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INVERSES, LOGARITHMS, AND IDEMPOTENTS IN M(G)!

JOSEPH L. TAYLOR2

Let M(R) denote the measure algebra on the line considered as a
Banach algebra under convolution. In [16] we proved that if
w € M(R) and p is invertible, then m has a factorization p =
7 %8, * exp(w), where k € Z, x € R, o € M(R), and 7 can be chosen
to be any measure in L'(R) + C8; whose Fourier transform is non-
vanishing and has winding number one about zero. This result
implies that the group M(R)~!exp (M(R)) is isomorphic to Z® R.
Since the numbers k and x in the above factorization can be explicitly
determined from g, this result completely characterizes the invertible
measures in M(R) which have logarithms in M(R).

The above result is a special case of a general factorization theorem
proved in [16] for any commutative convolution measure algebra —
in particular, for all algebras M(G) for G a locally compact abelian
(L.c.a.) group or M(S) for S a locally compact abelian topological
semigroup. This theorem is proved using the Arens-Royden theorem
[1], [8], and a result in [16] which characterizes the cohomology
groups of the maximal ideal space of any measure algebra. Another
consequence of this result is a new proof of Cohen’s idempotent
theorem [3].

In [17] using some of the same techniques we proved that if a
measure u € M(G) is invertible in M(G) then its inverse must lie in
a certain “small” subalgebra of M(G) containing p. This greatly
simplifies the problem of determining the spectrum of an element
of M(G).

Unfortunately, the above results rely heavily on the specialized
machinery developed in [11], [12], [13], and [14] for the study
of convolution measure algebras. Also, the proof of the factorization
theorem in [16] uses a considerable amount of sheaf theory and
algebraic topology. Thus, the student of harmonic analysis who
wishes to understand these results is faced with a discouraging amount
of machinery to wade through.
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The objective of this paper is to bring together some of the above
results and prove them with a minimum of machinery. To this end,
we shall restrict attention to M(G) and not work with general con-
volution measure algebras. We shall use Sreider’s generalized char-
acters to describe the maximal ideal space of M(G) rather than using
the description given in [11]. Also, we have been able to eliminate
the sheaf theory and algebraic topology from the proof of the factoriza-
tion theorem of [16].

The results we present here all flow —with varying degrees of
technical difficulty — from one general result (Theorem 1) concerning
the maximal ideal space of M(G). After a preliminary discussion in
§1, we present Theorem 1 in §2. One portion of its proof (Lemma 1)
is delayed until §6 in order to maintain the continuity of the discussion.
Except for §6 — which relies heavily on some combinatorial machinery
from [13] — the paper should appear self-contained to those who are
familiar with Rudin’s book [9].

In §3 we use Theorem 1 to give a new proof of Cohen’s idempotent
theorem. In §4 we present the factorization theorem for measures in
M(G)~! and give several of its consequences. In §5 we prove that if
1 € M(G) then u is invertible in M(G) if and only if it is invertible in
each subalgebra of a certain kind which contains u. We use this to
give a characterization of the spectrum of a continuous measure in
M(R).

As a corollary to Lemma 1, in {6 we prove the main theorem from
[13] —which characterizes those L-subalgebras of M(G) having G
as maximal ideal space.

1. Preliminaries. Throughout the paper G will denote a locally
compact abelian group and M(G) its algebra of measures. Elements
of M(G) will be denoted by Greek letters. If u, v € M(G) then their
convolution product will be denoted m % v. We shall use additive
notation for the group operation in G.

If u,v € M(G) then “v << u” will mean “v is absolutely continu-
ous with respect to u” and “u L v” will mean “p and v are mutually
singular”. If M is a closed subspace (subalgebra, ideal) of M(G) then
M will be called an L-subspace (L-subalgebra, L-ideal) provided
LEM and v<< p imply vEM. If M is an L-subspace and
k€ M(G), then we say w L M provided p L v for each v € M.
Weset M= {u € M(G): u L M}.

If p € M(G) then |u| will denote its total variation measure and
|| ]| its total variation norm.

The following proposition is well known and follows directly from
the Lebesgue Decomposition Theorem:
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ProposiTioN 1.1. If M is an L-subspace of M(G), then so is M rund
M(G) = M & ML,

The space M(G) is a commutative Banach algebra with identity
80, where § is the unit mass at the origin. Hence, the maximal ideal
space of M(G) is a compact Hausdorff space. We shall use Sreider’s
description of this space.

DerintTioN 1.1 (Sreiper [10]). A generalized character on G is a
collection f= {f,: » € M(G)} with f, € L*(u) for each u € M(G)
and such that

(1) p << vimpliesf, = f, a.e/u, and

2) fulx + y) = fulx)f(y) a.e/m X wfor each p € M(G).

If f and g are generalized characters then we set f= g provided
f. = g, a.e/u for each w € M(G). The space of all generalized char-
acters on G will be denoted A(G) or simply A.

In [10] Sreider shows that each complex homomorphism of M(G)
has the form p— [fdu for some fE A. If fE A and p € M(G)
we shall denote the number [f,du by either w'(f) or [fdu.

The key to the study of A is to notice that it has a great deal of
structure not generally enjoyed by maximal ideal spaces. It has a
semigroup structure, an order structure, and two important topologies.
In addition, it acts as a semigroup of endomorphisms of M(G).

DeriniTioN 12. If f, g € A, we define elements fg, f, and |f]
in A by (fg), = fg, (f).= £, and [f|. = |f., where these opera-
tions are defined pointwise in L *(u) for each u € M(G).

It is easy to see that these operations do indeed yield new elements
of A.

DerFimniTion 1.3. We set At = {f€ A:f,=0 ae/n for each
LE MG} If g€ At then f= g will mean f, = g, for each
p € M(G) and f< g will mean f= gbutf# g.

If 1 denotes the identically one function, then 1 € A* and f=1
forallfE€ AT

The following facts concerning these notions have elementary
proofs:

ProposiTioN 1.2. If f,g € A then |f|= |g| if and only if f= gh
for some h € A. In particular, for each fE A there is a polar de-
composition f = |flh withh € A and |h|> = |h|.

If fE A* then f*€ A for each z € C with Rez= 0, where
(f=f* Unless f2=f, the map z— f* induces nontrivial
analytic structure in the maximal ideal space of M(G) (cf. [11, §3]).

DeriniTION 1.4, If f € A and p € M(G) then we define fu € M(G)
to be the measure << such that dv = f,du.
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PropositioN 1.3. If f€ A then the map pw— fu: M(G)— M(G)
is a bounded linear map (of norm one) and an algebra homomorphism.

If g € A also, then (fu)"(g) = 1" (fg).

An important feature of our study of A is the relationship between
two natural topologies on A. We describe these below.

DerintTioN 1.5. The weak topology on A is the weakest topology
such that each of the maps f— p*(f) (» € M(G)) is continuous.
The strong topology on A is the weakest topology such that each of
the maps f— fu (n € M(G)) is continuous from A to M(G) with
the norm topology.

Note that the weak topology is the Gelfand topology for A if A
is considered the maximal ideal space of M(G). Obviously the strong
topology dominates the weak topology since un™(f) = (fu)"(1) =

w(G).
I Unless G is discrete, the map (f,g)—>fg: AX A— A is not
jointly continuous in the weak topology and the map f— |f|: A— A
is not weakly continuous. However, we have:

ProposiTioN 1.4. (a) The map (f,g)—fg: A X A— A is jointly
continuous in the strong topology and separately continuous in the
weak topology;

(b) the map f— f: A— A is continuous in both topologies;

(c) themapf— |f|: A— A+ is strongly continuous;

(d) the set A+ is closed in both topologies, as is any subset of the
form{g € At:g=flor{g€ At:g=f}forfE A*.

In this paper we shall consider the group algebra L(G) to be the
subspace of M(G) consisting of all absolutely continuous measures.
With this agreement, L'(G) is an L-ideal of M(G) (cf. [9]). In fact,
it is the unique minimal L-ideal of M(G).

We denote the dual group of G by G. Each y € G determines
an element of A —which we also denote by y —by vy, = vy for every
@ € M(G). Hence, we consider G to be a subset of A.

If f€ A and f, 74 0 for some u € LY(G), then there is an element
v<<p such that v"(f) # 0. It follows that o"(f) = (¥"(f))"!
“(v* 0)"(f) for every w € M(G). Since LYG) is an ideal,
v+ o € LY(G). Hence, f is determined by its values on LY(G).
Since every complex homomorphism of L'(G) is determined by a
group character, we conclude that f € G.

If yEG and pELYG) with p'(y)#0, then {fE A:
®(f) # 0} is a weakly open subset of A which is contained in
G (since f¢é implies f, = 0). Hence, G is embedded in A
as a weakly (hence strongly) open subset. Note also that if f€ A
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then f € Gifand only if |[f| = 1. Summarizing, we have:

Proposition 1.5. The group G is an open subgroup (in both the
weak and strong topologies) of the semigroup A. Likewise, 1 is an
isolated point (in either topology) of A*. The subset A\G =
fe€A:£,=0 for pnEL(G)}={fE€E A:fu=0 for o € LYG)}
={feA:u(f)=0forpn € LYG)} = {f€ A:|fI<1}

Since L(G)! is a closed ideal of M(G), we can construct the
factor algebra M(G)/LYG). We denote this algebra by M,(G) and
let 7 : M(G) > M,(G) be the quotient map. Since L!(G) is an L-ideal
of M(G), we have M(G) = LYG)® LYG)* by Proposition 1.1. It
follows that, as a Banach space, M,(G) may be identified with L}(G)+ —
the space of purely singular measures on G. Under this identification,
the multiplication on M,(G) is convolution followed by projection
back into My(G).

Since A\G={f€ A:|fI<1}={fE€E A:pu (f)=0 for pE
LY(G)} we have:

ProposiTioNn 1.6. The maximal ideal space of M,(G) is A\G.

If G is nondiscrete there are measures w € LY(G)! such that
u2 € LY(G) (cf. [7]). Hence, M,(G) is not a semisimple algebra. Its
radical consists of the image under 7 of those measures in M(G) which
are in every maximal ideal containing L!(G). We denote this space of
measures by Rad(LY(G)).

Proposition 1.7. Rad(LY(G)) is an L-ideal of M(G) and can be
characterized as {nw E M(G): u"(f)=0 for f € A\G}= {nE
M(G): fu= Oforf € A\G}.

Proor. Since A\G consists of those elements of A such that the
corresponding maximal ideal contains LYG), it is trivial that
Rad(LYG)) = {r EM(G): u* () =0 for f E A\G}. It follows
that u € Rad(LY(G)) if and only if (fu)"(y) = n*(fy) =0 for fE€ A
and y € G. Since the Fourier transform separates points in M(G)
(cf. [9]), we have p € Rad(LY(G)) if and only if fu = 0 for each
fE A\G. It follows immediately that Rad(LY(G)) is an L-ideal.

2. The critical points of A*. The two topologies on A introduced
in the last section do not generally agree. In the weak topology A
is compact but multiplication is not jointly continuous. In the strong
topology multiplication is jointly continuous but A is not compact.
However, there are certain subsets of A on which these topologies
do agree, and this turns out to be very useful.
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Proposition 2.1. (a) The weak and strong topologies agree when
restricted to any totally ordered subset of A*; (b) if {f.} is a net in
A, fE€ A, and |f.| = |f| for every a, then f,— f weakly if and only
if f.— f strongly.

Proor. If F is a totally ordered subset of A*, then f, g € F implies
either f= g or g=f Hence, for such f and g and u € M(G) we
have

[samt - [ gau

fs — gusl = [ 1f = gl dlusl =
= | Iel'(P) = bl (@)

This implies that the weak topology dominates the strong topology
on F and, hence, they agree.

If |f.| = [f] for every a, where f,, fE€ A, then u € M(G) implies
that

I = gtz = [[1f =l dlst ]2 = sl [ 1f = £l
= |l [@IfiP~ . ~ Fodlul
= ol Im [l (f) — Flusb" ().

Hence, if {f,} converges to f weakly it also converges to f strongly.
The first part of the above proposition leads to the following:

Prorosition 2.2. Each nonempty strongly closed subset of A~
contains minimal and maximal elements.

Proor. If A C A" is strongly closed and F C A is totally ordered,
then the weak compactness of A* implies that there is a point f in
the weak closure of F in A* such that f= g for every g € F. Since
{f} UF is totally ordered, Proposition 2.1 implies that f is in the
strong closure of F—hence, f € A. It follows from Zorn’s lemma that
A has a minimal element. The same argument yields that A has maxi-
mal elements.

If A is both strongly closed and strongly open in A*, then a
minimal element of A must have a very special form. This is the key
to each of our main theorems. Deriving this form is the object of the
present section.

DeriniTioN 2.1. An element of A* is called a critical point if it
cannot be weakly approximated by strictly smaller elements. In other
words, h € A* is a critical point if h is isolated (weakly) in hA* =
{fe A*:.f=h}.

Note that if h is a critical point, then necessarily h? = h; for,
otherwise, we would have h* < h for r > 1 and lim,_,;h" = h.
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ProrosiTioN 2.3. Ifh € A the following statements are equivalent:

(1) his a critical point;

(2) his strongly isolated in hA +;

(3) h is a minimal element of a strongly open and closed subset
AC A

(4) theset H= {f € A: |f| = h}isstrongly openin hA;

(5) H isweakly openinh A.

Proor. Since weak open sets are also strongly open, (1) implies
(2) trivially. If h is strongly isolated in hA*, then as before we con-
clude h? = h, and further that {f€ A*:f= h}= {f€ A*:hf= h}
is both open and closed in the strong topology and contains h as a
minimal element. Hence, (2) implies (3). In fact (2) and (3) are
equivalent since (3) obviously implies (2).

That (2) implies (4) follows from the fact that, under the strongly
continuous map f— |[f|: A— A*, H is the inverse image of {h}
and hA is the inverse image of hA*. That (4) implies (5) follows
immediately from Proposition 2.1(b). Finally, that (5) implies (1) is
trivial, since hA* = A* M hA and {h} = A+ N H.

Recall from Proposition 1.5 that 1 is an isolated point of A* and,
hence, 1 is a critical point. If d is defined by d, = 1 if u is a discrete
measure and d, = 0 if p is a continuous measure, then it is easily
seen that d € A* and, in fact, d is the unique minimal element of
A+, Hence, d is also a critical point. Each of these examples is a
special case of a general method for constructing critical points which
we describe below.

By a continuous isomorphism a:G’'— G of an lc.a. group G’
onto G we shall mean a group isomorphism which is continuous but
not necessarily a homeomorphism. If a is such a map, then a: M(G’)
— M(G) will be the induced map (am = pme° a~!) on measures.
Note that & is an order preserving isomorphism-isometry of M(G’)
onto an L-subalgebra, M, of M(G). The space M is exactly the set of
p € M(G) for which sup{|p|(K): a~}(K) compact in G'}= |u|,
while ML is the set of u € M(G) for which a~!(K) compact implies
|#|(K) = 0. It follows that ML is an L-ideal.

The fact that M is an L-subalgebra and M* is an L-ideal implies
that h € A+, where h is defined by h, =1 if u €M and h, = 0 if
p € ML Clearly h2= h and M is the range of the map u— hu:
M(G)— M(G).

ProrositioN 2.4. With G', a, M, and h as above we have that
f—fe°a:hA(G) »> A(G') is an order preserving homeomorphism
and a semigroup isomorphism of hA(G) onto A(G’). Furthermore,
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K (f e a)=(ap)"(f) for n€ M(G’) and fE€ hA(G). The image
of hunder f— f ° ais 1.

Proor. Note that f— f ¢ a: hA(G) — A(G') is simply the injection
of hA(G) into A(G) followed by the adjoint map of & from the maxi-
mal ideal space of M(G) to that of M(G/).

Each of the statements of the proposition is trivial except possibly
that f— fo a is onto. However, if g € A(G’) we simply define
fERA(G) by f,=0for pEM" and f,=g,ca ! for p=a EM.
The fact that p = av implies that g °ca '€ L*(n). Clearly
fEhRA andfea=g

Note, it follows from the above that, since 1 is a critical point of

A*(G'), h is a critical point of A*(G). The object of this section is
to show that every critical point of A*(G) arises in this way from
somemap a: G'— G.

To this end, let h € A+ be a critical point and set M = {n € M(G) :
h,=1 a.e./u}. Note that M is an L-subalgebra of M(G) and, since
h2=h, M = {pE M(G):h,=0 ae/u} and M is an L-ideal.
Hence, to show that h has the form described in the preceding discus-
sion, we need only find an lL.c.a. group G’ and a continuous isomor-
phism a: G’ — G such that aM(G') = M. It is quite easy to find G’
and a and show that they almost have the right property:

Proposrtion 2.5. With h and M as above, there is an l.c.a. group G’,
a continuous surjective homomorphism o G'— G, and an L-
subalgebra M' C M(G') such that

(a) a: M(G')— M(G) maps M’ isometrically onto M;

(b) there is a continuous homomorphism ¢ : M(G') — M’ such that
¢ is the identity on M' and hap = ap p for p € M(G');

(c) the mapy— F, (F,(pn) = p’(y) for p € M') embeds G’ homeo-
morphically as an open subset of the maximal ideal space of M.

Proor. Let H = {f € A(G): |f| = h}. Note that H is weakly open in
the weakly compact set hA(G) by Proposition 2.3. It follows that H is
locally compact. By Proposition 2.1(b) the weak and strong topologies
agree on H. Now H is a group (with identity h and conjugation as
inversion) and the operations are strongly continuous; hence, H is an
lc.a. group. Let G' = H be its dual group. Letn:H— G’ be the
natural isomorphism from H to its second dual.

Let G4 be G with the discrete topology and consider G, to be em-
bedded in A(G) by identifying y € G, with the generalized character
fsuch that f, = 0 if w is continuous and f, = vy if u is discrete. Recall
that d € A*(G) is the element corresponding to the identity of Ga.
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There are continuous homomorphlsms &:G> G andB:G'> Gy
defined by é&(y) = n(hy) and B(y’') = dn=\(y’). Note that Boa:
[N Gd is the dual of the identity map G4 — G. If we take the duals of
@and B we obtain maps a : G'— Gand B: Gg— G' such thata°B =
id: Gg— G. Hence, ais onto.

Having constructed G’ and a: G’ — G, we now determine M'. Let
D denote the algebra of functions on H of the form w"|y for
pE M. If w= 0 then w" |y is positive definite and continuous on H.
It follows from Bochner’s Theorem (cf. [9, Chapter 1]) that D C B(H).
Since H contains a copy of G ({yh:y € G}) it follows that D is iso-
morphic and isometric in the B(H) norm to the algebra M. Smce
n: H— G’ isan isomorphism and homeomorphism, the map f— f° 5~

B(H)—B(G' ). maps D isomorphically and isometrically onto a subalge-
bra D' of B(G'). Hence, there is a subalgebra M’ of M(G') such that
D' is the space of all Fourier transforms of elements of M'. Since M is
an L-subspace of M(G), the space D is translation invariant on H.
Hence, D' is translation invariant on G', and M’ is an L- subalgebra
of M(G'). If pEM' and yEG then (ap) (y) = u(ay) =
w" (m(hy)) = v*(hy), where v is the element of M which maps to u
under the composition of the isometries M — D— D' — M’. Since
v € M, we conclude that v"(ky) = (hv)"(y) = v"(y) and, hence, apn =
v. Thus, @ maps M’ isometrically onto M and we have proved part (a).

Part (b) follows immediately; since we have hau € M for each
n € M(G’), the equation hau = app uniquely defines a homomor-
phism ¢ which is the identity on M.

The maximal ideal space of M —hence of M’ — is the space hA(G),
which contains H as an open subset since h is critical. With this identi-
fication of the maximal ideal space of M’, the embedding of G’ in part
(c) is just the homeomorphismn~1: : G’ — H. This completes the proof.

We will complete our characterization of critical points by proving
that M’ = M(G'). This forces a to be one to one since & : M’ — M is an
isometry.

The hard part of proving M ' = M(G') is showing that LY(G') C M.
We defer this task until §6. In Lemma 1 of {6 we shall prove that an
L-subalgebra satisfying (c) of Proposition 2.5 must contain L(G’).
Assuming this, we have w* @(¥) = ¢@(u* v)= puxv for every
€ LYG') and every v € M(G’). This clearly forces ¢(v) =
for v € M(G') and, hence, M(G') = M'. Thus, we have:

TueoreM 1. Ifh € A*(G) then h is a critical point if and only if there
is an l.c.a. group G' and a continuous isomorphism a: G' — G, such

that if M = aM(G') then h, = 0 for u € M+ and h, = 1 for p € M.
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If by and hy are critical points of A* with hy = hgandifa; : Gi—> G
and ay : G — G are corresponding group maps with M, = a;M(G;)
and My = aM(G,), then M; C My and B = &, ! ° & determines a
homomorphism # of M(G,) into M(Gg). Clearly, B preserves positivity
and norm. It follows that 8 is induced by a continuous group isomor-
phism B: G;— Gy such that a; = ay°B. Hence, h; = hy if and
only if oy factors through a,. If h, = hy then the map B is a
homeomorphism and &, and a; are equivalent in the obvious sense.

It follows from the above that the set of critical points of A* is in
one to one correspondence with the set of equivalence classes of con-
tinuous isomorphisms a: G’ — G. For each critical point h we fix a
corresponding group G and map a,: Gi— G. We set a = o if o,
factors through a. Then aj, = ax if and only if h = k.

If h and k are critical points let G' = [Gy @ Gi]/K, where K =
{(x,y) : an(x) = —ax(y)}, and define @' :G' > G by a’'°c7 =0, ®
ai, where 7 : G, @ Gx— G' is the quotient map. Then a': G' —> G
is a continuous isomorphism and each of e, and ay factors through
a'. It follows that there is a critical point h V k such that a' is
equivalent to a,vx and hV k= h, hV k= k. Furthermore, h V k
is the minimal critical point with this property.

DeFmnition 2.2, If h is a critical point and a,: Go— G the cor-
responding continuous isomorphism, let Mu(G)= &,M(Gx) and
Lin(G) = axL'(Gyn). Let £(G) denote the closed linear span in M(G)
of the spaces Ly(G).

ProposiTiON 2.6. The space £(G) is an L-subalgebra of M(G) which is
a symmetric algebra under the involution p— ji (i E) = g(—E)) on
M(G).

Proor. Since each Ly(G) is an L-subalgebra of M(G), it follows
that £(G) is an L-subspace and will be an L-subalgebra if we can prove
that for each pair of critical points h, k there is a critical point g such
that Ly(G) * Li(G) C Ly(G). However, it is trivial to see that g =
h 'V k has this property.

To see that £(G) is symmetric, note that each complex homomorphism
F of £(G) is — when restricted to L,(G) for some critical point h — either
zero or given by an element y, € Gy ie, F(p)= fyn° o~ 'dp
for u € Ly(G). It follows that F(u) = F(u) for u € Ly(G). Since
£(G) is the closed linear span of the spaces Ly(G), we conclude
that £(G) is symmetric.

We close this section by pointing out that if a: G'— G is a con-
tinuous isomorphism, then we can think of G’ as being the group G
with a locally compact group topology which is at least as strong as the
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original topology of G. It follows that the critical points of A*(G) are
in a one to one, order preserving correspondence with the locally com-
pact group topologies on G which dominate the original one.

3. Cohen’s idempotent theorem. In this section we show how —
assuming Theorem 1 —to give a short proof of Cohen’s idempotent
theorem [3], [9]. Of course, since the proof of Theorem 1 is so com-
plicated, we are actually giving a very long proof of Cohen’s idem-
potent theorem.

Let H” be the additive subgroup of M(G) generated by the idem-
potents of M(G). Equivalently, HY is the set of all u € M(G) for which
p” is integer valued on A. Let H,° be the subgroup of HY generated
by elements of the form ypu, where y € G and p is Haar measure
on some compact subgroup of G. Our object is to prove that H* = H,°.

Note that any two distinct elements u, v € H® must differ by at least
one in norm since u* — V" is integer valued and not identically zero.

If f€ A and p2= p € M(G), then (fn)?> = fu? = fu. Hence, if
v € H'then fv € H'forallf € A.

ProposiTion 3.1. If u € Hand fu € H,"foreachf € A+ withf<1,
then u € H,°.

Proor. For f&€ A" with f< 1 we have fu € H\°, p — fu € HS,
and | = full + ful = 0 = f)dlul + Sfdlu] = |u. Hence,
either fu=0 or ||w— fu|=|u|— 1. By a simple iteration we
can find » € H,* and w € H® such that p = v + @ and fo = 0 for
every f€ Atwithf< 1.

It follows that @ € Rad L'(G) (cf. Proposition 1.7). Since the maximal
ideal space of Rad LY(G) is G, it follows that the Fourier transform of
o is constant off some open-compact subset S of G. Itisthena simple
matter to show that S is the coset ring of G and, hence, @ € H,° (cf.
[9,2.4.3]).

The general case of the idempotent theorem is now just a simple
reduction based on Theorem 1.

TueoreM 2 (CoHen [3]). The additive group in M(G) generated by
elements of the form ypu withy € G and p the Haar measure of a com-
pact subgroup of G is exactly the group generated by the idempotents
of M(G)

Proor. Let pbe an element of H'and setA = {fE€ A*:fu & H,°}.
Since f— fu is strongly continuous and HY is a discrete group, we
have A is open and closed in the strong topology. If h is a minimal
element of A, then h is a critical point by Proposition 2.3.

By Theorem 1, there is a continuous isomorphism ay, : G,— G and
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h, =1 for v € My(G) = aM(Gy) and h, = 0 for v € Mu(G)*. Now,
hp € Mi(G) and hp & H,° however, fu € H,%for f€ A+ with f < h.

Hence, if v € M(Gy,) and av = hu, we conclude that v satisfies the
hypothesis of Proposition 4.1 as an element of M(G) but does not
satisfy the conclusion. It follows that A has no minimal elements and,
hence, by Proposition 2.2, A is empty. We conclude u € H,°.

The proofs of the theorems in the next two sections will follow the
same pattern. Each time, we first prove that if the conclusion is true
of fu for each f€ A* with f<1, then it is true of w as well. We
then let A be the set of f& A" such that the statement is not true
of fu. If A is nonempty we choose a minimal element and use
Theorem 1 to return to the previous case.

4. Logarithms of measures. If A is a commutative Banach algebra
with identity, we will denote by A~! the group of invertible elements
of A and by exp(A) the subgroup consisting of the range of the
exponential function. The subgroup exp(A) is exactly the connected
component of the identity in A~! and is an open subgroup of A~!
(with the norm topology). The Arens-Royden Theorem [1], [8],
[5] states that A~!/exp(A) is isomorphic to the first Cech cohomology
group — with integer coefficients — of the maximal ideal space of A.

In [16] we proved that for p bigger than zero the Cech cohomology
group HP(A,Z) is isomorphic to 2 @ HP( Ay, Z), where A is the
maximal ideal space of M(G) and A, is the maximal ideal space of
Li(G) + C8 for each critical point h € A*. This and the Arens-
Royden Theorem yield a factorization theorem for invertible measures
in M(G) which characterizes those invertible measures which have
logarithms in M(G). Here we propose to use Theorem 1 to prove this
factorization theorem without using the machinery of sheaf theory or
algebraic topology.

We shall assume the following proposition — which is actually a re-
statement of the Arens-Royden Theorem:

Proposrtion 4.1 (Cr. [5, 111 6.2 anp 7.2]). Let A be a commutative
Banach algebra with maximal ideal space X. Then,
a) ifa EA~land d = exp(f) for some f € C(X), thena = exp(b) for
some b € A;
(b) if f € C(X)~\, then f = a - exp(g) for some a € A~1, g € C(X).

We proceed to develop our factorization theorem.

ProrosiTioN 4.2. If w € M(G) and exp(w) € £(G) then w € £(G).
Proor. By Proposition 2.6, £(G) is a symmetric algebra. Hence,
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each complex homomorphism of £(G) extends to a complex homomor-
phism of M(G) and is, therefore, given by an element of A. It follows
that since u = exp(w) is invertible in M(G) it is also invertible in £(G).

If we can prove that w= exp(v) for some v € £(G), then
(2mi)~! (w — v) will be an element of H — hence, an element of £(G) by
Theorem 2 — and it will follow that € £(G).

Suppose first that fu € exp(£(G)) for every f € A* with f < 1. Since
fr = exp(fw) it follows as in the preceding paragraph that fo € £(G)
for every f € A+ with f<1. We conclude that if o = w; + @
with w, € Rad LY(G) and w, € [Rad LY(G)]L, then w, € £(G).
Hence, exp(w;) = p * exp(— ®;) is an invertible element of £2(G) N

[Rad LY(G) + C§y] = LY(G) + C8§,. Furthermore,onthemaximalideal
space of LY(G) + C8o, exp(w;)” has a continuous logarithm (given by
the Fourier transform of ;). Hence, by Proposition 4.1, exp(®,) =
exp(w;) for some w; € LY(G) + C8y C £(G). As before, o, — w3 €
Z£(G), and we conclude that w = @; + ws € L(G).

We reduce the general case to the above case by using Theorem 1.
IfA= {fE€ A*:fu ¢ exp(£(G))} then A is strongly open and closed
in A* since exp(£(G)) is open and closed in £(G)~ L. If h is a minimal
element of A, then hu QE exp(£(G)) and fu € exp(£L(G)) for fE A*
with f< h. If a5 : Gx— G is the map corresponding to the critical
point h as in Theorem 1 and if v € M(Gs) with @v = hu, then
v & exp(£(Gr)) and fv € exp(L(Gy)) for fE A*(Gh) with f < 1. Also,
v = exp(p) where p € M(G;) with ap = hw. However, this situation
is impossible by the above paragraph. We conclude that A = @ and,
hence, o € £(G).

ProposiTioN 4.3. If u € M(G)~! and for each f € A+ with f<1
the measure fu has a factorization of the form fu = v x exp(w) with
v € £L(G)~!and o EM(G), then p also has a factorization of this form.

Proor. For each idempotent k = k2 € A+ with k <1 we choose
v € L(G)"! and wx € M(G) such that kp = v * exp(wx) and
wx L 2(G). The condition that wx L £(G) forces this factorization to be
unique. Infact,if ¥, * exp(wx) = vi'# exp(wi’), thenexp(wx — wi') =
v' % v~ !whichisin £(G). Hence, wx — w' € £(G)byProposition4.2,
and wx — o’ = 0 since wx — wx’ L £(G). Note that the uniqueness
of v and wy forces kvy = v and kwx = . since kp = (kvy) * exp(kwy)
also.

We define two functions v and w on A\G = {f € A:[f| <1}
as follows: If f€ A\G we choose any k=k2€E A+ with |f|=
k<1 (for example, |f|°= lim, |f|" will do) and define o(f)
=y’ (f) and w(f) = wi"(f). The definitions of o(f) and
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w(f) are independent of the choice of k. In fact if k= |f| and
jZ Ifl then jk=k|f|=|f] and jkp = jux* exp(jwr) = kv;
* exp(kw;). The uniqueness implies that jy = kv; and jwx = koj.
Hence,

" (f) = v"(kf) = (kv)"(f) = ()" (f) = w"({f) = " (f)
and, similarly, ;" (f) = wx"(f).

We now prove that v and w are continuous in the weak topology.
If k=k>€ A*\{l} then v and w are continuous on the set
{fe a: [f|§ k}, since on this set they are given by the fixed
functions ¥* and wx”. Unfortunately it may take infinitely many of
these sets to cover A\G. The solution to this difficulty is simple, but
it escaped us for several months.

Let {f.} C A\G be a net converging weakly to f€ A\G. For
each a we choose k,= k,2E€ A\{l} with |[f,|=k, We let
g € A+\{1} be a weak cluster point of the net {k,} and choose
k=k*€ A+*\{l} with g=k Note that kf,— kf weakly and
|kfo] = k for every a. Hence, v(kf,)— v(kf) and w(kf,)— w(kf).
We shall prove that the nets {v(f,) — v(kf,)} and {w(f.) — w(kf.)}
cluster to zero.

Choose € > 0. Since {k,} clusters to g = k, the set S of all a for
which ||k.u — kku| = f(k, — kk,) d|u| < € is a cofinal set. Further-
more, (ko) 1| = =] = [1+~'] and [Kkop] = ] It follows
that for €’ > 0 we can choose € small enough that for « € S, k,pu =
(kkop) * exp(ps) with ||| <e Hence, for «a €S we have
exp(Wkky, — Wk, + pa) = Vi * Vi, € £(G). Tt follows that ww, —

Wk, = p.', where p,’ is the part of p, lying in £(G)L. Hence
ok, — x| = |loa’[| <€’ for « ES. We conclude that for « € S,

lw(fe) — wkfo)| = |@ka(fo) — Dreg(kfo)]

= |dw(fo) — D (o) <€’

A similar conclusion holds for [v(f,) — v(kf.)|. Hence, these nets cluster
to zero and v and w are continuous.

Recall from Proposition 1.6 that A\G is the maximal ideal space of
M,(G) = M(G)/LY(G). The maximal ideal space of £(G)/L(G) is the
space of equlvalence classes of elements of A\G under the relation
f~g it v’ (f) =v"(g) for v € £(G). Note that if f~ g and |f|=
ANy BISiC AN then o) = (= o lD 5
v (f) — v (f) = v (g) + ¥ (g) — vi" (8) =¥ (g) = v(g). Hence, v
determines a continuous function on the maximal ideal space of
Z£(G)ILY(G). Note that v does not vanish since each v, is invertible.
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By Proposition 4.1, there is a measure ¥; € £(G) and a continuous
function ¢ on A\G such that o(f) = »,"(f)exp(p(f)) for fE A\G.
Then  exp(e(f) + w(f)) = (p*v;7)(f) for fE A\G. By
Proposition 4.1 applied to My(G), there is @ € M(G) with w * v,~! %
exp(—w)=8 +p and pELYG) If v= (8 +p)* v, then
v € £(G)and p = v % exp(w). This completes the proof.

PropositioN 4.4. If p € M(G)~! then p=v % exp(w) for some
v € L(G)and 0 € M(G).

Proor. We use Theorem 1 to reduce to the case covered by Proposi-
tion 4.3. We note that A = {f € A*: fu has no such factorization} is
strongly open and closed, and proceed as before.

ProposiTioN 4.5. If p € £(G)~! then = py * * * * % W, * exp(w)
with @ € £(G) and each p; an element of (L, (G) + C8)~! for some
critical point h; € A+,

Proor. The union of those L-subalgebras of £(G) which are finite
sums of algebras L,(G) is dense in £(G). Itfollowsthatu = p' * exp(p)
for some ' in such an L-subalgebra. Hence, without loss of gen-
erality we may assume that u €L4(G) + Li,(G) + - - + L;,(G) and
L,(G) * L,{G) C Lxi(G) (i.e., hi; V hj = h) for each i,j and some k.
Also, we may assume that the dlscrete part of u is 8o, since, otherwise,
pw=N\% [8 + A"l% 7], where p=\+ 7 is the decomposition of
p into discrete part A and cont_muous partm.

Thus, letu= 8y + v, + -+ + 1, with v; € Ln{G). We can assume
hy has been chosen minimal among hy, * * *, hy. It follows that hyu =
8 + v; and so 80 + vl is invertible in C80 + L,, (G). Hence, p =
(80 + V1)[80 + V2 + S ] with V (60 + Vl) lV and hIVj, =
0. It follows that »;" L L;.I(G) for each j and sovy' + - + v,’ isinan
L-subalgebra of £(G) containing only n — 1 algebras Ln(G). This
forms the basis of an induction which yields the required factorization.

If we combine Proposition 4.4 and 4.5 we obtain our main theorem:

TaeorEM 3. If w € M(G)~! then p has a factorization p =
vy x o kv, % exp(w) with o € M(G) and each v; € (C8y + L (G))~!
for some critical point h;.

Recall that B(G) is the algebra of Fourier transforms of elements of
M(G). We have the following corollary of Theorem 3:

CoroLLarRY 46. If ¢ € B(G), ¢~ EB(G), and ¢ >0, then
log ¢ € B(G).

Proor. Let ¢ be the Fourier transform of w € M(G)~!. Since
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¢ >0 we have = p. If p=vx* exp(w) with v € £(G) and w €
M(G), then p2= v % ¥ * exp(w + ®). Since £(G) is symmetric it fol-
lows that v % ¥ = exp(p) for some p € £(G) with p = p. Hence, pu =
exp[3(w + @ + p)]. Clearly loge is the Fourier transform of
o+ &+ p].

CoroLLarY 4.7. Ifp € B(G)~! then |p| € B(G)~ L.

ProoF. Since |p|2 = ¢@ € B(G)~! we have log |p| =1 log ¢|> €
B(G) and, hence, |¢| € B(G)~L.

We now specialize to the case where G is the real line R. There are
only two continuous isomorphisms of l.c.a. groups onto R (to within
equivalence): id: R— R and ag: Ry— R, where Ry is R with the
discrete topology. Hence, there are only two algebras Ln(R) (L(R)
and Ld(R) = Md(R))

It follows from Proposition 4.1 that if u € [LYR) + C8] ~!, then
i has a logarithm in M(G) if and only if its Fourier transform has
winding number zero about the origin as a functionon R U {* }. Also, by
a result of Bohr [2], if u € My(G)~! then pu = 8, * exp(w) for a unique
x € Rand some o € My(G). Hence, we have the following corollary to
Theorem 3:

CoroLLarY 4.8. If u € M(R)~! then there are unique numbers
k € Z and x € R such that u = n* * §, * exp(w) for some w € M(R),
where m can be chosen to be any element of (L'(R) + C8o)~! whose
Fourier transform has winding number one.

One choice for n in the above corollary is the measure whose Fourier
transform is (1 — it)(1 + it)~L. If we rephrase Corollary 4.8 in terms of
Fourier transforms we have:

CoroLLARY 4.9. If¢ € B(R)~! then there are unique numbersk € Z
and x € R such that the function

¥(t) = log o(t) — k[log(1 — it) — log(1 + it)] — ixt
is an element of B(R).

Finally, we should mention that Corollary 4.8 leads to a characteri-
zation of the spectrum of the Wiener-Hopf operator W, acting on
L'(R*), where w €& M(R) and W,f(x)= [;f(t)du(x—t) (x=0)
for f&€ LY(R") (cf. [4]).

5. The spectrum of a measure. Since the maximal ideal space of
M(G) is the set A of generalized characters, and since generalized
characters are clearly impossible to understand, the problem of
deciding when a given measure is in no maximal ideal —hence, is
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invertible — appears to be very difficult. Unless a measure has some
very special form —e.g., is absolutely continuous, discrete, or con-
centrated on a thin set [9, Chapter 5] — there seem to be no reasonable
methods for computing its spectrum.

The techniques we have been employing turn out to be of some use
on this problem. They yield a considerable simplification of the prob-
lem of computing the spectrum of a measure.

DeriNiTioN 5.1, Let MM be an L-subalgebra of M(G) which
contains the identity §,. We shall say 3 is balanced if M N £(G)
is closed under the involution w— . Equivalently, 3 is balanced if
M M Ln(G) is closed under involution for each critical pointh € A+

We shall prove that if 2 is balanced and u € M, then p is invertible
in M(G) if and only if it is invertible in 2.

ProposiTioN 5.1. Let M be a balanced L-subalgebra of M(G).
Suppose v € £L(G)~! and w € M(G) have the properties that v
exp(w) EM, w L £(G), and fv, fo EM for all f € A with f< 1.
Thenv € Mand w € M.

Proor. We first prove that we may as well assume that either
LY{G) C Mor LYG) N M = (0).

If LYG) N M # (0) then it is an L-ideal of M and a symmetric
L-subalgebra of LY(G). It follows that the support of LY(G) M M is an
open subgroup Go of G and LY(G) N M = LYGy). Since LY(Gp) is an
ideal of M we conclude that M C M(Gy). It is easily seen that each
generalized character in A(Gy) is the restriction of a generalized
character in A(G). (See the proof of Proposition 6.2.) Since p =
v exp(w) € M is invertible in M(G), it is invertible in M(Gop). By
Theorem 3, pw=7v'#* exp(w’) with v' € £(Gy) and o’ € M(Gy)
and o’ L £(Gy). However, as before, this forces @« = o’ and v = v’,
Each element of A*(Gy)\{l} is the restriction of an element of
A+ (G)\{1}, so we have fv € M and fw € M for each f E A*(Gy)\{1}.
Hence, ¥, w, and M satisfy the hypothesis of the proposition as ele-
ments of M(Go). Thus, if LY(G) N M # (0) we may as well assume
that LY{(G) C M.

Let v=v,+ v, and o= w; + wy where v,, o; € Rad LY{G)
and v,, @, € (Rad L{G))*. Note that since fv= fv, EM and
fo = fo, €M for fE AT\{1}, we have vy, wy € M (cf. Proposition
1.7). Also, we have v, € £(G) and so v; € £(G) N Rad LY(G) =
LYG).

If LY(G) C M then v € M and p = exp(wsy) = p* v~ * exp(— w;)
E M N [8o + Rad LYG)]. It follows that the Gelfand transform of
7p € M/L'(G) has a continuous logarithm (determined by w,"). By



200 J. L. TAYLOR

Proposition 4.1, p = exp(w;)(8o + A) for some w3 € M and A € LY(G).
Hence, exp(w; — w3) € £(G) and by Proposition 4.2 we conclude
that w, is the part of w3 in £(G)L. Hence w, € M and w € M.

If L{{G) N M = (0), then each power of |u|is purely singular and so
7 || has spectral radius ||| in M(G)/LY(G) = M(G). Hence, there is
g € A\C such that | [u]"(g)| = ] I£f= |g], then f€ A*\{1}and
fu=1 aelu. It follows that u = fu = (fv) * exp(fw). However,
the uniqueness of this factorization (with @ L £(G)) implies that fv = v
and fo = w. Hence,” € M and » € M.

TueorREM 4. Let M be a balanced L-subalgebra of M(G). If p € M
and p € M(G)~\, then p~! € M. Furthermore, the measures vand o in
the factorization p = v x exp(w) of Proposition 4.4 must lie in M if w is
chosen so that o L £(G).

Proor. Let A; = {f€ A+:fu ' &M} = {f€ A+:fu & M-1}.
The first description of A shows that it is strongly open while the sec-
ond shows that it is strongly closed. Let A = {f€ A*\A;:fu
does not have a factorization p * exp(A) with p € £(G) N M and
A € M}. Clearly A, is strongly open and closed in A *\A; and, hence,
in A*. Furthermore, by uniqueness, we have A, = {f € AN\A;:
fo M or fv & M}. Hence, to prove Theorem 4 we must show
that A, UA, = &.

If A\UA; # D we let h be a minimal element of it—hence, a
critical point —apply Theorem 1 and Proposition 5.1, and obtain a
contradiction.

CoroLLARY 5.2. If w € M(G) then the spectrum of u as an element of
M(G) is the same as the spectrum of w as an element of any balanced
L-subalgebra containing .

CoroLLARY 5.3. If p € M(G)and |n|* L £(G) for eachn, then &y + p
is invertible in M(G) if and only if 8o + p = exp(w) for some w with
0 << Do)l

Proor. If M= {v € M(G): v < < Yn-o(2||p|) "||"} then M is a
balanced L-subalgebra containing p. Furthermore, M N £(G) =
Cdo, so in the factorization u = v *exp(w) of Theorem 4 we must
have v = A§ for some scalar A.

We now restrict attention to the line. If w € M(R) and u is con-
tinuous, we set p= dn_o2|pul)u/r and M= p:v<<p}+
LY(R). Note that M is a balanced L-subalgebra containing p and
M N My(R) = C8p, M N LYR) = LY(R).

Now each complex homomorphism of M is determined by a bounded
Borel function f on R such that f(0) = 1, f(¢) = e~i* a.e./dt for some
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xER or f=0 aeldt; and for each n, f(t; + - + t,) = f(t;) - -
f(ta)a.e/uw X + -+ X won R™
Hence, applying Theorem 4 we have:

CoroLLARY 5.4. If u € M(R) and p is continuous then the spectrum
of p in M(G) is the set of numbers [f du where f ranges over those
bounded Borel functions for which

(a) f(t) = e~*a.eldt for some x € Ror f= 0 a.eldt; and

(b) for each n, f(t, + - -+ t,) = f(t;) - - f(tn) ae/u X -+ X
on R".

CoroLLARY 5.5. If p is a continuous measure on R, u= 0, and
pr L umfor n # m, then the spectrum of w is the disc of radius || |-

Proor. Choose disjoint sets E;, Ey, * - - of Lebesgue measure zero
such that p" is concentrated on E,. If |z| = ||u| set £(t) = (zf||m)”
on E, and f,(t) = 0 if t € Un, E,. Then f, satisfies the conditions of
Corollary 5.4 and [f,(t) du(t) = z.

6. The main lemma. In this section we complete the proof of
Theorem 1 by proving the following lemma:

Lemma 1. Let M be an L-subalgebra of M(G) containing the
identity. Ifthemapy— F, (F(n) = p’(y)forp €M,y € G) embeds
G homeomorphically as an open subset of the maximal ideal space of
M, then LY(G) C M.

The proof relies heavily on the combinatorial machinery of [14].
We have been unable to simplify this part of the argument in any es-
sential way. Our discussion here will consist of two preliminary
propositions, an outline of the machinery we require from [14],
and an argument to show how this machinery proves the lemma.

ProposiTioN 6.1. If M satisfies the conditions of the lemma, then M
is weak- * dense in M(G).

Proor. Let K be the smallest closed subset of G on which each
measure in M is supported. Since M is an L-subalgebra, it suffices to
prove that K= G. Clearly K is a closed subsemigroup of G. Also, K is
not contained in any proper closed subgroup of G; if it were then the
set C(',)f Fourier transforms of elements of M would not separate points
in G.

Hence, if K # G then K is a proper closed subsemigroup of G such
that the closed group generated by K is G. By Lemma 2 of [12], there
is a continuous homomorphism & : G— R such that (0) # oK) C R".
However, the functional F(u) = [exp(— ta(x)) du(x) (n EM) is a
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complex homomorphism of 2, for each ¢t € R*, which clearly does
not correspond to a point of G if t>0. Also, F,(;L)—)A pw(1)as t—0
for each u € M. This contradicts the assumption that G is open in the
maximal ideal space of M. We conclude that K= G and I is weak- *
dense in M(G).

DEerInITION 6.1. Let Q be the set of all f= {f,: u € M} such that
fu €EL(p) for each u, v< < p implies f,=f ael/m, and
fulx + y) = fu(x)f(y) a.e/u X p for each p. We give {1 the weakest
topology under which each map f— p*(f) =[f, du (0 EM) is con-
tinuous.

Clearly Q can be identified with the maximal ideal space of M just
as A was identified with the maximal ideal space of M(G).

Note that the hypothesis on M in Lemma 1 implies that Gis open in
Q. It is a subgroup of the group H = {f € Q.: |f| = 1}. It follows that
H is also open in {} and is an L.c.a. group. If G # H we can proceed as
in the proof of Proposition 2.5 and embed 2 in M(G") for some group G’
for which G' is H and the hypothesis of Lemma 1 is still satisfied.
Hence, we may as well —and we will —assume that G=H=
(FEQ: Ifl =1}, A

Note that, as in Proposition 2.3, the statement that G is open in Qis
equivalent to the statement that {1} is an isolated point of Q* =
{fEQ:f=0}.

ProposriTioN 6.2. Lemma 1 is true for all l.c.a. groups G if it is true
for groups of the form R* X K with K compact.

Proor. If G is an arbitrary l.c.a. group then it has an open subgroup
Go of the form R* X K [9, Chapter 2]. For each x € G we let M, de-
note the space of all measures in I which are concentrated on the
coset x + Goy. Note that, since I is weak- * dense, M, 74 (0) for each
x. We shall show that M, satisfies the hypothesis of Lemma 1 as an
L-subalgebra of M(Go).

Let )y be the space of Definition 6.1 for the algebra My The
restriction map — )y maps () onto a compact subset of ().
To show that this map is onto it is sufficient to show that if
K1 s e € Mo and

(%) My x vyt oot gy x v, = 8

has a solution for v, - - -, v, € M then it also has a solution in I,
However, if v,, - -, v, €M satisfy (% ) and v, - -+, v,’ are the
restrictions of these measures to Gy, then clearly v,’, - -+, v, €M,

also give a solution to ( * ). Hence, 1— (), is onto.
In particular, each f € () with |f| < 1 is necessarily the restriction of
some g € ) with |g| < 1. Hence, {f € Qy: [f| <1} is in the image
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under restriction of the compact set {g € Q: |g| < 1}. It follows that
{f€ Qo: [f| =1} is open and is the image under restriction of G.
Hence, Go = {f € {y: |f| = 1} is open in (.

Since we are assuming that Lemma 1 holds for Gy, we must have
LY(Go) C M. Since M is weak- * dense and L(G) N M is an ideal of
M containing LY(Go), a standard approximate identity argument yields
LY{G) C M,

Henceforth, we assume G = R" X K for some compact group K. We
write elements of G in the form (x, k) with x € R*and k € K.

Note that if n = 0 then G = K is a discrete subset of the maximal
ideal space of M, and the Shilov idempotent theorem [5, I11.6.5]
implies that Haar measure on G is an element of M. Hence, Lemma 1
is trivial in this case, and we may as well assume n > 0.

We now describe a class of algebras introduced in §2 of [14]. By
My, we shall mean the space of all (possibly unbounded) measures u
on the ring of bounded Borel sets of G, such that |z € M for each
compact set E.

DEeriniTION 6.2. Let A be a compact, convex subset of R". Then,

(a) @alx, k) = sup {exp(— x " y): y € A}

(b) "#"A = Joa d|u|for p € My, ; and

(¢) M(A) = {1 € My,e: ||pfla < » }

By Lemma 2.2 of [14] each 2R(A) is a Banach algebra under con-
volution. Note that A C B implies J(B) C M(A) and M({0}) = M. In
fact M({y}) is isomorphic to M({0}) = M for each y € R", where
dp(x) — exp ( — x - y) du(x) describes the isomorphism. Using this fact,
Lemma 2.5 of [14], and Theorem 4.1 of [14] we conclude that the
maximal ideal space of M(A) is given by the set ({ A) described below.

DeriniTION 6.3. Let £)(A) be the space of all “functions” e ~¥f, where
y €EA fE€ Q and (e ¥f),(x, k) = exp (— y " x)f,(x, k) for p € M with
compact support. If w €M with compact support, we define
w(e ) = Sexp (= x9) f (x, k) dpx, k)

Note that we can extend the definition of u"(e~¥f) to all u € M(A)
by continuity and obtain a complex homomorphism u— w (e Yf) of
M(A) for each e~ vf € YA).

We let ['(A) be the subset of (1 consisting of those e ¥f for which
|f| = 1 —i.e., for which f € G. Note that each element of I'(A) can be
written in the form (x, k) > e~**y(k) for some z € C" with Rez € A
and some y € K. Hence, if p € M(A) we define p’(z,7) = n(g)
with g(x, k) = e~**y(h), g ET'(A). Note that for Re z in the interior
of A and for fixed y € K, " (z,7) is an analytic function of z. If p
has compact support, then u € M(A) for all Aand p”(z, ) is analytic on
Crfor each y.
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ProposiTiON 6.3. There is a measure p in M with compact support,
and a compact convex set A C R" with zero as an interior point, such
that w* (1) = 0 but u” does not vanish on YA\I'(A).

Proor. By hypothesis, G is open in Q. Hence, 1 is an interior
point of G. Choose € > 0 and g, * - -, u, € M such that fea:
|i"(1) — w*(f))| <€ for i=1, ---,n} is contained in G. Hence,
ifv=|puy| + -+ + |pn/|, we have

[a—1fpar =3[ 1= ifl ldlwl Z Sl (1) = wo(1f)I Z €
for fEQ with |f|<1. Thus, P"()I= v (|f)= »"(1)—e€ for

fe O\G. Since v is a positive regular measure we can replace v
by a positive measure o € M which has compact support and satisfies
|0 ()] = 0" (1) — €/2 for fE O\G. We then set p = 0" (1)8) — o.
Note that u* (1) = 0 and [ ()| = €/2 on N\G.

Since w has compact support, u” (e~Yf) exists forally € Rrand f € (1.
Clearly we can choose a compact convex neighborhood A of zero in
R" such that |u" (e Yf)| = €/4 forfE O\G and y € A. Hence, p” does
not vanish on (A)\I'(A).

PropositioN 6.4. There are an n-simplex S C R", with zero as

aninterior point,and measures p,, * - *, by € M(S) such that u," doesnot
vanish on QS\I'(S), 1", * * *, un" do not vanish simultaneously at any
point e ¥fwithy € 4S, but u,"(1) = - - - = p,,"(1) = 0.

Proor. Let u; be the measure p of Proposition 6.3 and A the com-
pact, convex set. We let V= {(z, x) ECr XAK: w1 (z,x) = 0 and
RezE€intA}. Note V C{(zx)EC"X K: ;" (z3,x)=0 and
Re z € A} and V is compact.

Since V is compact and K is discrete, there are only finitely many
pointsy € K for which VN (C" X {y}) # @. Let J be this finite set of
points. Then V is a subvariety of the n-dimensional analytic space
X={(z,y)€EC"X J:Rez € int A}. If, fori=2, -+, n,welety; =
80 — 8, 0), where x; = (0,0, - - -, 1, - - -,0) (1 is the ith position) is in
R®, and set W= {(z,y) EX: v, (z,7) = * '+ = ¥, (3,7) = 0}, then
W is a one-dimensional submanifold of X. Clearly V N W is compact
and is a subvariety of W. Hence, VN W is finite (cf. [6, IILB.17]).

In other words {(z,7) €E X: " (z,7) =¥ (z,y)= - =1, (2,y)
= 0} is a finite set.

Since M is weak- * dense in M(G) there are measures pg, - * *, i, in
M, with compact support, which are close enough to vy, * -, ¥, so
that {(z,y) € X: " (z,7) = " (2,7) = - -+ = po’ (3,y) = O}remains

a compact subvariety of X—hence, a finite set—and we still have
prl)=---=pu,"(1)=0.
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We now have {eVfEQA):yEintA pu,"(e7¥f)=" - =
Mo"(e7¥) = 0} is a finite set which includes 1. Hence, we can
choose a small simplex SCintA with 0 €& intS, such that

M1, * *°, my” donotall vanish at any e~¥ fwith y € 8S. This completes
the proof.

Let py, - - -, wy,and Sbe as above, and let Sy, - - -, S,.; be the (n — 1)-
faces of S. We have u,", - -+, u," do not vanish simultaneously on
QS;) for each i. Also, for each i, u;, * - -, m, are elements of the Banach
algebra M(S;), which has (S;) as a maximal ideal space. It follows
that for each i there are measures vy;, - - -, v,; € M(S;) such that

By * Vit oy % Yy = B,

However, since p;"(1) = -+ = u,"(1) = 0, and 1 € (S), the equa-
tion cannot be solved in M(S).

Under these circumstances, Theorem 4.2 and Lemma 5.3 of [14]
imply that there is a nonzero measure p € M), which is absolutely
continuous (also see Theorem 6.2 of [14]). The measure p can be
described as

80 o o . 80
|
V11 Tt Vlngl
p = det : = > (=1ip;,
Va1 U Vpnsl

where p; is the determinant of the matrix (Vi) with the ith column
deleted. Note that the multlphcatlons involved in computing each
pi are valid since for all k 75 i and all j we have v ﬂi#, M(Sx) C
M({pi}), where p; = (M =Sk is the ith vertex of S.

To prove that p as defined above is both nonzero and absolutely
continuous involves most of the combinatorial machinery of [14]. It
turns out that if p were zero then the equation p; * v, + - +
Mn * v, = § could be solved in M(S).

The proof of Lemma 1 is now essentially complete. The restriction
of the measure p above, to any compact set in G, will be an element of
LY{G) N M. For some compact sets this restriction must be nonzero.
Hence, LY{G) N M is a nonzero L-ideal of M. Since M is weak- *
dense; it follows that LY{G) N M = LY(G) and, hence, LY G) C .

In addition to being the key step in the proof of Theorem 1, Lemma 1
also has the following consequence (cf. [13, Theorem 1] ):
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CoroLLary. If M is an L-subalgebra of M(G) such that G is, in the
natural way, the maximal ideal space of M (both as a set and
topologically), then LY(G) C M C Rad LY(G).

Proor. If we set M’ = C§, + M then M’ will satisfy the hypothesis
of Lemma 1. Hence, we have LY{(G) C M. If it were not true that
M C Rad LY(G) then some f € A\G would determine a nonzero com-

plex homomorphism of M obviously not given by a character. Hence,
we have M C Rad LY(G).
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