M are analytic and locally univalent (that 
is, f'(z) j£ 0) in D and have the form/(z) = z + a2z

2 + • • •. 
2. If <p(z) is a bilinear map of D onto D and f(z) belongs to M, 

then the function 

must also belong to M. 
The order of a linear invariant family M is defined as a = 

sup{|/"(0)/2| : / £M} ,o requ iva l en t l y [13,p. 115], 

(1.1) a = sup sup {|- z + (1/2)(1 - |*|2)/"(z)// '(z)|} • 
/ E M zŒD 

The order of a linear invariant family is never less than 1 [13, p. 117]. 
Let Ua (1 = a < °° ) be the universal linear invariant family of order 

a; that is, the union of all linear invariant families of order ^ a. The 
family Ui is precisely the family of all normalized convex univalent 
functions [13, p. 134]. Close-to-convex functions of order ß are 
contained in Uß + i [15]. Functions whose boundary rotation is 
bounded by A are contained in Ua where a = AI2TT [1, p. 57]. The 
family S, of all normalized univalent functions, is in U2 [13, p. 115]. 
Each family Ua (a > 1) contains functions of infinite valence; for 
example, the function 
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has infinite valence and has order (1 + y2)1 '2 [13, p. 128]. 
The Koebe function, k(z) = zl(l — z)2, is the unique solution to 

many extremal problems in S. The natural generalization of the Koebe 
function to Ua is 

<L2> ^ = ^ [ ( T ^ - ) " - 1 ] - ^ e t ' - » -
For the special case a = 2 in (1.2), we recover the Koebe function. If 
a = 1, we obtain zl(l — z), the function which is the essentially 
unique extremal in many questions concerning convex univalent 
functions. 

We say that g(z) is a rotation of f(z), if g(z) = e~ief(eiez), 
S G [0, 2TT] . 

The ultra-classical distortion theorem for S asserts that for each 
/ ( z ) i n S 

(1.3) (1 - |z|)/(l + |Ä|)3 ̂  | / ' ( z ) | g (1 + |Z|)/(1 - 1*1)3 

and equality holds in (1.3) for any nonzero z in D if and only if f(z) 
is a rotation of the Koebe function. The proofs concerning equality in 
(1.3) generally are based on the fact that for f(z) in S, \a2\ is equal 
to 2 if and only if f(z) is a rotation of the Koebe function [12, p. 19], 
[5, p. 51], [9, p. 4] . From this it also follows that in the class S, 
the unique solutions for the extremal problems 

(1.4) max \flz)\, min \f(z)\, max \f{z)lf'(z)\, min | /(z)// ' (z) | , 
\z\=r |z|=r \z\=r |z|=r 

(1.5) max{r : \w\ < r is contained in f(D),f GE S} 

are the rotations of the Koebe function. 

2. Extremal Problems with Non-Unique Solutions. It is true that 
the function (1.2) and its rotations are extremal functions for the prob­
lems max|/"(0)/2|, max|/(z)|, max|/ ' (z) | , min|/'(z)J in the class 
Ua. In addition they are extremal functions for min)/(%)), 
max|/ '(«)//(z)|, mm\f'(z)lf(z)\ for functions f(z) in S fi Ua . 

However, there are functions which are in Ua other than rotations of 
the generalized Koebe function for which \a2\ is equal to a. For 
example, the function 

(2.1) g(z) = (ea* - l)/a, a = a + (a2 - 1)1/2, a > 1, 

can be easily shown to be in Ua [3, p. 709]. Yet if we let 
<p(z) = (z — l/a)/(l — zia), a bilinear map of D onto D, and com­
pute the second coefficient of h(z) = A^[g(z)], then we obtain 
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\h"(0)l2\ = a. The functions• A^[g(z)] and (1.2) are by no means 
equivalent. 

The nonuniqueness of extremals for the problem sup{|a2| : / £ Ua}, 
a > 1, has interesting consequences for such simple problems as the 
radius of convexity of a linear invariant family. Pommerenke has 
shown, under the superfluous assumption that the family is compact, 
that the radius of convexity of a linear invariant family M of order a 
is precisely a — (a2 — 1)1/2 [13, p. 133]. Consequently, the radius 
of convexity of (72 is 2 — V3, the same as the radius of convexity of 
S which is a proper subset of U2. 

Although Gronwall claimed that only rotations of the Koebe func­
tion take on this minimum radius of convexity in S [6, p. 251], there 
is apparently no proof of this fact in the literature. Therefore the fol­
lowing elementary proof is included. 

THEOREM 1. If f(z) G S has radius of convexity 2 — V3, then 
f(z) is a rotation of the Koebe function. 

PROOF. Since the radius of convexity is 2 — V5 = r, there is a 
point on \z\ = r for which 

(2.2) Re(l + zf'(z)lf'(z)) = 0. 

By a rotation of f(z), if necessary, we may assume that (2.2) holds 
for the point z = — r. If we calculate the second coefficient of 
&<p[f(z)], where <p(z) == (z — r)/(l — rz), then we obtain 

a2 = r+(U2)(l-r*)f"(-r)lf'(-r) 

_ l + r* 1 - r » / f"(-r)\ 

2r 2r \ f'(-r)/' 

A computation shows that (1 + r2)/2r = 2. Thus with (2.2) and the 

fact that Av[/(z)] is again in S, we can conclude that 

Therefore, a2 = 2 and hence A,p[f(z)] is the Koebe function. The 
Koebe function has the peculiar property that A^[k(z)] = k(z) for all 
<p(z) = (z + r)/(l + rz), - 1 < r < 1. Hence, f(z) = AId[f(z)] = 
A . o . - i [/(*)] = A , - i [A,[f(z)]] = A,-i[fc(z)] = k{z\ (where we 
have used the facts ( 1 ) 8 , the set of all Möbius transformations of D 
onto D, is a group and (2) A J A * [ / ] ] = A ^ [f] for all ^ , <p in 
8 .) This concludes the proof of the theorem. 
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The phenomenon of unique (up to rotation) extremal functions is 
completely lost for every Ua class for the radius of convexity problem. 
The function g(z) in (2.1) is in Ua and has radius of convexity 
a — (a2 — 1)1/2. The function f(z) in (1.2) is also in Ua and has this 
same minimum possible radius of convexity. Yet the functions f(z) 
and g(z) are fundamentally different; the function f(z) is rational and 
has finite valence in \z\ < <» ; the function g(z) is entire and has infinite 
valence in \z\ < <». (Consequently, we can never even have f(z) = 

A„[g(*)] .*(2)G8) . 

3. A Sharpened Distortion Theorem for Ua. Since it is the unique­
ness of extremals in the solution to the problem sup{|a2| : / £ S} that 
has been used to prove the uniqueness of solutions in Theorem 1 and 
the extremal problems of (1.4) and (1.5), the following theorems are 
by no means obvious in light of the preceding observations. We in­
clude the first part of Theorem 2, which is due to Pommerenke [ 13, 
p. 116], for completeness. 

Theorem 2. Let f(z) E Ua . Then 

(i - N)»-* < q + M)-* 
{6A) (i+M)«+1 = I / W I = ( i - |* l )*+ 1 ' 
Equality holds in (3.1) for any point 0 < \z\ < 1 if and only if f(z) is 
a rotation of (1.2). 

PROOF. The function f(z) is in Ua if and only if 

| - 3 + (1/2)(1 - M2)/"(z)// ' (*) | ^ a, z G D, 

which is equivalent to 

(3.2) | - ^ l o g ( l - W ( z ) | ^ Y ^ > z = ré\ 

An integration yields |log(l — |2|2)/ '(z) | = a log [ ( l + r)/(l — r)] 
which implies (3.1). 

Clearly, if f(z) is (1.2), then equality holds on the right hand side 
of (3.1) for z = r and on the left hand side for z = — r. 

On the other hand, suppose that equality holds on the right hand 
side of (3.1) for some z = reie, 0 < \z\ < 1. By considering eidf(e~idz), 
we may assume z = r > 0 and therefore that | / ' ( f ) | = (1 + r)a~ll 
(1 - r)«+1- If 

tt(x)=log|/f(x)|-(a-l)log(l + x) 

+ (a + 1) log(l - x), 0 g x < 1, 
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then we claim that u'(x) = Re(/"(x)//'(x)) - (2a + 2x)/(l - x2) is 
nonpositive for 0 < x < 1. For if u '(x0) were positive for some Xo in 
(0,1), then 

a = sup | -z + (1/2)(1 - |Z |2)/"(*)// ' (z) | 
zGD 

^ | - x 0 + ( l / 2 ) ( l - X o 2 ) r ( x 0 ) / / ' ( x o ) | 

= | a + ( l / 2 ) ( l - * 0 > ' ( * o ) l > « , 

which is absurd. Since u(0) = u(r) = 0, and u'(x) ^ 0, we must con­
sequently have u(x) = 0 on [0, r]. Let 

F(z) = log / ' (z ) - (a - 1) log(l + z)+(a+l) log(l - z) 

= u(z) + iü(z). 

We have for x in [0, r] the equalities 

I ~x+ ( i ) d - *2)/"(*y/'(*)| 

- | - + T<'->(''<->-W)l 
= | o - ( l / 2 ) ( l - * > ' ( * ) | , 

because u ' ( x ) = 0 o n [0, r ] . Upon remembering that f(z)Œ Ua , we 
can therefore conclude just as above that c'(x) = 0 o n [0, r ] . Since 
F'(z) is analytic and identically zero on [0, r ] , we have 

(3.3) F'(z) = f"(z)lf'(z) - (2a + 2z)/(l - z2) = 0, z Ë D. 

The solution to the differential equation (3.3) is the function (1.2). A 
similar argument holds for equality on the left hand side of (3.1). 

4. Applications to Ua Theory. If we apply Theorem 2 to Pomme-
renke's proofs of Theorem 1.1 and Lemma 1.3 of [13], then, in his nota­
tion, we have: 

THEOREM 3. Let M be a linear invariant family of order a. If 
f(z) Œ M and \z\ = r < 1, then 
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(4.3) ( 2 a ) - ' ( l - | Z p ) | / ' ( z ) | g d ( / ( z ) ) . 

Furthermore, the radius R of the largest schlicht disc centered at 
f(0) = 0 and contained in {f(z) : \z\ ê r} satisfies 

<"> "^ [ ' - ( ì f ì ) " ] -
In particular, the radius of the largest schlicht disc centered at 0 and 
contained in the Riemann Surface f(D) is è (2a)_1. Equality holds 
in any of the above inequalities (ifz is a nonzero element ofD) if and 
only iff(z) is a rotation of (1.2). 

For the special case of a = 2, we obtain a generalization of the 
classic 1/4 covering theorem for S, since S is a proper subset of Ua. 
The case a = 1 yields the 1/2 covering theorem for the convex uni­
valent functions. 

One cannot give a lower bound for \f(z) | for an arbitrary function f(z) 
in Ua and all z in D, since f(z) can have zeros for z j ^ 0. However, 
we can prove the following two useful results. We first remark that the 
radius of univalence, R,,, of a family M is the supremum of the set of 
r in [0,1] such that each / in M is univalent in \z\ < r. If M is a 
linear invariant family of order a, then Ru(M) is no less than 1/a [13, 
p. 134]. 

THEOREM 4. Let M be a linear invariant family of order a, 1 = a 
< » 9 with radius of univalance fì^. If f(z) G M, then for all 
1*1 < flu> 

«Ï[ ' - (T^)']S - [ M 
Iff(z) E S fi Ua , we have for all zinD 

!/(*)! 
(1 - |Z|2)|/'(2)| 

(4.6) 

1 h / ^ - N y i < !/(*)! 
2a L V l + | * | / J - (1 - M2) | / '(z) | 

~ 2 a l A l - | z | / J 

Equality holds in (4.5) end (4.6)/or nonzero z in D if and only iff(z) 
is a rotation of (1.2). 

PROOF. From (4.1) we know that for |z| = r, 

•à [»-(iff)" ]*«**"» 
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Since d(f(z), 0) ^ \f(z)\ i s t r u e f° r a ^ z i n D, if \z\ is within the radius 
of univalence for the family, then it is easy to check that 

min \f(z)\= mind(f(z\0\ \z\ < R». 

Therefore, for all/(;s) in M and \z\ < fì^ 

The function A „[/(«)], where <p(z) = (z + £)/(l + £ z) and |£| < R„, 
is in the family M because M is a linear invariant family. If we apply 
inequality (4.7) to the function A^[/(z)] at the point z= — £, we 
obtain the other part of inequality (4.5). The inequality (4.6), which 
yields as special cases the well known inequalities for the convex func­
tions and the univalent functions, follows immediately from (4.5) and 
(4.2). Upon noting that l(f(z), 0) è |/(z)|, the last claim of the 
theorem follows quickly from Theorem 3. 

5. Applications to Maximum Modulus Problems. Let M(r,f) 
denote the maximum modulus of f(z) on \z\ = r. In 1951 Hayman 
showed that for f(z) in S, M(r,/)(1 — r)2lr is a strictly decreasing 
function of r unless f(z) is a rotation of the Koebe function [8]. In 
particular linv»i(l — r)2M(r,f) exists and is ^ 1. Hayman later 
proved [9, p. 100] that if f(z) is a circumferentially mean p-valent 
function in D, then limr_>1(l — r)2pM(r,f) exists finitely. Krzyz in 1955 
extended Hayman's results in a different direction. If f(z) G S, then 
M(r , / ' ) (1 — f)3/(l + r) is a strictly decreasing function of r unless 
f(z) is a rotation of the Koebe function. He also showed that for 
fin S 

lim (1 - r)2M(r,f) = 2 lim(l - r)3M(r,f). 

We extend their developments into general Ua theory. Lemma 5 is due 
to Krzyz [10]. 

LEMMA 5. Let f(z) be analytic in D. Let ^( r ) be a positive dif-
ferentiable junction ofr in (0,1). If 

(5.1) \f'(z)lf(z)\^V'(\zW(\z\), z?0, z(ED, 

then 

(5.2) ^ ( r ) - 1 ! / ^ " ) ! (0 fixed), 

(5.3) V(r)-lM(r,f), 
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are both nonincreasing junctions of r. Furthermore, the junctions in 
(5.2) and (5.3) are strictly decreasing ijstrict inequality holds in (5.1). 

Theorem 6. Iff(z) E Ua , 1 g a < » , then 

(5.4) (1 + r)l~«(l - r)«+1 | / '(re i ö) | , ( 0fixed), 

(5.5) (1 + r)l-°(l - r)*+1 M(r,f'\ 

are both nonincreasing junctions oj r which tend to limits A and B 
respectively (0 â A ^ B ê 1) as r approaches 1. Moreover, A = 1 ij 
and only ij j(z) = ei6g(e~iez) where g(z) is the junction (1.2). Simi­
larly, B = 1 if and only if f(z) is a rotation of the function (1.2). 
Finally, the functions in (5.4) and (5.5) are both strictly decreasing 
unless f(z) is a rotation of (1.2). 

PROOF. For r in (0, l ) ,* ( r ) = (1 + r)a~l(l - r)-<1+«) is apositive dif-
ferentiable function of r. Furthermore, for each f(z) in Ua , it follows 
from (1.1) that 

in*y/'(*)|S2(*+ MVa - N2) = *'(I*I)/*(M). 
The conclusion of Lemma 5 implies that the functions in (5,4) and 
(5.5) are nonincreasing. The inequalities 0 § A ê B â l follow im­
mediately from B = 1. To show B ^ 1 it suffices to demonstrate that 

lim (1 4- r)l-«(l - r)«+lM(r,f) = 1. 
r-0 + 

This is an easy consequence of the fact that for r sufficiently small, 
M(r,f) = 1 + 2\a2\r + • • • [7, p. 142]. Finally, suppose that B = 1. 
Then for each r in [0,1] 

1 = (1 - r)a+1(l + r)l-«M{r,f) 

= (1 - r)"+1(l + ry--\ff{re^)\ (6= 6(r)). 

Consequently, by Theorem 2, f(z) must be a rotation of (1.2). The 
proof for the case A = 1 follows immediately. 

In an entirely analogous manner, w i t h e r ) = [(1 + r)/(l — r)]a — 1, 
we can establish the following result. 

THEOREM 7. Iff(z) E S O [ / a , l g a g 2 , then 

(5*6) {ia [ (T^J " *] YlWrei6V (*flxed)' 
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are both nonincreasing functions which tend to A and B respectively 
( O g A ^ B ^ l ) as r —» 1. Moreover A = 1 if and only if f(z) = 
eidg(e~iez) where g(z) is the function (1.2). Similarly, B = 1 if and 
only if f(z) is a rotation of (1.2). Finally, the functions in (5.6) and 
(5.7) are strictly decreasing unless f(z) is a rotation of (1.2). 

If f(z) GSDUa, then not only do the functions in (5.6) and (5.7) 
approach limits as r tends to 1, but these limits satisfy an extremely 
elementary functional relationship which is dependent only on a, 
and not on the function f(z). This observation generalizes the result 
of Krzyz and explains the significance of the constants in Krzyz's 
theorem. 

THEOREM 8. If' f(z) G S D Ua, 1^ a^ 2, then the following limits 
exist: 

(5.8) lim (1 - ry\f{rei6)\ = A,,* lim(l - r)«M(r,f) = Bf, 

(5.9) lim (1 - r)<*+l\f'(reie)\ = A%, l im(l - r)«+lM(r,f) = B / \ 
r-*l ' f-»i 

where 0 G [0,2n] is fixed but arbitrary. We necessarily have 

(5.10) aA / t , = A%, 

(5.11) aBf = B / , 

(5.12) 0 g A f ) 0 ^ B / ^ 2 « - V a , 

(5.13) O g A ^ g ß / ^ 2 « " 1 . 

Furthermore, Af>0 = 2a~Va, A*>ö = 2 a _ 1 if and! onZj/ if f(z) = 
ei0g(e-iez) where g(z) is (1.2). Finally, Bf= 2a"Va, B / = 2«"1 if and 
o r % tff(z) is a rotation of (1.2). 

PROOF. We shall indicate the proof for Bf and Bf* only. The proof 
of the results concerning Aff0 and A\e is identical. Theorem 6 and 
Theorem 7 imply the existence of the limits (5.8) and (5.9), the in­
equalities (5.12) and (5.13), and the fact that Bf= 2«-Va, B / = 2a~l if 
and only iff(z) is a rotation of (1.2). 

We now prove that Bf and By* are always related by aBf = Bf*. 
We begin by demonstrating that for any function f(z) analytic in D 
and any y > 0, 

(5.14) lim sup (1 - r)yM(r,f) = bf 
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implies 

(5.15) bf = lim sup (1 - r)y+ìM(r,f) è ybf. 

Assume on the contrary that bf* < ybf. Choose e > 0 such that 
(iy* + e ) y - 1 < bf. From the definition offe/*, there is an r(e) such that 
for all |*| > r(e), | / ' ( z ) | ^ (&/ + e)(l - r)~y~l. Integrating along a 
radius, we obtain for any r > r(e) the inequality 

M(r,f) g M(r(e),/) + (bf* + «)y-i(l - r)">, 

which implies that 

fo/= lim sup (1 - r)yM(r,f) ^ (b*f+cfr'1 < bf , 

which is absurd. In particular, for y = a and f(z) in S D (7a, since 
the limits exist in (5.14) and (5.15), we obtain By* ^ ctBf. On the other 
hand, from inequality (4.6), we have for all z in D 

which, upon taking M(r,f) and then M(r,f), implies that 

(5.16) j - r i - ^ T 7 ' ) a 1 M(f '>"' ) - ( 1 " r2)~1M(r>n 
Inequality (5.16) is equivalent to 

2a(l - r)«M(r,/) - (1 - r )«^M(r , / ' ) ( l + r ) [ 1 - ( j ^ y ) " ] ^ 0. 

Therefore, upon taking the limit as r —» 1, we have aBf= By*. Thus, 
aBf = By* which concludes the theorem. 

COROLLARY 9. Iff(z) G S, and 0 is arbitrary but fixed, then 

2 lim (1 - r)2M(r,f) = lim (1 - r)*M(r,f) ê 1, 

2 lim (1 - r)2 | /(re iö)| = l im(l - r)3 | / '(re i0)l g 1. 
r->l r->l 

COROLLARY 10. If f(z) is a convex univalent junction, and 0 is 
arbitrary but fixed, then 

lim (1 - r)M(r,f) = l im(l - r)2M(r,f) ^ 1, 
r-*l r - 1 

. lim (1 - r)\f(reie)\ = l im(l - r)2\f (reiQ)\ ^ 1. 

The results of Corollary 9 were first proved by Krzyz [10]. The 
results of Corollary 10 are apparently new for the convex univalent 
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functions. We can apply Theorem 8 to close-to-convex functions of 
order ß and also to univalent functions of bounded boundary rotation 
to obtain new results for these families. 

We have not been able to extend Theorem 7 to arbitrary Ua classes. 
Such an extension would allow us to generalize the piquant relation 
(5.10) and (5.11) of Theorem 8. We conjecture that Theorem 7 and 
Theorem 8 can be extended to functions of bounded boundary rotation. 
Since the family of all functions of bounded boundary rotation is dense 
in X = U {Ua : a= 1}, this would be a marked extension. The gen­
eralized Koebe function is of bounded boundary rotation. To give a 
basis for the conjecture and to provide examples of functions in Ua 

such that Afte(A*ff6) takes on an arbitrary value in [0, 2a_1/a] 
( [0, 2a_1] ), we further examine the function (1.2). 

If <p(z) = (z + £)/(l + £z), |£| < 1 and f(z) is (1.2), then a routine 
computation yields 

Let (1 + £ )/(l + £) = eiß, (1 - £ )/(l - £) = e*. It is easy to check 

that (e1 ' + e*>)/2 = (1 - |£|2)/(1 - £2). Hence, 

i 1 r / 1 4- ZP*P \ a i 

«M-A.I/MI -L- j s r j^ j [ ( T ^ S T ) - I ] . 
g'(z) = (1 + ze^y-ll{\ - ze**)a+l. 

It follows immediately that 

A = lim(l - r)a\g(re-**)\ = |1 + ^ - ^ « - V a , 
r-»l 

B = lim(l - r)«+ 1 |g '(re-^)| = |1 + e«0^>|«-i, 
r-»l 

and «A = B. Although ß and y are not independent, we do have 

= reid(eidlr) = e2iö. 

Since we can choose £ so that 0 G ( — IT 12,7r/2), we see that ß — y 
can be made to be any value in (—n, IT) and our claim follows. 

6. Applications to majorization-subordination theory. Let/(z), F(z) 
and <p(z) be functions analytic in \z\ < r. We say that f(z) is majorized 

1 1 - £2 

A„[/(*)] = ^ ' 2a 1 l£l2 
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by F(z) in \z\ < r, i£]f(z)\ ^ \F(z)\ in \z\ < r. We say that /(z) is sub­
ordinate to F(z) in \z\ < r, if f(z) = F(<p(z)) where \<p(z)\^ \z\ in 
\z\ < r. In a recent paper [4], we generalized several of the majoriza-
tion-subordination theorems of univalent function theory to Ua. We 
showed that two of the theorems yielded 'best possible' results. Since 
these particular theorems are based on the inequalities (3.1) or (4.6), 
we can now make our earlier theorems even more precise. 

THEOREM 11. let f(z) be majorized by F(z) in D. If F (z) G Ua, 
1 Si a < °°, then f'(z) is majorized by F ' (z) in 

la+ l)l,a- 1 
M S £ + i ; i / a + 1 = tanh[(2«)-1ln(a + 1)]. 

The result is best possible for each a. Moreover, \f'(z)\ < \F'(z)\ in 
\z\ < tanh[(2a) - 1 ln(a + 1)] unless f(z) = eieF(z). Suppose that 
F(z) G. Ua is not a rotation of (1.2). If f(z) is majorized by F(z) in 
D, then f'{z) is majorized by F'(z) in \z\ < R for some R> 
tanh[(2a)_ 1 ln(a + 1)], where R depends only on F(z) and not on f(z). 

THEOREM 12. Let f(z) be subordinate to F(z) in D. If / ' ( 0 ) ^ 0 
and F(z) Œ. Ua, 1.65 ^ a < «> ? thenf'(z) is majorized by F '(z) in 

\z\^(a+ 1 ) - ( a 2 + 2 a ) 1 ' 2 . 

The result is best possible for each a. Moreover, \f'(z)\ < |F Y^)| in 
\z\ < (a + 1) - (a2 + 2a)1/2 unless f(z) = F(z). Suppose thatf(z) E Ua 

is not a rotation of (1.2). Iff(z) is subordinate to F(z) in D, then f'(z) 
is majorized by F'(z) in \z\< Rfor some R > (a + 1) — (a2 + 2a)1/2, 
where R depends only on F(z) and not onf(z). 
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