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INVERSES, LOGARITHMS, AND IDEMPOTENTS IN M(G)1 

JOSEPH L. TAYLOR2 

Let M(R) denote the measure algebra on the line considered as a 
Banach algebra under convolution. In [16] we proved that if 
ja G M(R) and fi is invertible, then fx has a factorization /JL = 
7)k * 8X * exp(oo), where k Œ. Z, x Œ. R, a) G M(R), and rj can be chosen 
to be any measure in Ll(R) + Côo whose Fourier transform is non-
vanishing and has winding number one about zero. This result 
implies that the group M(R)-1/exp (M(R)) is isomorphic to Z © R. 
Since the numbers k and x in the above factorization can be explicitly 
determined from fi, this result completely characterizes the invertible 
measures in M(R) which have logarithms in M(R). 

The above result is a special case of a general factorization theorem 
proved in [16] for any commutative convolution measure algebra — 
in particular, for all algebras M(G) for G a locally compact abelian 
(Lea.) group or M(S) for S a locally compact abelian topological 
semigroup. This theorem is proved using the Arens-Royden theorem 
[1], [8], and a result in [16] which characterizes the cohomology 
groups of the maximal ideal space of any measure algebra. Another 
consequence of this result is a new proof of Cohen's idempotent 
theorem [3]. 

In [17] using some of the same techniques we proved that if a 
measure \x G M(G) is invertible in M(G) then its inverse must lie in 
a certain "small" subalgebra of M(G) containing fi. This greatly 
simplifies the problem of determining the spectrum of an element 
of M(G). 

Unfortunately, the above results rely heavily on the specialized 
machinery developed in [11], [12], [13], and [14] for the study 
of convolution measure algebras. Also, the proof of the factorization 
theorem in [16] uses a considerable amount of sheaf theory and 
algebraic topology. Thus, the student of harmonic analysis who 
wishes to understand these results is faced with a discouraging amount 
of machinery to wade through. 
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The objective of this paper is to bring together some of the above 
results and prove them with a minimum of machinery. To this end, 
we shall restrict attention to M(G) and not work with general con­
volution measure algebras. We shall use Sreider's generalized char­
acters to describe the maximal ideal space of M(G) rather than using 
the description given in [11]. Also, we have been able to eliminate 
the sheaf theory and algebraic topology from the proof of the factoriza­
tion theorem of [ 16]. 

The results we present here all flow —with varying degrees of 
technical difficulty — from one general result (Theorem 1) concerning 
the maximal ideal space of M(G). After a preliminary discussion in 
§1, we present Theorem 1 in §2. One portion of its proof (Lemma 1) 
is delayed until §6 in order to maintain the continuity of the discussion. 
Except for §6 — which relies heavily on some combinatorial machinery 
from [ 13] — the paper should appear self-contained to those who are 
familiar with Rudin's book [9]. 

In §3 we use Theorem 1 to give a new proof of Cohen's idempotent 
theorem. In §4 we present the factorization theorem for measures in 
M(G)~l and give several of its consequences. In §5 we prove that if 
tt G M(G) then tt is invertible in M(G) if and only if it is invertible in 
each subalgebra of a certain kind which contains tt. We use this to 
give a characterization of the spectrum of a continuous measure in 
M(R). 

As a corollary to Lemma 1, in §6 we prove the main theorem from 
[13] —which characterizes those L-subalgebras of M(G) having G 
as maximal ideal space. 

1. Preliminaries. Throughout the paper G will denote a locally 
compact abelian group and M(G) its algebra of measures. Elements 
of M(G) will be denoted by Greek letters. If tt, v G M(G) then their 
convolution product will be denoted tt * v. We shall use additive 
notation for the group operation in G. 

If tt, v G M(G) then 'V < < tt" will mean "v is absolutely continu­
ous with respect to tt" and "it _L V" will mean "it and v are mutually 
singular". If 90? is a closed subspace (subalgebra, ideal) of M(G) then 
90? will be called an L-subspace (L-subalgebra, L-ideal) provided 
it G 90? and v < < it imply v G 90?. If 90? is an L-subspace and 
it G M(G), then we say it _L 90? provided it J_ v for each v G 90?. 
We set 9 » x = {it G M(G) : it 1 90?}. 

If it G M(G) then |tt| will denote its total variation measure and 
|| it|| its total variation norm. 

The following proposition is well known and follows directly from 
the Lebesgue Decomposition Theorem: 
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PROPOSITION 1.1. If Tl is an L-subspace ofM(G), then so is 39Î ^and 

M(G) = aw e aw1. 
The space M(G) is a commutative Banach algebra with identity 

80, where 80 is the unit mass at the origin. Hence, the maximal ideal 
space of M(G) is a compact Hausdorff space. We shall use Sreider's 
description of this space. 

DEFINITION 1.1 (SREIDER [10]). A generalized character on G is a 
collection / = {f : /LL G M(G)} with £ G L°°(/t) for each ix G M(G) 
and such that 

(1) /x < < v implies^ = / a.e.//t, and 
(2) fß(x +y)= fjtffjy) a.e.//Lt X /t for each /t G M(G). 
If / and g are generalized characters then we set / = g provided 

fJL
= gß a.e./tt for each tt G M(G). The space of all generalized char­

acters on Gwill be denoted A(G) or simply A. 
In [10] Sreider shows that each complex homomorphism of M(G) 

has the form /t—» ffdfi for some / G A. I f / G A and tt G M(G) 
we shall denote the number îfdfx by either ttA(/) or ffdfi. 

The key to the study of A is to notice that it has a great deal of 
structure not generally enjoyed by maximal ideal spaces. It has a 
semigroup structure, an order structure, and two important topologies. 
In addition, it acts as a semigroup of endomorphisms of M(G). 

DEFINITION 1.2. If / , g G A, we define elements fg, f and | / | 
in A by {fg\ = f^ (f)» = L and \fl = | / J , where these opera­
tions are defined pointwise in L°°(/LL) for each tt G M(G). 

It is easy to see that these operations do incfeed yield new elements 
of A. 

DEFINITION 1.3. We set A + = { / G A : / i ^ 0 a.e./tt for each 
/t G M(G)}. If / , g G A+ then f^ g will mean ^ = gM for each 
tt G M(G) a n d / < g will m e a n / ^ g b u t / ^ g. 

If 1 denotes the identically one function, then 1 G A+ and / = 1 
for a l l / G A+. 

The following facts concerning these notions have elementary 
proofs: 

PROPOSITION 1.2. Iff, g G A then | / | = |g| if and only if f= gh 
for some h G A. In particular, for each / G A there is a polar de­
composition f = \f\hwithhG. Aand\h\2= \h\. 

I f / G A+ then fz G A for each z E C with R e z ^ O , where 
(/% = /* . Unless f2—f the map z-*fz induces nontrivial 
analytic structure in the maximal ideal space of M(G) (cf. [11, §3] ). 

DEFINITION 1.4. I f / G A and /t G M(G) then we define//Lt G M(G) 
to be the measure v<<^ such that dv = /d/Lt. 

file:///f/hwithhG
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PROPOSITION 1.3. IffŒA then the map n—>fn:M(G)—>M(G) 
is a bounded linear map (of norm one) and an algebra homomorphism. 
If g G A also, then (fnT(g) = M*(/g)-

An important feature of our study of A is the relationship between 
two natural topologies on A. We describe these below. 

DEFINITION 1.5. The weak topology on A is the weakest topology 
such that each of the maps / - » l*>*(j) (p E. M(G)) is continuous. 
The strong topology on A is the weakest topology such that each of 
the maps f—*ft*< (fi Œ. M(G)) is continuous from A to M(G) with 
the norm topology. 

Note that the weak topology is the Gelfand topology for A if A 
is considered the maximal ideal space of M(G). Obviously the strong 
topology dominates the weak topology since H*(f) = (//*.)* (1) = 
MG). 

Unless G is discrete, the map ( /g)—»/g: A X A —> A is not 
jointly continuous in the weak topology and the map /—» | / | : A —> A 
is not weakly continuous. However, we have: 

PROPOSITION 1.4. (a) The map ( / g ) - * / g : A X A—» A is jointly 
continuous in the strong topology and separately continuous in the 
weak topology; 

(b) the mapf—>f\ A —> A is continuous in both topologies; 
(c) the mapf^> \f\: A —» A + is strongly continuous; 
(d) the set A + is closed in both topologies, as is any subset of the 

form {g G A + : g ^ / } o r { g G A + : g ^ / } / o r / G A+. 

In this paper we shall consider the group algebra Ll(G) to be the 
subspace of M(G) consisting of all absolutely continuous measures. 
With this agreement, L\G) is an L-ideal of M(G) (cf. [9]). In fact, 
it is the unique minimal L-ideal of M(G). 

We denote the dual group of G by G Each y G G determines 
an element of A — which we also denote by y — by yM = y for every 
fJL G M(G). Hence, we consider G to be a subset of A. 

I f / G A a n d / ^ 0 for some fx G Ll(G), then there is an element 
v « n such that v*(f) / 0. It follows that o>"(f) = (v*(f))~l 

• (v * co)"(/) for every œ G M(G). Since Ll(G) is an ideal, 
v * co G Ll(G). Hence, / is determined by its values on ^(G). 
Since every complex homomorphism of L\G) is determined by a 
group character, we conclude t h a t / G G. 

If y G O and /x G L\G) with /T(y) ^ 0, then {/G A : 
AtA(/) 7̂  0} is a weakly open subset of A which is contained in 
G (since f^G implies / = 0). Hence, G is embedded in A 
as a weakly (hence strongly) open subset. Note also that i f / G A 
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t h e n / G G if and only if \f\ = 1. Summarizing, we have: 

PROPOSITION 1.5. The group G is an open subgroup (in both the 
weak and strong topologies) of the semigroup A. Likewise, 1 is an 
isolated point (in either topology) of A+. The subset A \ 6 = 
{f G A :f = 0 for M G L\G)} = {/G A :ffx = 0 for /x G L^G)} 
= {fE,±:»(f) = Oforn<EL\G)}= {/G A : | / | < 1 } . 

Since L(G)1 is a closed ideal of M(G), we can construct the 
factor algebra M(G)ILl(G). We denote this algebra by MS(G) and 
let TT : M(G)—» MS(G) be the quotient map. Since Ll(G) is an L-ideal 
of M(G), we have M(G) = L\G) <£> L^G)1 by Proposition 1.1. It 
follows that, as a Banach space, MS(G) may be identified with Ll(G)± — 
the space of purely singular measures on G. Under this identification, 
the multiplication on MS(G) is convolution followed by projection 
back into MS(G). 

Since A \ G = { / £ A : | / | < l } = { / E A : ^ ( / ) = 0 for p G 
Ll(G)} we have: 

PROPOSITION 1.6. 77ie maximal ideal space of MS(G) is A\G. 

If G is nondiscrete there are measures fx G Ll(G)1 such that 
/A2 G LX(G) (cf. [7]). Hence, MS(G) is not a semisimple algebra. Its 
radical consists of the image under TT of those measures in M(G) which 
are in every maximal ideal containing Ll(G). We denote this space of 
measures by Rad(L1(G)). 

PROPOSITION 1.7. Rad(L1(G)) is an L-ideal of M(G) and can be 
characterized as {fx G M(G) : ix*(f) = 0 for f G A\G} = {[x G 
M(G):ffx=Oforf Œ A\G}. 

PROOF. Since A\G consists of those elements of A such that the 
corresponding maximal ideal contains Ll(G), it is trivial that 
Rad(L1(G)) = { / i £ M(G) :^(f) = 0 for / G A\G}. It follows 
that ix G Rad(L\G)) if and only if (fnT(y) = jxA(/V) = 0 for / e A 

and y G G. Since the Fourier transform separates points in M(G) 
(cf. [9]), we have fx G Rad(L1(G)) if and only if //u, = 0 for each 
/ G A\G. It follows immediately that Rad(Lx(G)) is an L-ideal. 

2. The critical points of A +. The two topologies on A introduced 
in the last section do not generally agree. In the weak topology A 
is compact but multiplication is not jointly continuous. In the strong 
topology multiplication is jointly continuous but A is not compact. 
However, there are certain subsets of A on which these topologies 
do agree, and this turns out to be very useful. 
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PROPOSITION 2.1. (a) The weak and strong topologies agree when 
restricted to any totally ordered subset of A+; (b) if {fa} is a net in 
A , / G A, and \fa\= \f\ for every a, then fa^ f weakly if and only 

*tfa-+fstrongly. 

PROOF. If F is a totally ordered subset of A+, then/ , g GE F implies 
either / ê g or g = / Hence, for such / and g and /x Œ M(G) we 
have 

U//*-gHI= J'l/-gMlMl= \jfd\n\ - \gd\n\ 
= I l/*rCf) - H*(g)|. 

This implies that the weak topology dominates the strong topology 
on F and, hence, they agree. 

If \fa\ ^ \f\ for every a, where /*, / G A, then tt G M(G) implies 
that 

W-U\\2= [j\f-fa\d\n\]^ IMI Jl/-/.M/*I 
^MJ(2\f\2-jfa-jfMM 
= 2||M||im[(7iMir(/)-(7Hr (/.)]• 

Hence, if {^} converges t o / w e a k l y it also converges to / strongly. 
The first part of the above proposition leads to the following: 

PROPOSITION 2.2. Each nonempty strongly closed subset of A + 

contains minimal and maximal elements. 

PROOF. If A C A+ is strongly closed and F C A is totally ordered, 
then the weak compactness of A+ implies that there is a point / in 
the weak closure of F in A + such that / = g for every g £ F . Since 
{/} U F is totally ordered, Proposition 2.1 implies that / is in the 
strong closure of F — hence, / G A. It follows from Zorn's lemma that 
A has a minimal element. The same argument yields that A has maxi­
mal elements. 

If A is both strongly closed and strongly open in A+ , then a 
minimal element of A must have a very special form. This is the key 
to each of our main theorems. Deriving this form is the object of the 
present section. 

DEFINITION 2.1. An element of A+ is called a critical point if it 
cannot be weakly approximated by strictly smaller elements. In other 
words, / i £ A + is a critical point if h is isolated (weakly) in /iA + = 
{fG A+:f^h}. 

Note that if h is a critical point, then necessarily h2 = h; for, 
otherwise, we would have hr < h for r > 1 and linv-^/^ = h. 

file:///jfd/n/
file:///gd/n/
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PROPOSITION 2.3. If/i G A + the following statements are equivalent: 
(1) h is a critical point; 
(2) h is strongly isolated in hA +; 
(3) h is a minimal element of a strongly open and closed subset 

A C A+; 
(4) the set H = {/G A : \f\ = h) is strongly open in h A; 
(5) H is weakly open in h A. 

PROOF. Since weak open sets are also strongly open, (1) implies 
(2) trivially. If h is strongly isolated in h A +, then as before we con­
clude h2 = h, and further that {fŒ A+ :f^ h} = {f G A+ : hf= h} 
is both open and closed in the strong topology and contains h as a 
minimal element. Hence, (2) implies (3). In fact (2) and (3) are 
equivalent since (3) obviously implies (2). 

That (2) implies (4) follows from the fact that, under the strongly 
continuous map /—> \f\: A—» A+, H is the inverse image of {h} 
and h A is the inverse image of hA+. That (4) implies (5) follows 
immediately from Proposition 2.1(b). Finally, that (5) implies (1) is 
trivial, since hA + = A+ H hA and {h} = A + f l H . 

Recall from Proposition 1.5 that 1 is an isolated point of A+ and, 
hence, 1 is a critical point. If d is defined by d^ = 1 if /x is a discrete 
measure and dil = 0 if /x is a continuous measure, then it is easily 
seen that rf£ A+ and, in fact, d is the unique minimal element of 
A+. Hence, d is also a critical point. Each of these examples is a 

special case of a general method for constructing critical points which 
we describe below. 

By a continuous isomorphism a : G ' — » G of an l.c.a. group G' 
onto G we shall mean a group isomorphism which is continuous but 
not necessarily a homeomorphism. If a is such a map, then a\ M(G') 
—» M(G) will be the induced map (â/x = /x ° a~l) on measures. 
Note that a is an order preserving isomorphism-isometry of M(G') 
onto an L-subalgebra, 99?, of M(G). The space ÜD? is exactly the set of 
HGM(G) for which sup{|tt|(K) : a~l(K) compact in G '}= | | / x | | , 
while SO?1 is the set of /x G M(G) for which a~l(K) compact implies 
|xt|(K) = 0. It follows that Wl1 is an L-ideal. 

The fact that 9W is an L-subalgebra and 9PÎ1 is an L-ideal implies 
that h G A +, where h is defined by \ = 1 if /x G 3ft and \ — 0 if 
/x G 3K1. Clearly h2 = h and 3ft is the range of the map it—» hfi : 
Af(G)->M(G). 

PROPOSITION 2.4. With G', a, 3ft? and h as above we have that 
f—>f ° « : hA(G) —» A(G') is an order preserving homeomorphism 
and a semigroup isomorphism of hA(G) onto A(G'). Furthermore, 
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/ T ( / « a) = (àfiy(f) for fi G M(G') and / G /iA(G). The image 
of h under /—>/ ° a is 1. 

PROOF. Note t h a t / - » / ° a : hA(G) —» A(G') is simply the injection 
of hA(G) into A(G) followed by the adjoint map of ä from the maxi­
mal ideal space of M(G) to that of M(G). 

Each of the statements of the proposition is trivial except possibly 
that /—>/° « is onto. However, if g G A (G') we simply define 
/ G /iA (G) by / = 0 for /x G ätt1 and J = gv ° a"1 for p = ^ G SB. 
The fact that ju, = àv implies that g ° a~l G L"(/Jt). Clearly 
/ G foA a n d / ° a = g. 

Note, it follows from the above that, since 1 is a critical point of 
A+(G') , h is a critical point of A+(G). The object of this section is 

to show that every critical point of A+(G) arises in this way from 
some map a: G' —» G. 

To this end, let h G A + be a critical point and set 90? = { / i E M ( G ) : 
\ = 1 a.e.//m}. Note that 90? is an L-subalgebra of M(G) and, since 
h2 = h, 9»1 = {/u G M(G) : /v = 0 a. e.//*} and 9K1 is an L-ideal. 
Hence, to show that h has the form described in the preceding discus­
sion, we need only find an Lea. group G' and a continuous isomor­
phism a:G' -» G such that âM(G') = 9K. It is quite easy to find G' 
and a and show that they almost have the right property: 

PROPOSITION 2.5. With h and 90? as above, there is an Lea. group G', 
a continuous surjective homomorphism a: G' —» G, and an L-
subalgebra 90? ' C M(G') such that 

(a) à : Af (G ' ) —> M(G) maps 90? ' isometrically onto 90?; 
(b) £/i£re is a continuous homomorphism (p : M(G')^> 90?' suc/i £/ia£ 

V? is £/i£ identity on 90? ' and hà/x = òup\xfor fx G M(G'); 
(c) tf*e mapy-* Fy (Fy(^t) = ^(y)for p G 9TO') embeds G' homeo-

morphically as an open subset of the maximal ideal space of 90? '. 

PROOF. L e t # = {/G A(G) : | / | = /i}. Note that H is weakly open in 
the weakly compact set /iA(G) by Proposition 2.3. It follows that H is 
locally compact. By Proposition 2.1(b) the weak and strong topologies 
agree on H. Now H is a. group (with identity h and conjugation as 
inversion) and the operations are strongly continuous; hence, H is an 
l.c.a. group. Let G' = H be its dual group. Let rj : H—» G' be the 
natural isomorphism from H to its second dual. 

Let Gd be G with the discrete topology and consider Gd to be em­
bedded in A(G) by identifying y G Gd with the generalized character 
/ such that f = 0 if JLL is continuous and f = y if fi is discrete. Recall 
that d G A +(G) is the element corresponding to the identity of G .̂ 
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There are continuous homomorphisms à : G-* G' and ß : G' —> G^ 
defined by ot(y) = r)(hy) and j3(y ') = drj-^y '). Note that ß ° à : 
G —» Gd is the dual of the identity map G^ —» G. If we take the duals of 
a and $ we obtain maps a: G' —> G and ß : Gd—» G' such that a°ß = 
id: Gd —» G. Hence, a is onto. 

Having constructed G ' and a : G ' —» G, we now determine 90? '. Let 
D denote the algebra of functions on H of the form n* \H for 
JW G 90?. If fi ^ 0 then /x" |H is positive definite and continuous on H. 
It follows from Bochner's Theorem (cf. [9, Chapter 1] ) that D C B(H). 
Since H contains a copy of G ({yh : y G G}) it follows that D is iso­
morphic and isometric in the B(H) norm to the algebra 90?. Since 
7) : H-+ G' is an isomorphism and homeomorphism, the map/—>/° TJ_1 : 
B(H)—>B(G') maps D isomorphically and isometrically onto a subalge­
bra D ' of B(G'). Hence, there is a subalgebra 9ft' of M(G') such that 
D ' is the space of all Fourier transforms of elements of 90? '. Since 90? is 
an L-subspace of M(G), the space D is translation invariant on H. 
Hence, D' is translation invariant on G', and 90?' is an L-subalgebra 
of M(G'). If il G 9ft' and y G Û then (äjx)A(y) = /xA(dy) = 
li*(r)(hy)) = v*(hy), where u is the element of 90? which maps to /A 
under the composition of the isometries 90?—» D—» D ' —> 90?'. Since 
^ G 90?, we conclude that v*(ky) = {hvy(y) = v*(y) and, hence, âfx = 
v. Thus, a maps 90? ' isometrically onto 90? and we have proved part (a). 

Part (b) follows immediately; since we have hafJL G 90? for each 
IJL G M(G'), the equation hà/x = â<pfJL uniquely defines a homomor-
phism (p which is the identity on 90? '. 

The maximal ideal space of 90? — hence of 90? ' — is the space /iA(G), 
which contains H as an open subset since h is critical. With this identi­
fication of the maximal ideal space of 90? ', the embedding of G ' in part 
(c) is just the homeomorphism rj ~l : G' •—» H. This completes the proof. 

We will complete our characterization of critical points by proving 
that 90? ' = M(G'). This forces a to be one to one since à : 90? ' —» 90? is an 
isometry. 

The hard part of proving 9TO ' = M(G') is showing that L\G') C 90?'. 
We defer this task until §6. In Lemma 1 of §6 we shall prove that an 
L-subalgebra satisfying (c) of Proposition 2.5 must contain Ll(G'). 
Assuming this, we have /x * <p(y) = <p(fjL * v) = tt * v for every 
t t G L ^ G ' ) and every VELM(G'). This clearly forces <p(y) = v 
for v G M(G') and, hence, M(G') = 3» '. Thus, we have: 

THEOREM 1. If h G A +(G) then h is a critical point if and only if there 
is an lea. group G' and a continuous isomorphism a: G' —» G, such 
that if Ml = ~aM(G')then\= 0 for /x G 9TO1 and \ = l/or//,G90?. 
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If hi and h2 are critical points of A + with hi ^ h2 and if ax : Gi —> G 
and a2: G2—* G are corresponding group maps with WY = à\M(G{) 
and 9K2 = à2M(Gi), then 9Wi C 9W2 and ß = à2~

l ° ai determines a 
homomorphism ß of M(Gi) into M(G2). Clearly, ß preserves positivity 
and norm. It follows that ß is induced by a continuous group isomor­
phism ß : Gì -» G2 such that ax = a2° ß. Hence, /ii ^ h2 if and 
only if «i factors through a2. If hi = h2 then the map |8 is a 
homeomorphism and ai and a2 are equivalent in the obvious sense. 

It follows from the above that the set of critical points of A + is in 
one to one correspondence with the set of equivalence classes of con­
tinuous isomorphisms a : G' —>• G. For each critical point h we fix a 
corresponding group Gh and map ah : Gh —> G. We set Oh = afe if Oh 
factors through a*. Then cth ^ a& if and only if h =§ fc. 

If /& and A: are critical points let G ' = [ G& © Gfc] IK, where K = 
{(x, y) : oth(x) = — Ofe(t/)}, and define a ' : G' —» G by a ' ° 77 = ah 0 
afe, where 7r : G^ © G&—» G' is the quotient map. Then a ' : G' —> G 
is a continuous isomorphism and each of an and ak factors through 
a'. It follows that there is a critical point h\l k such that a ' is 
equivalent to ahvk and h\l ki^h, h\/ k^k. Furthermore, h V fc 
is the minimal critical point with this property. 

DEFINITION 2.2. If h is a critical point and e*h : Gh —» G the cor­
responding continuous isomorphism, let MH(G) = àhM(Gh) and 
^h(G) = àhL

l(Gh). Let / ( G ) denote the closed linear span in M(G) 
of the spaces Lh(G). 

PROPOSITION 2.6. TTie space ./(G) is an L-subalgebra ofM(G) which is 
a symmetric algebra under the involution fi—» fr (fi(E) = ß( — E)) on 
M(G). 

PROOF. Since each Lh(G) is an L-subalgebra of M(G), it follows 
that / ( G ) is an L-subspace and will be an L-subalgebra if we can prove 
that for each pair of critical points h, k there is a critical point g such 
that Lh(G) * Lk(G) C Lg(G). However, it is trivial to see that g = 
h\l k has this property. 

To see that £(G) is symmetric, note that each complex homomorphism 
F oîX(G) is — when restricted to Lh(G) for some critical point h — either 
zero or given by an element yh G Gh; i.e., F(JU) = fyh° ah~

1dfx 
for ^ G Lh(G). It follows that F(£) = F(/i) for M G Lh(G). Since 
/ ( G ) is the closed linear span of the spaces Lh(G), we conclude 
that / ( G ) is symmetric. 

We close this section by pointing out that if a : G ' —> G is a con­
tinuous isomorphism, then we can think of G ' as being the group G 
with a locally compact group topology which is at least as strong as the 
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original topology of G. It follows that the critical points of A+(G) are 
in a one to one, order preserving correspondence with the locally com­
pact group topologies on G which dominate the original one. 

3. Cohen's idempotent theorem. In this section we show how — 
assuming Theorem 1 — to give a short proof of Cohen's idempotent 
theorem [3], [9]. Of course, since the proof of Theorem 1 is so com­
plicated, we are actually giving a very long proof of Cohen's idem-
potent theorem. 

Let H° be the additive subgroup of M(G) generated by the idem­
potents of M(G). Equivalently, H° is the set of all fi G M(G) for which 
/t* is integer valued on A. Let Hi0 be the subgroup of H° generated 
by elements of the form y/t, where y £ G and /t is Haar measure 
on some compact subgroup of G. Our object is to prove that H° = Hi0. 

Note that any two distinct elements /t, v G H° must differ by at least 
one in norm since /tA — v* is integer valued and not identically zero. 

I f / G A and tt2 = tt G M(G), then (fiL)2=fn2=fn. Hence, if 
vGH° Ûienfr G H° for a l l / G A. 

PROPOSITION 3.1. Z/tt G H° and / t t G Hi 0 for each / G L + withf< 1, 
then tt G Hi0. 

PROOF. For / G A + with / < 1 we have / t t G H^, tt - / t t G ff°, 

and Up - / H I + IL/WI = /(I - / ) < * W + //<*M = UHI- Hence, 
either / / t = 0 or ||/t — // t | | ^ ||/t|| — 1. By a simple iteration we 
can find v G Hi 0 and <o G H° such that fi = ^ + co and /o> = 0 for 
e v e r y / G A + w i t h / < 1. 

It follows that eu G Rad Ll(G) (cf. Proposition 1.7). Since the maximal 
ideal space of Rad L\G) is G, it follows that the Fourier transform of 
o) is constant off some open-compact subset S of G. It is then a simple 
matter to show that S is the coset ring of G and, hence, w E ^ 0 (cf. 
[9, 2.4.3] ). 

The general case of the idempotent theorem is now just a simple 
reduction based on Theorem 1. 

THEOREM 2 (COHEN [3] ). The additive group in M(G) generated by 
elements of the form yfx with y G G and fi the Haar measure of a com­
pact subgroup of G is exactly the group generated by the idempotents 
ofM(G). 

PROOF. Let fi be an element of H° and set A = {/G A+ : / / t ^ H^}. 
Since /—>/M' is strongly continuous and H° is a discrete group, we 
have A is open and closed in the strong topology. If h is a minimal 
element of A, then h is a critical point by Proposition 2.3. 

By Theorem 1, there is a continuous isomorphism ah : Gh~-+ G and 
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hv = 1 for v G Mh(G) = aM(Gh) and hv = 0 for ^ G Mh(G)x. Now, 
V G Afh(G) and /i/x, $ Hi0; however, fu G i ^ 0 for/G A + w i t h / < h. 

Hence, if v G M(Gh) and ä^ = /i/x, we conclude that v satisfies the 
hypothesis of Proposition 4.1 as an element of M(Gh) but does not 
satisfy the conclusion. It follows that A has no minimal elements and, 
hence, by Proposition 2.2, A is empty. We conclude \x G Hi0. 

The proofs of the theorems in the next two sections will follow the 
same pattern. Each time, we first prove that if the conclusion is true 
of ffji for each / G A+ with / < 1, then it is true of fi as well. We 
then let A be the set of / G A + such that the statement is not true 
of /fx. If A is nonempty we choose a minimal element and use 
Theorem 1 to return to the previous case. 

4. Logarithms of measures. If A is a commutative Banach algebra 
with identity, we will denote by A~l the group of invertible elements 
of A and by exp(A) the subgroup consisting of the range of the 
exponential function. The subgroup exp(A) is exactly the connected 
component of the identity in A - 1 and is an open subgroup of A - 1 

(with the norm topology). The Arens-Royden Theorem [1], [8], 
[5] states that A-1/exp(A) is isomorphic to the first Cech cohomology 
group — with integer coefficients — of the maximal ideal space of A. 

In [ 16] we proved that for p bigger than zero the Cech cohomology 
group Hp( A, Z) is isomorphic to 2 © Hp( Ah, Z), where A is the 
maximal ideal space of M(G) and A^ is the maximal ideal space of 
Lh(G) + Côo for each critical point h G A+. This and the Arens-
Royden Theorem yield a factorization theorem for invertible measures 
in M(G) which characterizes those invertible measures which have 
logarithms in M(G). Here we propose to use Theorem 1 to prove this 
factorization theorem without using the machineiy of sheaf theory or 
algebraic topology. 

We shall assume the following proposition — which is actually a re­
statement of the Arens-Royden Theorem: 

PROPOSITION 4.1 (CF. [5, HI 6.2 AND 7.2] ). Let Abe a commutative 
Banach algebra with maximal ideal space X. Then, 

(a) if a G A - 1 and à = exp(/) for some fŒ C(X), then a = exp(b)for 
some b G A; 

(b) iff G C(X)- \ then f = à • exp(g) for some a G A"1, g G C(X). 

We proceed to develop our factorization theorem. 

PROPOSITION 4.2. If o) G M(G) and exp( w) G X(G) then œ G X(G). 

PROOF. By Proposition 2.6, J-(G) is a symmetric algebra. Hence, 
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each complex homomorphism of X(G) extends to a complex homomor-
phism of M(G) and is, therefore, given by an element of A. It follows 
that since fx = exp(co) is invertible in M(G) it is also invertible in X(G). 

If we can prove that fi = exp(^) for some v G X(G), then 
(2ni)~l (co — v) will be an element of H° — hence, an element of X(G) by 
Theorem 2 — and it will follow that w G X(G). 

Suppose first that//ß G exp(X(G)) for eve ry /G A + w i t h / < 1. Since 
/fi = exp(fù)) it follows as in the preceding paragraph that/w G X(G) 
for every / G A+ with f< 1. We conclude that if o> = o^ + co2 

with coi G Rad Ll(G) and <o2 G [Rad L^G)] -L , then G>2 G jff(G). 
Hence, exp(o>1) = /ut * exp( — o>2) is an invertible element of -£(G) fi 
[Rad L\G) + C80] = ^ ( G ) + C80. Furthermore,onthemaximalideal 
space of L*(G) + Cô0, exp^cox)* has a continuous logarithm (given by 
the Fourier transform of CUI). Hence, by Proposition 4.1, exp(ci>1) = 
exp(o>3) for some co3 G L\G) + Côo G X(G). AS before, G>X — Û>3 G 
X(G), and we conclude that o> = <oi + co2 G -̂ ?(G). 

We reduce the general case to the above case by using Theorem 1. 
If A = {/G A+ : / / i $ exp(^(G))} then A is strongly open and closed 
in A+ since exp(j?(G)) is open and closed in X(G)~l. If h is a minimal 
element of A, then hfi $ exp(^(G)) and ffi G exp(X(G)) for / G A + 
with f<h. If 0& : Gj, —» G is the map corresponding to the critical 
point h as in Theorem 1 and if v G M(GH) with ot^y = h fi, then 
v $ exp(^(Gh)) and/*> G exp(X(Gh)) for/G A+(Gh) w i t h / < 1. Also, 
*> = exp(p) where p G M(Gh) with ap = ho). However, this situation 
is impossible by the above paragraph. We conclude that A = 0 and, 
hence, o> G X(G). 

PROPOSITION 4.3. If fi Œ M(G)1 and for each / G A+ u;i£/i / < 1 
£/ie measure ffx has a factorization of the form fu = v * exp(co) with 
v G £(G)~l and œ G.M(G), then fx also has a factorization of this form. 

PROOF. For each idempotent k = k2 G A + with k < 1 we choose 
vk G X(G)~l and <ok G M(G) such that k/x = ^ * exp(cofc) and 
cüfc -L ^(G). The condition that <ok _L -^(G) forces this factorization to be 
unique. In fact, if vk * exp(cofc) = vk'* exp(o)k '),thenexp(o)fc — <ùk') = 
V * ^ - 1 which i s in^ (G) . Hence, œk - o)k' G X(G) by Proposition 4.2, 
and o)k — o)k' = 0 since o)fc — û>k' _L -AG). Note that the uniqueness 
of vk and <ok forces kvk = ^ and k<ok = co*; since kfx = (kvk) * exp(fccofc) 
also. 

We define two functions v and w on A\G = {f G A : | / | < 1} 
as follows: I f / G A\G we choose any k = k2 G A+ with | / | = 
k < 1 (for example, | / |° = limr_»0 | / |

r will do) and define v(f) 
= vk"(f) and w(J) = <i)k~(f). The definitions of t>(f) and 



196 J. L. TAYLOR 

w(f) are independent of the choice of k. In fact if k = \f\ and 
j ^ (/I then jk ^ k\f\ = | / | and jkp, = jvk * exp( j(ok) = hvj 
* exp(fco>;). The uniqueness implies that jvk = kv^ and jo)k = ka)j. 
Hence, 

"/(/) = v(*/) = (*">)"(/) = OHH/) = v o o = vcf) 
and, similarly, o>f{f) = a)k~(f). 

We now prove that t> and it? are continuous in the weak topology. 
If k= k2 G A + \ {1} then v and u; are continuous on the set 
{/G A : l/l ^ fc}, since on this set they are given by the fixed 
functions vk and &k . Unfortunately it may take infinitely many of 
these sets to cover A\G. The solution to this difficulty is simple, but 
it escaped us for several months. 

Let {fa} CI A\G be a net converging weakly to / G A\G. For 
each a we choose ^ = ka

2 G A+ \{1} with \fa\ ^ ka. We let 
g G A+ \{1} be a weak cluster point of the net {ka} and choose 
k = k2 G A+ \{1} with g=k. Note that fc£-> fcf weakly and 
|fc/a| ^ k for every a. Hence, v(kfa) —> u(fcf) and w{kfa) —> w(kf). 
We shall prove that the nets {t>(£) — v(kfa)} and {w(/,) — tv(kfa)} 
cluster to zero. 

Choose e > 0. Since {fca} clusters to g= k, the set S of all a for 
which 
more, 

ht* - kkafi\\ 
= Î(K ~~ &Ä«) d|/u<| < e is a cofinal set. Further-

j | ^ - i | | ^ UM"1!! and | | * * y t | | ^ | M | . It follows 
that for e ' > 0 we can choose e small enough that for a G S, kaix = 
(kkafi) * exp(pa) with ||pa|| < e '. Hence, for a G S we have 
exp(<i)kka - (oka + pa) = vka * ^ £ -£(G). It follows that <okka ~ 
o ) ^ a = p a ' , where p a ' is the part of pa lying in Jl(G)1. Hence 
W^kka ~~ <*>kj\ = \\pa'\\ < e ' for a G S. We conclude that for a G S, 

\w(fa) - W(kfa)\ = K a ( / J - &khßfa)\ 

= l^ a( /«)-^ a( /«) |<e' . 

A similar conclusion holds for \v(fa) — v(kfa)\. Hence, these nets cluster 
to zero and v and w are continuous. 

Recall from Proposition 1.6 that A\G is the maximal ideal space of 
MS(G) = M(G)ILl(G). The maximal ideal space of J!(G)ILl(G) is the 
space of equivalence classes of elements of A\G under the relation 
f - g if v\f) = v\g) for v G X(G). Note that i f / - g and | / | ^ 
k G A A{1}, |g| ^j G A +\{1}, then v(f) = vk(f) = vk{f) + 

* / ( / ) - V C f ) = ^(g) + "/(g) - V(g) = *f(g) = «(g).- Hence, t; 
determines a continuous function on the maximal ideal space of 
£(G)ILl(G). Note that v does not vanish since each vk* is invertible. 
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By Proposition 4.1, there is a measure vx G 1(G) and a continuous 
function <p on A\G such that v(f) = V(/>xp(<p(/)) for / G A \ G 
Then exp(?(f) + w(f)) = (fi^v^Tif) for / G A\G. By 
Proposition 4.1 applied to MS(G), there is co G M(G) with p * i^- 1 * 
exp( - o>) = 80 + p and p G Ll(G). If *> = (80 + p) * 1̂  then 
^ G 1(G) and p = ^ * exp(co). This completes the proof. 

PROPOSITION 4.4. If / i E M ( G ) " 1 then p — *> * exp(co) /or some 
* G AG) and co G Af(G). 

PROOF. We use Theorem 1 to reduce to the case covered by Proposi­
tion 4.3. We note that A = {/G A+ .fix has no such factorization} is 
strongly open and closed, and proceed as before. 

PROPOSITION 4.5. If p G 1(G) ~l then p = Pi * • • • * p n * exp(co) 
with co G 1(G) and each p* an element of (Lh.(G) + Coo)'1 for some 
critical point hi E. A+ . 

PROOF. The union of those L-subalgebras of 1(G) which are finite 
sums of algebras Lh(G) is dense in 1(G). It follows that p = p ' * exp(p) 
for some p ' in such an L-subalgebra. Hence, without loss of gen­
erality we may assume that p GL<*(G) + Lhx(G) + • • • + Lhn(G) and 
Lh.(G) * Lh[G) CLhk(G) (i.e., h{ V hj = hk) for each i,j and some k. 
Also, we may assume that the discrete part of p is 80, since, otherwise, 
H = x * [80 + A - 1 * y], where p = X -I- 17 is the decomposition of 
p into discrete part A and continuous part TJ. 

Thus, let p = 80 + ^1 + ' * * + vn with v{ G L,h(G). We can assume 
hi has been chosen minimal among hi, • * *, hn. It follows that /lip = 
8o H- ^1 and so 80 + ^1 is invertible in C80 + L^G). Hence, p = 
(80 + ^i)[8o + V + ' ' * + vn'] w i th* / = (80 + ^ i ) " 1 ^ and h i* / = 
0. It follows that Pj ' JL Lh^G) for each j and so v2 ' + • • • + vn ' is in an 
L-subalgebra of 1(G) containing only n — 1 algebras Lh(G). This 
forms the basis of an induction which yields the required factorization. 

If we combine Proposition 4.4 and 4.5 we obtain our main theorem: 

THEOREM 3. If p G M ( G ) - 1 then p has a factorization p = 
vx* •••**>„* exp(co) with co G Af(G) and each v{ G (C80 + Lhi(G))~l 

for some critical point h{. 

Recall that B(Ù) is the algebra of Fourier transforms of elements of 
M(G). We have the following corollary of Theorem 3: 

COROLLARY 4.6. If <p E ß(G), (p~l G B(G), and <p > 0, then 
log <p G B(Ô). 

PROOF. Let <p be the Fourier transform of p G M(G)'1. Since 
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<p > 0 we have p = p. If p = v * exp(o>) with ^ G -AG) and w G 
M(G), then /it2 = ^ * ^ * exp(o> + w). Since -Z!(G) is symmetric it fol­
lows that v * î> = exp(p) for some p Œ. X(G) with p = p. Hence, p = 
exp[4(co + <y + p)]. Clearly log <p is the Fourier transform of 
•±[<o + & + p]. 

COROLLARY 4.7. 7/<p G B(G)~l then \<p\ G B(G)-1. 

PROOF. Since \<p\2 = <p<p Œ B(G)~l we have log |<p| = { log |<p|2 G 
B(G) and, hence, \<p| G B(G)~K 

We now specialize to the case where G is the real line K There are 
only two continuous isomorphisms of I.e.a. groups onto R (to within 
equivalence): id: R—» R and otd : R^—> K, where i ^ is K with the 
discrete topology. Hence, there are only two algebras Lh(R) (Ll(R) 
and Ld(R) = Md(R)). 

It follows from Proposition 4.1 that if p, G [L^R) +Cô 0 ] _1, then 
p has a logarithm in M(G) if and only if its Fourier transform has 
winding number zero about the origin as a function on R U { °° }. Also, by 
a result of Bohr [2], if p G Md(G)~l then p = 8X * exp(co) for a unique 
x G f i and some CÜ G M^(G). Hence, we have the following corollary to 
Theorem 3: 

COROLLARY 4.8. If p G M(R)~l then there are unique numbers 
k G Z and x G R such that p = 17̂  * 8X * exp(co) /or some a> G M(R), 
where 17 can foe chosen to be any element of (Ll(R) + Coo) - 1 whose 
Fourier transform has winding number one. 

One choice for rj in the above corollary is the measure whose Fourier 
transform is (1 — it)(l + it)~l. If we rephrase Corollary 4.8 in terms of 
Fourier transforms we have: 

COROLLARY 4.9. If <p G B(R)~1 then there are unique numbers k G Z 
and x G R such that the function 

\jj(t) = log<p(t) - fc[log(l - it) - log(l + it)] - ixt 

is an element ofB(R). 

Finally, we should mention that Corollary 4.8 leads to a characteri­
zation of the spectrum of the Wiener-Hopf operator WM acting on 
Ll(R+), where p G M(R) and WJ(x) = ftf(t) dfi(x - t) ( x ^ O ) 
for /GLi(K+)(cf . [4]). 

5. The spectrum of a measure. Since the maximal ideal space of 
M(G) is the set A of generalized characters, and since generalized 
characters are clearly impossible to understand, the problem of 
deciding when a given measure is in no maximal ideal —hence, is 
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invertible — appears to be very difficult. Unless a measure has some 
very special form —e.g., is absolutely continuous, discrete, or con­
centrated on a thin set [9, Chapter 5] — there seem to be no reasonable 
methods for computing its spectrum. 

The techniques we have been employing turn out to be of some use 
on this problem. They yield a considerable simplification of the prob­
lem of computing the spectrum of a measure. 

DEFINITION 5.1. Let SD? be an L-subalgebra of M(G) which 
contains the identity So- We shall say ÜD? is balanced if 90Î H X(G) 
is closed under the involution /A—» jd. Equivalently, SDÌ is balanced if 
90Î H Lh(G) is closed under involution for each critical point h G A +. 

We shall prove that if aft is balanced and fi G 9DÎ, then /LL is invertible 
in M(G) if and only if it is invertible in 9PÎ. 

PROPOSITION 5.1. Let %ft be a balanced L-subalgebra of M(G). 
Suppose v EL X(G)~l and a> G M(G) have the properties that v* 
exp(co) G 3», o> 1 X(G), and fv, /co G 3» for all f G A + with / < 1. 
Then v G 9W and co G 3». 

PROOF. We first prove that we may as well assume that either 
L\G) Cm or Ll(G) f i » = (0). 

If L\G) Pi Wl j£ (0) then it is an L-ideal of 9W and a symmetric 
L-subalgebra of L1(G). It follows that the support of Ll(G) H SDÌ is an 
open subgroup G0 of G and Ll(G) H 9K = Ll(G0). Since L1(G0) is an 
ideal of 99? we conclude that SDÌ C M (Go). It is easily seen that each 
generalized character in A(G0) is the restriction of a generalized 
character in A(G). (See the proof of Proposition 6.2.) Since /x = 
v * exp(co) G äft is invertible in M(G), it is invertible in M(G0). By 
Theorem 3, /x = v' * exp(co') with ^ ' G ^ ( G o ) and co'GM(Go) 
and co' _L X(GQ). However, as before, this forces co = co' and v = v'. 
Each element of A+(Go)\{l} is the restriction of an element of 
A+ (G)\{1}, so we have/b G 3» and/co G W for e a c h / G A+(G0)\{1}. 
Hence, v, co, and 9K satisfy the hypothesis of the proposition as ele­
ments of M(G0). Thus, if L\G) fi SDÌ ^ (0) we may as well assume 
that Ll(G) C 3ft. 

Let ^ = vY + 1̂2 and co = cox + co2 where vly cox G Rad Ll(G) 
and v2, co2 G (Rad L^G)) 1 . Note that since fv = fv2 G 2W and 
/co =/co2 G 9W f o r / G A+ \{1}, we have ^2, co2 G 3K (cf. Proposition 
1.7). Also, we have vY G ^(G) and so ^ G _/(G) Pi Rad L\G) = 

If Ll(G) C äft then v G SDÌ and p = exp(co2) = /x * ^ _ 1 * exp(— cox) 
G S» H [8o + Rad L!(G)]. It follows that the Gelfand transform of 
irp G Tl/L1(G) has a continuous logarithm (determined by co2"). By 
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Proposition 4.1, p = exp(a>3)(8o + À) for some co3 G 90? and A G Ll(G). 
Hence, exp(o)2 — Û>3) E. J!(G) and by Proposition 4.2 we conclude 
that o)2 is the part of o>3 in £(G)±. Hence Û>2 G 90? and co G 90?. 

If Ll(G) H 90? = (0), then each power of |ii | is purely singular and so 
ir\fi\ has spectral radius ||/x,|| in M(G)IL\G) = MS(G). Hence, there is 
g G A\Ô such that | | /*r(g)| = |M|. I f / = |g|, t h e n / G A +\{1} and 
ffjL= I a.e./ii. It follows that ti = / t t = (Jv) * exp(/co). However, 
the uniqueness of this factorization (with o> _L £(G)) implies that/^ = v 
and/o) = a). Hence, v G 90? and o> G 90?. 

THEOREM 4. Let Wl be a balanced L-subalgebra of M(G). If ti G 90? 
and jüi G M(G)'1 , £n#n /ut~1 G 90?. Furthermore, the measures v and a> in 
the factorization fi = v * exp(cu) of Proposition 4.4 raws£ /ie inWlifw is 
chosen so that œ J_ ./(G). 

PROOF. Let Ai = {/G A+://x,"1 $ 90?} = { / £ A + : / / * .$ SK"1}. 
The first description of A shows that it is strongly open while the sec­
ond shows that it is strongly closed. Let A2 = {/G A+\Ai :ffi 
does not have a factorization p * exp(X) with p G £ (G) fi 90? and 
A G 90?}. Clearly A2 is strongly open and closed in A+ \Ai and, hence, 
in A+. Furthermore, by uniqueness, we have A2 = {f G A + \Ai : 
fa) $ 9W or /i> $ 9TO}. Hence, to prove Theorem 4 we must show 
that Ai U A 2 = 0 . 

If Ai U A2 J^ 0 we let h be a minimal element of it — hence, a 
critical point —apply Theorem 1 and Proposition 5.1, and obtain a 
contradiction. 

COROLLARY 5.2. If fJL G M(G) fnen £n£ spectrum offx as an element of 
M(G) is the same as the spectrum of fi as an element of any balanced 
L-subalgebra containing it. 

COROLLARY 5.3. Zftt G M(G)and |tt|n _L X(G) for each n, then 80 + A* 
is invertible in M(G) if and only if 80 + M = exp(û>) for some œ with 

««S»"-o(2||HI)-BHB." 
PROOF. If 90Î = {*> G M(G) v<< 2â«0(2| | jx| |)-»Mn} then 9TO is a 

balanced L-subalgebra containing it. Furthermore, 90? H X(G) = 
C80, so in the factorization 11 = *>*exp(co) of Theorem 4 we must 
have v = \8o for some scalar A. 

We now restrict attention to the line. If /LI G M(R) and /x is con­
tinuous, we set p = 2n=o(2|M|)"n |Mln and 9K = {v:v«p} + 
Ll(R). Note that 90? is a balanced L-subalgebra containing /x and 
9» H Md(R) = C80, 9» n Ll(R) = Ll(R). 

Now each complex homomorphism of 90? is determined by a bounded 
Borei function fon R such that/(0) = !,/(*) = e~itx a.e.ldt for some 
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x G ft o r / = 0 a.e.ldt; and for each n, f(tx + • • • + tn) = f(t{) ' • • 
/(£„) a.e./jx X • • • X /x on ftn. 

Hence, applying Theorem 4 we have: 

COROLLARY 5.4. If \x G M(ft) and /i is continuous then the spectrum 
of n in M(G) is the set of numbers ffdfi where f ranges over those 
bounded Borei functions for which 

(a) f{t) — e~ixt a.e.ldt for some x G Rorf= 0 a.e.ldt; and 
(b) for each n, f(tx + • • • + O =/(*i) ' * " / ( O a.e.lfxX • • • X /u, 

on ftn. 

COROLLARY 5.5. If /JL is a continuous measure on ft, /x = 0, and 
ttn _L ttm/or n ^ m, fh^n ^n^ spectrum of tt Ì5 ̂ /iß disc of radius ||tt||. 

PROOF. Choose disjoint sets £1? £2 , • • • of Lebesgue measure zero 
such that itn is concentrated on En. If |z| ^ ||tt|| set fz(t) = (%/||At||)n 

on En and fz(t) = 0 if t (£ Un=i En- T h e n ^ satisfies the conditions of 
Corollary 5.4 and Jfz(t) dfi(t) = z. 

6. The main lemma. In this section we complete the proof of 
Theorem 1 by proving the following lemma: 

LEMMA 1. Let 9W be an L-subalgebra of M(G) containing the 
identity. If the map y -> Fy (Fy(tt) = ^(y)for tt G 39Î, y G G) embeds 
G homeomorphically as an open subset of the maximal ideal space of 
m,thenLl(G)Cm. 

The proof relies heavily on the combinatorial machinery of [ 14]. 
We have been unable to simplify this part of the argument in any es­
sential way. Our discussion here will consist of two preliminary 
propositions, an outline of the machinery we require from [ 14], 
and an argument to show how this machinery proves the lemma. 

PROPOSITION 6.1. If 9K satisfies the conditions of the lemma, then 9K 
is weak- * dense in M(G). 

PROOF. Let K be the smallest closed subset of G on which each 
measure in 9K is supported. Since 39Î is an L-subalgebra, it suffices to 
prove that K= G. Clearly K is a closed subsemigroup of G. Also, K is 
not contained in any proper closed subgroup of G; if it were then the 
set of Fourier transforms of elements of 90Î would not separate points 
inG. 

Hence, if K j£ G then K is a proper closed subsemigroup of G such 
that the closed group generated by K is G. By Lemma 2 of [ 12], there 
is a continuous homomorphism a : G—» ft such that (0) j£ a(K) C ft+. 
However, the functional Ft(fi) = /exp(— ta(x)) dfi(x) (fiGTl) is a 
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complex homomorphism of 9K, for each £ G R+, which clearly does 
not correspond to a point of G if t > 0. Also, Ft(ji)—> /iA(l)as £—> 0 
for each fi G 9K. This contradicts the assumption that G is open in the 
maximal ideal space of 9ft. We conclude that K = G and 9TO is weak- * 
dense in M(G). 

DEFINITION 6.1. Let 11 be the set of a l l / = {f : tt G 9TO} such that 
ffj, E. L°°(fi) for each tt, v < < fx implies fv=fß a.e.IjA, and 
/^(x + y) = fß(x)fl(y) a.e./tt X \L for each /x. We give l ì the weakest 
topology under which each map /—> /**(/) = / / M dp (JJL E.WI) is con­
tinuous. 

Clearly l ì can be identified with the maximal ideal space of 9W just 
as A was identified with the maximal ideal space of M(G). 

Note that the hypothesis on ÏÏÎ in Lemma 1 implies that G is open in 
lì. It is a subgroup of the group H = {f G l ì : \f\ = 1}. It follows that 
H is also open in l ì and is an I.e.a. group. If G ^ H we can proceed as 
in the proof of Proposition 2.5 and embed 9K in M(G ' ) for some group G ' 
for which G' is H and the hypothesis of Lemma 1 is still satisfied. 
Hence, we may as well — and we will — assume that G = H = 
{/Gil: | / | = 1 } . 

Note that, as in Proposition 2.3, the statement that G is open in l ì is 
equivalent to the statement that {1} is an isolated point of l i + = 
{fGQ-.f^O}. 

PROPOSITION 6.2. Lemma 1 is true for all l.c.a. groups G if it is true 
for groups of the form Rn X K with K compact. 

PROOF. If G is an arbitrary l.c.a. group then it has an open subgroup 
G0 of the form Rn X K [9, Chapter 2]. For each x G G we let 9TO* de­
note the space of all measures in 90? which are concentrated on the 
coset x + Go. Note that, since Wl is weak- * dense, Mx ^ (0) for each 
x. We shall show that äft0 satisfies the hypothesis of Lemma 1 as an 
L-subalgebra of M(G0). 

Let lio be the space of Definition 6.1 for the algebra 9K0. The 
restriction map lì—» lio maps l ì onto a compact subset of lio. 
To show that this map is onto it is sufficient to show that if 
/iq, • • -, /xn G3W0and 

( * ) Ml * v\ + ' * * + Mn * vn = So 

has a solution for vu • • -, vn G 9K then it also has a solution in 9P?0. 
However, if vl9 • • -, vn G 9K satisfy ( * ) and vY\ • • -, vn

f are the 
restrictions of these measures to G0, then clearly vY\ • • -, vn' G 90?o 
also give a solution to ( * ). Hence, lì—» lì0 is onto. 

In particular, e a c h / G lio with \f\ < 1 is necessarily the restriction of 
some g G l ì with |g| < 1. Hence, { /G lio : | / | < 1} is in *he image 
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under restriction of the compact set {g G il : |g| < 1}. It follows that 
{f G fio > \f\= 1} is open and is the image under restriction of G 
Hence, G0 = {f Œ ÜQ : \f\ = 1} is open in li0-

Since we are assuming that Lemma 1 holds for G0, we must have 
Ll(G0) C 3#o- Since 9TO is weak- * dense and Ll(G) Pi 90? is an ideal of 
90? containing Ll(G0), a standard approximate identity argument yields 
L\G) C Ml. 

Henceforth, we assume G = Rn X K for some compact group K. We 
write elements of G in the form (x, k) with x £ R n and k G K 

Note that if n = 0 then G = £ is a discrete subset of the maximal 
ideal space of 90?, and the Shilov idempotent theorem [5, III.6.5] 
implies that Haar measure on G is an element of 90?. Hence, Lemma 1 
is trivial in this case, and we may as well assume n > 0. 

We now describe a class of algebras introduced in §2 of [ 14]. By 
90?ioc we shall mean the space of all (possibly unbounded) measures xt 
on the ring of bounded Borei sets of G, such that /X|E G 90? for each 
compact set E. 

DEFINITION 6.2. Let A be a compact, convex subset of Rn. Then, 
(a) <pA(x, k) = sup {exp(- x • y) : y G A}; 
(b) ||/x||A = JV>A d M for xt G 90?loc; and 
(c) STO(A)= {M G ättloc: H A < oo }. 
By Lemma 2.2 of [14] each SDt(A) is a Banach algebra under con­

volution. Note that A C B implies SK(B) C SW(A) and 3K({0}) = Stt. In 
fact 9W({y}) is isomorphic to 9K({0}) = 3K for each y G ftn, where 
dii(x) —> exp ( — x • t/) d/Lt(jc) describes the isomorphism. Using this fact, 
Lemma 2.5 of [14], and Theorem 4.1 of [14] we conclude that the 
maximal ideal space of 3W(A) is given by the set li(A) described below. 

DEFINITION 6.3. Let 0(A) be the space of all "functions" e~yf, where 
y G A, / G lì, and (e-vf)Jix9 k) = exp ( - y • x)fß(x, k) for /x G 3K with 
compact support. If /x G 90? with compact support, we define 
fJL*(e-yf) = / exp ( - x-y)fll(x9 k) dfx(x, k). 

Note that we can extend the definition of ^(e~yf) to all /x G 3K(A) 
by continuity and obtain a complex homomorphism /A—» ^(e~yf) of 
STO(A) for each ^ " y / G fl(A). 

We let r(A) be the subset of ft consisting of those e~yf for which 
| / | = 1 — i.e., for which f'G G. Note that each element of T(A) can be 
written in the form (x, fc)—> e~z-xy(k) for some z G C n with Re % G A 
and some y G Ê Hence, if /x G 3W(A) we define yC (z,y) = ttA(g) 
with g(x, fc) = e~z-xy(h), g G T(A). Note that for Re z in the interior 
of A and for fixed y G K, /xv(z,y) is an analytic function of z. If xt 
has compact support, then /i G STO(A) for all A and xtv (z, y) is analytic on 
Cnfor each y. 
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PROPOSITION 6.3. There is a measure /x in^fl with compact support, 
and a compact convex set A C f i " with zero as an interior point, such 
that (A* (1) = 0 but ]LtA does not vanish on £l( A)\T( A). 

PROOF. By hypothesis, G is open in lì. Hence, 1 is an interior 
point of Ù. Choose e > 0 and fil9 • • -, ixn G 9W such that {fE.il: 
|M*A(1) — /AjA(f)| < e for i = 1, • • -,n} is contained in G. Hence, 
if u = l/Xil + • • • + \fjbn\, we have 

\ (i - \f\)dv = 2 J |i - if| MH ̂  JK( i ) - (̂1/1)1 s e 
for / £ ( ! with | / | < 1 . Thus, | ^ ( / ) | ^ ^ ( [ f | ) ^ *A(1) - € for 
/ G fi\G. Since v is a positive regular measure we can replace v 
by a positive measure o> G 3W which has compact support and satisfies 
|oT(/)| ^ oT(l) - e/2 for / G fl\G. We then set /x = <UA(1)Ô0 - to. 
Note that ttA(l) = 0 and |/T (/) | ^ e/2 on ft\G. 

Since tt has compact support, it* (e~y/) exists for all j / £ R n a n d / G fì. 
Clearly we can choose a compact convex neighborhood A of zero in 
Rn such that \l^{e~vf)\ = e/4 f o r / G Ü\G and j / G A Hence, ttA does 
not vanish on fì( A)\r( A). 

PROPOSITION 6.4. There are an n-simplex S C Rn, with zero as 
an interior point, and measures fii, • • -,/xn G 3K(S) suchthat ^ doesnot 
vanish on fì(S)\r(S), ^ , • • -, /uin

A do not vanish simultaneously at any 
point e ~yf withy G dS, but Mi"(l) = • • • = /in

A(l) = 0. 
PROOF. Let /Xi be the measure fi of Proposition 6.3 and A the com­

pact, convex set. We let V= {(z, x) G Cn X È: ^\{z,x) = 0 and 
Re z G int A}. _ Note V C {(z, x) G Cn X £ : ^ v (z, x) = 0 and 
Re z G A} and V is compact. 

Since V is compact and £ is discrete, there are only finitely many 
points y G K for which V C\ (Cn X {y }) ^ 0 . Let / be this finite set of 
points. Then V is a subvariety of the n-dimensional analytic space 
* = {(*> y) G C" X / : Re z G int A}. If, for i = 2, • • -, n, we let ^ = 
So "" 8(jrj, o)> where Xi = (0, 0, • • -, 1, • • -, 0) (1 is the ith position) is in 
R", and"set W = {(z,y) G X : ^ ( z , y ) = • • • = <{z,y) = 0}, then 
W is a one-dimensional submanifold of X. Clearly V f i W i s compact 
and is a subvariety of W. Hence, V D W is finite (cf. [6, III.B.17] ). 
In other words {(z,y) G X : &{(z,y) = v* (z9y) = • • • = v„ (z,y) 
= 0} is a finite set. 

Since 3W is weak- * dense in M(G) there are measures /i2, * ' *> Pn hi 
99Î, with compact support, which are close enough to v2, • * *, ^n so 
that {(z,y) G X : /Aiv(z,y) = /Lt2

v(z,y) = • • • = fi^(z,y) = 0}remains 
a compact subvariety of X — hence, a finite set — and we still have 
Mf(i)= •'• = *C(i) = o. 

http://%7bfE.il
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We now have {e~vf G (1(A) : y G int A, fi^(e~yf) = • • • = 
IJLn*(e~yf) = 0} is a finite set which includes 1. Hence, we can 
choose a small simplex S C int A with 0 G int S, such that 
Mi"? ' ' *> Mn" do not all vanish at any £-î/jfwith j / G dS. This completes 
the proof. 

Let /Lti, • • -, [JLn and S be as above, and let S1? • • -, Sn+1 be the (n — 1)-
faces of S. We have pi*, • • -, /xn

A do not vanish simultaneously on 
fl(S;) for each i. Also, for each i, fiiy • • -, p,n are elements of the Banach 
algebra 3)?(S;), which has fl(Si) as a maximal ideal space. It follows 

vni G aK(Si) such that 

+ Mn * ^ni = «0. 

that for each i there are measures vii: 

Mi * ^it + 

However, since p,i*(l) = * * • = M n ( l ) = 0, and 1 G ß(S), the equa­
tion cannot be solved in 3K(S). 

Under these circumstances, Theorem 4.2 and Lemma 5.3 of [14] 
imply that there is a nonzero measure p G ïï?ioc which is absolutely 
continuous (also see Theorem 6.2 of [14] ). The measure p can be 
described as 

p = det 

So 

vn\ 

«0 

"ln + 1 

"nn + 1 

= 2(-i)'Pi, 

where pi is the determinant of the matrix (vjk) with the ith column 
deleted. Note that the multiplications involved in computing each 
Pi are valid since for all k ^ i and all 7 we have vjk G Cik^i^i^k) G 
9J?({pi}), where pi = C\k*iSk is the ith vertex of S. 

To prove that p as defined above is both nonzero and absolutely 
continuous involves most of the combinatorial machinery of [ 14]. It 
turns out that if p were zero then the equation p^ * vx + • • • + 
Mn * vn — So could be solved in 3tt(S). 

The proof of Lemma 1 is now essentially complete. The restriction 
of the measure p above, to any compact set in G, will be an element of 
Ll(G) H 90?. For some compact sets this restriction must be nonzero. 
Hence, Ll(G) fi 9K is a nonzero L-ideal of 99?. Since 99? is weak- * 
dense; it follows that L\G) Pi 9K = L\G) and, hence, L\G) C 9». 

In addition to being the key stap in the proof of Theorem 1, Lemma 1 
also has the following consequence (cf. [13, Theorem 1] ): 
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COROLLARY. If W is an L-subalgebra of M(G) such that G is, in the 
natural way, the maximal ideal space of 3W (both as a set and 
topologically), then L\G) C K C Rad Ll(G). 

PROOF. If we set 3W ' = Cd0 + 9W then 90? ' will satisfy the hypothesis 
of Lemma 1. Hence, we have Ll(G) C Wl. If it were not true that 
90? C Rad Ll(G) then s o m e / G A\G would determine a nonzero com­
plex homomorphism of 90? obviously not given by a character. Hence, 
we Have STO C Rad L^G). 
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