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SOME WEAKER FORMS OF COUNTABLE COMPACTNESS
M. K. SINGAL AND ASHA MATHUR

1. Introduction. C. E. Aull [1] has introduced a new class of
topological spaces called E,-spaces. This class generalizes the class of
Hausdorff spaces. A space is said to be an E,-space if every point is the
intersection of a countable number of closed neighbourhoods. It is
easy to see that a continuous function from a countably compact space
into an E;-space is closed, since countable compactness is a weakly
hereditary property preserved under continuous maps and a countably-
compact subset of an E,-space is closed [1]. In the present note we
consider a class of spaces called functionally countably compact. A
space is said to be functionally countably compact if whenever U is a
countable open filterbase on X such that the intersection A of the
elements of U is equal to the intersection of the closures of the ele-
ments of U, then U is a base for the neighbourhoods of A. Function-
ally countably compact E;-spaces are characterized by the property:
Every continuous function defined on them into an E,-space is closed.
Another class of spaces called countably C-compact has been con-
sidered. A space (X, J) is countably C-compact if every countable
T -open cover of every closed subset has a finite subfamily, the closures
of whose members cover the set. The following relationship exists:

countably-compact = countably C-compact

=> functionally countably compact.

Also functionally countably compact + E; = minimal E,. That these
implications are not reversible is shown by the following examples.

ExampLE 1.1. A countably C-compact space need not be countably
compact.

Let Z represent the set of positive integers, let Y denote the subset
of the plane consisting of all points of the form (1/n,1/m) and the
points of the form (1/n,0) for n and m in Z. Let X=YU {x}.
Topologize X as follows: Let each point of the form (1/n,1/m) be
open. Partition Z into infinitely many infinite equivalence classes,
{Z;}%-,. Let a neighbourhood system for the point (1/i,0) be com-
posed of all sets of the form G U F U {1/i, 0} with

G = {(1fi, 1/m)m = k}
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and
F= {(l/n,1/m)jm € Z;and n = k}

for some k € Z. Let a neighbourhood system for the point © be com-
posed of all sets of the form X — T where

= {(o)lnez JuU({(+7)Ime?}
U{Gr o )Imeznez})

for some k € Z. This neighbourhood system defines a topology on X
which is, by construction, Hausdorff.

Now X is not countably compact since the closed subset
{(1/n,0)in € Z} is not countably compact. It has been shown in
[4] that X is C-compact and hence it is countably C-compact.

ExampLE 1.2. A functionally countably compact space need not be
countably C-compact.

Let I = [0,1]. For each integer n= 2, let {a,/}%-; be a strictly
decreasing sequence in (1/n,1/(n — 1)) converging to 1/n. Let
X =1~z nze{a}. Topologize X as follows: Let X~
(U{l/m}z-, U {0}) retain the usual topology. Let a neighbourhood
system of the point 0 be composed of all sets of the form {x € X | |x|
< lm}~ {liln};_;, m an integer. Let a neighbourhood system of
the point 1/n be composed of all sets of the form G M X where G is
an open set in I with {l/n,a)_,, '+ -,af""12} C G in the case that
n is odd, and with {l/n,al_j,a2_5 ---, a§2-'} C G in the case
that nis even. For n = 2, we simply have {1}.

It is easy to see that X is Hausdorff. To see that X is not countably
C-compact, consider the closed set {1/2n|n>1}. The countable
open cover {Og,|n > 1}, where Op, = {x € X | Jx — 1/2n] < 1/3n}
UUIZl (x EX | |x — adp_gis1| < 1Bn}, of {1/2n|n>1} has
no finite subfamily the closures of whose members cover the space.
In [6] it has been shown that X is functionally compact and hence X
is functionally countably compact. Thus, this is a functionally count-
ably compact space which is not countably C-compact.

ExampLE 1.3. An E; space can be minimal E, without being func-
tionally countably compact

Let X = {a,b,ay, by, C; |i,j= ,2, 3, - +}. Let each point a; and
b;; be isolated. Let {UX(C;) | K = 1,2, -+ -} be the fundamental system
of nelghbourhoods of C; where UX(C;) = {C,, a,J, b; |j = K} and let
{VK(@) | K=1,2, -} and {VK(b) |K= -} be that of @ and
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b, respectively, where VK(a) = {a,a5|i= K,j= 1,2, - - -} and VX(b)
= {b,b;|i= K,j=1,2,--+}. This space is a minimal E,-space
[7] but is not functionally countably compact.

We have obtained a few new characterizations of minimal E,-spaces
given in §2. §3 deals with countably C-compact spaces, while func-
tionally countably compact spaces are considered in §4.

We shall denote the set of natural numbers as well as countable
index sets by N.

2. Characterizations of minimal E;-spaces.
 DerFmniTion 2.1 [2]. A space is said to be lightly-compact if every
locally finite family of open sets is finite or equivalently if every
countable open cover of the space has a finite subfamily, the closures
of whose members cover the space.

TueoreMm 2.1 [7]. An E,-space X is minimal-E, iff any of the fol-
lowing equivalent conditions is satisfied:

(a) Xissemiregular and lightly-compact.

(b) Every countable open filterbase which has a unique adherent
point is convergent.

THEOREM 2.2. An E,-space is minimal-E, if and only if for every
point x € X and every countable open filterbase U on X such that
{x}=N{U|UE U} and {x}=f§{U|U€‘L¢}, U is a base for
the neighbourhoods of x.

Proor. Let (X, J) be a minimal-E,-space. Let U be a countable
open filterbase on X such that {x} = N {U|U € u} =
N {U|U € Uu}. Let R be any open set containing x. Now U is a
countable open filterbase with a unique adherent point x and hence
by Theorem 2.1 converges to x. Therefore, there exists a U € U such
that U C R and hence U is a base for the neighbourhoods of x.

Conversely, let U be a countable open filterbase with a unique ad-
herent point, say x. We are required to prove that U converges to
the point x. Since X is an E,-space there exist countable families
{F; |1 € N} and {G; |i € N} of respectively closed and open neigh-
bourhoods of x such that {x} =(\{F|i € N}={G |i E N}
and x E G;C F,; for each i EN. Let V, = n{G,-Ii= 1,2 - n}
Then {V,|n &€ N} is a countable open filterbase on X such that
xEV,forallnEN. Let ¥={UUV,|UE U n€EN}. Then ¥
is a_countable open filterbase on X such that {x} =\ {V |V € ¥}
=N (vive W}, for if x # y, then there exists a U € U such that
y ¢ U, because x is the unique adherent point of U. Also since
F;s are closed, {x}= N{G|i€E N} and hence there exists a V,,
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such that y&§V, Then y&UTUV, and hence y&
N{vive V}. Therefore, there exists a V& @ such that VC R
for each open set R containing x. Since each V& </ contains a
U € U, therefore there exists a U € U for each open set R containing
x such that U C R. Thus U converges to x. Hence the result.

CoroLLARY 2.1. An E,-space is minimal-E, if and only if for every
point x € X and every countable regular-open filterbase U on X such
that {x} =N {U|UE U} and {x} = N {U|U E U}, U is a base
for the neighbourhoods of x.

Tueorem 2.3. An E,-space is minimal-E, if and only if given
p € X, a countable open cover € of X~ {p} and an open neighbour-
hood U of p, there exists a finite subfamily C; € €, 1 = i = n such that
X=UU[U({Cli=12 -, n}.

Proor. Let (X, J) be a minimal-E-space. Let p € X and ¢ =
{Ci|i € N} be a countable open cover of X — {p} and U an open
neighbourhood of p. Suppose that the closures of no finite subfamily
of ¢ cover X~ U. Then V,N (X — U) # @ for all n € N, where
V.= (X-Cli=12, -, n}. Since X is minimal-E,, therefore
it is semiregular in view of Theorem 2.1. Therefore, there exists a
regular open set T such that pETCU. Now V,N(X—-T)
# @, because, if V,N(X—T)=@, then since V,’s
are open, V, N(X—T)= @, that is V,N (X —(T)°) = @, that
is, V, N(X—T)=@, as T is regular open and this implies
V., N(X—U)=@ as TCU, which is a contradiction. Now
{V.N (X = T) |n € N} is a countable open filterbase which has no
adherent point, because p & X — T and if g is any other point dif-
ferent from p, then there exists a C € ¢ such that ¢ € C and hence
does not belong to X — C. Thus, there exists a V,, such that q ¢ \7
Since by Theorem 2.1, X is lightly-compact, this leads to a contradic-
tion. Hence the result.

Conversely, let & be a countable open filterbase with the unique
adherent point p. Let U be an open neighbourhood of p. Now
{X~ F|F € 9} is a countable open cover of X~ {p} and hence
there exists a finite subfamily {F; € 9|1 = i= n} such that X =
vU U {x- F,li=1,2 ---, n}]. Since 3 is a filterbase, there
exists an F € 9 such that FC ) {F;|i=12, - -,n}. Now X— U
CU{X~Fli=12 -, n}. Thisimplies() {F[i= 1,2 -, n}
CU. Also F;CFfori=1,2 --+-,n. Then FC U and hence
converges to p and X is minimal-E, by Theorem 2.1.

CoroLLARY 2.2. An E,-space is minimal-E, if and only if given
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p € X, a countable regular-open cover C of X~ {p} and an open
neighbourhood U of p, there exists C; € ¢, 1=i=n, such that
X=UU [U{C|i=1,2, - -, n}].

3. Countably C-compact spaces.

DEeriniTION 3.1. A space (X, 9) is said to be countably C-compact
if given a closed set F of X and a countable T-open cover  of F,
there exists a finite subfamily {C;|i= 1,2, - -, n} of € such that
FCU({Cili=12 - n}

Tueorem 3.1. Every continuous function from a countably C-
compact space into an E,-space is closed.

Proor. Let f be a continuous function from X into an E,-space
Y. Let C be a closed subset of X. Let y & f(C). Since Y is an E;-
space, there exists a countable family {F; | i € N} of closed neighbour-
hoods of y such that {y} = () {F;|i € N}. Since f is continuous,
{f~Y — F;) |i € N} is a countable open cover of the closed subset
C of the countably C-compact space X. Therefore, there exists a
finite subfamily {f-(Y~ F;)|j=1,2,---,n} such that CC
U{f-(Y~Fy |j=12---,n}. Then MN{FY[j=12 -, n}
CY~ f(C). Since F;s are neighbourhoods of vy, y€E
N{FY|j=1,2 ---, n} Hence f(C) is a closed subset of Y or f
is a closed map.

CoroLLarY 3.1. Every continuous function from a countably com-
pact space to an E,-space is closed.

Proor. Every countably compact space is countably C-compact.

DeriniTIoN 3.2 [5]. A filterbase 3 is said to be (regular) adherent
convergent if every (regular) open neighbourhood of the adherent set
of 3 contains an element of 9.

TueoreM 3.2. A space is lightly-compact iff every countable open
filterbase is regular adherent convergent.

Proor. Let (X, J) be a lightly-compact space, U a countable open
filterbase. A the adherent set of U and R a regular open neighbour-
hood of A. Suppose that no element of U is contained in R, that is,
UN(X~R)# @ for each UE U. Since R is regularly-open,
UN(X~R) # =UN(X~R) # . Now {UN (X~ R) |
U € U} is a countable open filterbase with empty adherence. Hence
the contradiction. The converse follows from the fact that empty set
is a regular open set.

Tueorem 3.3. A space is countably C-compact iff every countable
open filterbase is adherent convergent.
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Proor. Let (X, J) be a countably C-compact space and 3 be a
countable open filterbase with the adherent set A. Let R be an open
set containing A. Then {X~ F|F € 9} is a countable open cover
of the closed set X~ R and hence there exists a finite subfamily
{X~ F;|i=1,2, - - -, n} such that
X~RCU{X~F|i=12 - nCU{X~F|i=12 -, n}
and hence ) {F;|i=1,2,---,n} CR. Since 9 is a filterbase there
exists an F such that FC ) {F;li=1,2, - --,n} C R. Hence the
result. Conversely, suppose that (X, 7) is not countably C-compact
and that every countable open filterbase is adherent convergent.
Therefore, there exists a closed set D and a countable open cover € of
D such that D¢ UCli=12 --,nCE ¢} for any finite
subfamily of ¢£. Let V,= N {(X~C;li=12, - ,n}.  Then
{V, |n € N} is a countable open filter base. Now N{V,InEN}=
N{X~CICEC¢}CN{X~C|CEC}C X~ D. Hence there
exists a V,, contained in X~ D which is not possible. Hence the
result.

CoroLLary 3.2. Every countably C-compact space is lightly-
compact.

DeFinTION 3.3 [5], [8]. A space is said to be seminormal if given
a closed set C and an open subset G containing C there exists a regular
openset Rwith CC RC G.

TueoreM 3.4. A seminormal space is lightly-compact iff it is count-
ably C-compact.

Proor. In view of Corollary 3.2, ‘the only if” part alone need be
proved.

Let (X, J) be a seminormal lightly-compact space. Let 3 be a
countable open filterbase with the adherent set A. Let G be an open
set containing the closed set A. Since (X, 7) is seminormal, there
exists a regular open set R such that AC RC G. Now since it is
lightly-compact, there exists an F such that F C R and hence F C G.
Hence the result.

TuEoREM 3.5. A space X is countably C-compact if and only if
given a closed subset F of X and a countable open cover C of X~ F
and an open neighbourhood U of F there exists C; € C,i=1,2, - - -,
n,suchthat X=UU [U{Ci|i= L2, -, n}].

Proor. Let X be a countably C-compact space, F a closed subset of
X, U an open neighbourhood of F and € a countable open cover of
X ~ F. Since F C U, therefore C is a countable open cover of X ~ U
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also and consequently there exists a finite number of elements of £,
say C;, i= 1,2, - -+, n, such that X~ U= U{Cli=12, -, n}
ThenX=UU [U {C;|i= 1,2, - - -, n}].

Conversely, let & be a countable open filter base with the adhgr-
ence set A and let R be an open set containing A. Then {X~ F |
F € 9} is a countable open cover of the set X ~ A and consequently

there exists a finite subfamily {X~ F;|i= 1,2, - -+, n} such that
X=RU [U{X~ F,li=12, -- -,n}]. Since T is a filterbase, there
exists an F € 9 such that F C {F;li=1,2,---,n}. Now FCR

and hence 3 is adherent convergent and thus from Theorem 3.3, X is
countably C-compact.

CoroLrary 3.3. Every countably C-compact E,-space is minimal-
E,.

Proor. Observe that in an E,-space every singleton is closed and
apply Theorem 2.3.

CoroLLarY 3.4. A space X is countably C-compact if and only if
given a closed subset F of X and a countable regular open cover ¢
of X~ F and an open neighbourhood U of F there exists C; € C,
i=1,2 - ,nsuchthat X=UU [U {C;|i= 1,2, - -, n}].

Proor. Obvious.

4. Functionally countably compact spaces.

DEeFiNITION 4.1. A space X is said to be functionally countably com-
pact if whenever U is a countable open filterbase on X such that the
intersection A of the elements of U is equal to the intersection of the
closures of the elements of U, then U is a base for the neighbourhoods
of A.

TueoreM 4.1. Every functionally countably compact E,-space is
minimal-E, and hence semiregular.

Proor. That every functionally countably compact space is minimal-
E,, follows from Theorem 2.2 and Definition 4.1, semiregularity fol-
lows from Theorem 2.1. An independent proof for semiregularity can
however be given as follows: Let (X, 7) be a functionally countably
compact E,-space. Let x € X and let G be an open set containing x.
Since X is an E;-space there exist countable families {F; |i € N} and
{Gi |i € N} respectively, of closed and open neighbourhoods of x
such that x EGC F; and {x} = {G;|[i €EN}=){F;|i € N}.
Let V,={G°|i=1,2,+-,n}. Then {V,|n€E N} is a count-
able open filterbase such that {x}=({V,|nEN}=
N{V,|nEN } and hence there exists a V, such that x €V, C G.
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Now V,, is a regularly-open set and hence (X, 7 ) is semiregular.

TueoreM 4.2. An E|-space X is functionally countably compact if
and only if every continuous mapping of X into any E,-space is closed.

Proor. Suppose that X is a functionally countably compact E,-
space and let f be a continuous mapping from X into an E,-space
Y. Let C be a closed set in X. Let y & f(C). Let {V;|i € N} and
{U; |i € N} be countable collections of respectively closed and open
neighbourhoods of y such that y € U; CV, for i EN and {y} =
N{U;|iEN}y=N{V;|]i EN}. Let G,=N{U;|i=1,2,"-,n}
Let & = {f~1(G,) |n € N}.

Since f is continuous, & is a countable open filterbase. Also
fUy)=N{f(G)|nEN}=N{f G, |n EN} Therefore
G is a base for the neighbourhoods of f~!(y), that is, for each
open set R C X containing f~!(y), there exists an open set G, such
that f~!(y) C f~YG,) CR, that is, y € G, C f(R). In particular,
yEG,CfIX—C)Cy— f(C), since C is closed. Therefore
there exists an open set G, containing y which does not intersect
f(C). Hence f(C) is closed.

Conversely, suppose that every continuous mapping of the E;-
space X into an E,-space is closed. Let U be a countable open filter-
base on X such that the intersection A of the elements of U equals the
intersection of the closures of the elements of U. Suppose further that
there exists an open set R of X containing A such that for every U € U,
(X— R NU# @. Let Y be the decomposition of X whose only
nondegenerate element is A and let f be the natural transformation
of X onto Y defined by x € f(x). We topologize Y by defining a
base B for a topology as follows: B € B if and only if (i) f~(B) is
an open subset of X — Aor (ii) f~!(B) € W

Y with this topology is an E,-space for A= [ {U | U € U}, where
U is a closed neighbourhood of Ain Y. If y €Y and y # A then
f~Uy) is a single point. Since (X, ) is an E,-space, there exists a
countable family {F;|i € N} of closed neighbourhoods of f~!(y) in
X, such that f~!(y) = ( {F;|i EN}. Let I be a subset of N such
that FFN A= for iEL Now since y# A, f~(y) € A and
hence there exists a U &€ U such that f‘l(y)QEU. Now {y} =
Nier{f(F) N X~ TIN {Nieni f(F)}, where  {f(F) N X~ T}
and f(F;) are closed neighbourhoods of y in Y. Now f is a
mapping of X onto Y which is continuous. By our hypothesis, f
should be closed, but f(X~ R) is not closed since f(A) is a limit
point of f(X~ R) and f(A) QE f(X~ R). This is contradiction.
This completes the proof.
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