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EXTRASPECIAL p-GROUP 

DAVID L. WINTER 

1. Let p be a prime. The finite p-group P is called special if either 
(i) P is elementary abelian or (ii) the center, commutator subgroup 
and Frattini subgroup of P all coincide and are elementary abelian. 
A nonabelian special p-group whose center has order p is called an 
extraspecial p-group. It is possible to give a uniform treatment of the 
subject of automorphisms for all the possible isomorphism types of 
extraspecial p-groups and so some cases that are more or less known 
are included here. The result when p is odd and P has exponent 
p2 leads to an interesting subgroup of the symplectic group Sp (2n, q), 
q a power of p, n > 1. This subgroup is the semidirect product of 
Sp (2n — 2, q) and a normal special p-group of order q2n~l whose 
center has order q. 

THEOREM 1. Let p be a prime and let P be an extraspecial p-group 
of order p2n+1. Let I be the group of inner automorphisms and let H 
be the normal subgroup of Aut P consisting of all elements of Aut F 
which act trivially on Z(P). Then Aut P = (6) H where 0 has order 
p — 1, H H ( 6) ~ (1) and HI I is isomorphic to a subgroup of Sp (2n, p). 
Furthermore, 

(a) If p is odd and P has exponent p, HII = Sp (2n, p) of order 

(b) Ifpis odd and P has exponent p2, HII is the semidirect product 
of Sp (2n — 2, p) and a normal extraspecial group of order p 2 n - J . (If 
n = 1, HII has order p.) 

(c) If p — 2, HII is isomorphic to the orthogonal group Oe(2n, 2) of 
order 2n(n~1) + 1(2n - 6)J^Jf=r1

1(22f - 1). Here e = 1 if P is isomorphic 
to the central product of n dihedral groups of order 8 and € = — 1 
if P is isomorphic to the central product ofn—1 dihedral groups of 
order 8 and a quaternion group. 

COROLLARY 1. Let p be an odd prime and let P be an extraspecial 
p-group of exponent p2. There is a nonidentity element of PIZ(P) 
left fixed by every automorphism of P. 
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COROLLARY 2. Let P be an extraspecial p-group of order p 2 n + 1 

and let <f> be an automorphism of P which acts trivially on Z(P) and 
irreducibly on P/Z(P). Then the order of(j> modulo I, the group of 
inner automorphisms, is a divisor of pn + 1. If p is odd, P has 
exponent p. 

2. As usual, Aut P denotes the automorphism group of P, Z(P) the 
center of P. If x G P, X means the coset Z(P)x. If a is a rational integer 
â means its image under the natural map of the integers onto GF(p). 
Since P has class 2, for p odd, 

(2.1) (xy)p = x*y*9 

x,y G P [3, 5.3.9]. The terminology and concepts of symplectic 
spaces are taken from [1] and [4, II, §9]. The results on extraspecial 
p-groups stated below are from [3] and [4]. 

Let P be an extraspecial p-group. Then P has order p 2 n + 1 for 
some positive integer n. P is the central product of n nonabelian sub­
groups of order p3. In all cases, P has generators x1? • • -, x2n satisfying 
the following relations once a suitable generator z of Z(P) is chosen. 

[x2i-i,x2i] = z, i = 1, • • -,n. 

[£j>£fc] = 1 unless {j,k} is one of the pairs {2i — 1, 2i} or 

{2i, li — l}for some i, 1 ^ i ^ n. 

x ^ G (z) for alii, z*> = 1. 

If p is odd, there are two isomorphism classes; one with P of ex­
ponent p and one with P of exponent p2. In the latter case, we may 
take xi of order p2, Xi of order p if i ^ 1 and xip = z [3 , 
5.5.2]. 

If p = 2, P may be the central product of n dihedral groups of order 
8 in which case we may take x2i-i = x2* = 1, i = 1, • • *, n. If 
p = 2, the only other possibility is that P is isomorphic to the central 
product of n — 1 dihedral groups of order 8 and a quaternion group. 
In this case, we take xft-i = *& = 1 ? * = 1? • • *, n — 1, acfn-i.

 = 

Let x,yG.P. If one sets (x, y) = ä where [x, y] = za,PIZ(P) 
becomes a nondegenerate symplectic space over GF(p). The first 
two relations above may be expressed as (x2i_i, x2i) = 1, i = 1, 
• • -, n, (Xj, Xfc) = 0, unless {j, k} is one of the pairs {2i — 1, 2i} or 
{ 2 t , 2 t - l } , l ^ i ^ n . 

If p = 2, we may also set q(x) = c where x2 = zc (c = 0 or 1). 
Then 9 is a quadratic form on P/Z(P). If P is the central product of 
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n dihedral groups of order 8, then [4, III, §13] 

(2.2) q(x{> xi2'" x&) = l i ?2 + « ' • + ?2»-i Î2n. 

If P is the central product of n — 1 dihedral groups of order 8 and a 
quaternion group, then 

, o\ 9 W ^2 2 ' ' ' ^ 2n ) = bl b2 + ' ' ' + S2n-3b2n-2 + b 2n-l 

+ b2n-lb2n + b2n-

These are precisely the two possible normal forms of a nondegenerate 
quadratic form over GF(2) [2, Chapter VIII]. In both cases the 
quadratic form and the bilinear form are related by q(xy) = q(x) 

+ q(y) + (*> y)-

3. (3A) Let <f> G Aut P. <f> induces on PIZ(P) an element of 
Sp (2n,p) if and only if<f> acts trivially on Z(P). If p = 2, q(<j}(x)) = 
q(<l>(x)) = q(x)for all XELP. 

PROOF. For x,y G P , (<£(*)> 4>(y)) = W*)* <K*/)) = (*> y) if a n d 
only if [x, y] = [</>(x), </>(*/)] = 0( [x, t/] ). Since Z(P) = P ' , this proves 
the first assertion. If p = 2, the second follows since <f>(x)2 = <f>(x2) = x2 

for all x G P. 
From now on / / denotes the subgroup of Aut P consisting of all 

members of Aut P which act trivially on Z(P). If a G Aut P and 
fc G H,(OL-1}WL){Z) = « - ^ ( « ( z ) ) ] = c r e a t e ) ] = 2. Hence,// < Aut P. 
Of course if p = 2, Aut P = H. 

(3B) Le£ m be a primitive root mod p i£>i£/i 0 < m < p. Let 0 
be defined by 0(x2i_i) — x$-i, 0(x2i) = x2i, i = 1, * * ', n, 0(z) = zm. 
77ien 0 can be extended to an automorphism of P of order p — 1. 
Furthermore, Aut P = ( 6)H and (0) D H= (1). 

PROOF. The first statement follows since [x^-i, x2,] = zm (also 
if p is odd and P has exponent p2, Ximp = zm) and so x^- i , *2i, 2m 

satisfy the same relations as x2i—i, x2i, z. That Aut P = ( 6)H is also 
clear since if a G Aut P, 0aa G H for a suitable power a. From the 
definitions < 0) ClH= (1). 

(3C) The group M of all automorphisms which act trivially on 
both Z(P) and PIZ(P) is equal to the group I of inner automorphisms. 
It consists of the p2n automorphisms 0 determined by <f>(xi) = X{Zdi, 
<f>(z) = z, 0 ^ di < p. 

PROOF. Clearly I of order p2n is contained in M. Each element of 
M must be determined by one of the p2n functions mentioned in the 
lemma. All statements now follow. 

(3D) Each element of P can be expressed uniquely in the form 

(U^n^0 = ai,c<p. 
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PROOF. This is true because {Xijf^i is a basis of the vector space 
PIZ(P). 

We now regard Sp (2n, p) as operating on P/Z(P) and preserving 
the skew-symmetric bilinear form (x, y). Let T G Sp (2n, p) and 
let A = (öy) be the matrix of T relative to the basis {Xi}f=i where the 
üij are integers with 0 ^ ay- < p for all i and j . Define a function <f> 
from P to P by 

[ 2n / 2n \ a i -t 

n (n vj ) V 
where ( f ^ i x / 1 ' ) ^ , 0=ai, c < p, is the expression for x given in 
(3D). Call <f> the junction determined by T. <f> is well defined, acts 
trivially on Z(P) and induces T on P/Z(P). Since T is nonsingular 
the range of <j> generates P modulo Z(P) so the range of <f> generates 
P since Z(P) is the Frattini subgroup. Therefore, <f> is an auto­
morphism of P if and only if </> preserves multiplication. In this direc­
tion it is immediate that 

<K*iûi)= (n^ a i j ) û '=^) f l i and 

(3.2) 

<\> ( [ f l *iai ] *c ) = [ i l *(*) f l ' ] *C: for 0 g ai? c < p. 

Furthermore, (</>(*), <%)) = (T(x), T(j/)) = (x, y). Hence 

(3.3) [*(*), <%)] = [x, y] for all x, y G P. 

(3E) HU is isomorphic to the subgroup G of Sp (2n, p) consisting 
of all transformations which determine automorphisms of? by (3.1). 

PROOF. By (3A) each <f> G H induces a transformation T G Sp (2n, p) 
on P/Z(P). The map </>—» T is a homomorphism of H into Sp (2n, p) 
whose kernel is / by (3C). The image of the homomorphism obviously 
contains the set G of all transformations which determine auto­
morphisms of P. On the other hand, let T be the image of <£> and let 
<t>i be the function on P determined by T. We shall show that 
<f) = a</>i for some inner automorphism a. 

Let 0(xi) =_ (JX'%/,v)*Cl> 0 = öy-, Ci < p. Then the matrix of T relative 
to {xi} is (öy). There exists a unique set of integers d\, * * *, (Ì2n> 
0 ^ di < p such that ^jdijdj = c* (modp), i = 1, • • -, 2n. By 
(3C) there is an inner automorphism a such that a(Xj) = Xi£di, i = 1, 
• • -, 2n. Let x G P and let x = (n*iöi)2c> ° = ai, c < p. Then 
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(a*x)(*) = «( [n (n *ja,i) ]*c ) 

= [ n ( n «(XJT» )" ] * 
i j J 

= [n (n^^T> e 

= [ n ( n */- T *ai *c 

i j 

Hence 

#*) = * [ (n^ai )*c] 
= [ n ( ( n Xf"')^)" ]^=(«*1)(x). 

Therefore, 0! = a_1<£ is an automorphism and the image of H under 
the homomorphism is G. Thus G is a group and HU = G. 

(3F) Let T G Sp (2n, p) and Ze£ 0 foe the function on P determined 
by T. Then<t> G Aut P if and only if4>(xi)p = xf, i = 1, • • -, 2n. 

PROOF. Since 0 acts trivially on Z(P), the condition is necessary. 
Conversely, assume 4>(xi)v = xf = z?i, 0 ^â yi < p, i = 1, • • -, 2n. Let 

x = ( f i Xi'a<)zc\ y= ( f i * b ' ) z * , 0^ahbiyCi<p. 

We have 

(
2n v 2 n - l 2n 

n '̂+b') n n w\^\ 
=( n *i"+*' y 

for some e. By (3.2) and (3.3), 

n*(*)fl,n*(*Obl = [Il^^l+fcì ** 

Thus, 0(act/) = <£[(n*<fl'+^2c,+Ci+€f ] • Now set d + b{ = r{ + 8,-p 
and Ci + c2 + e + 2JYÌ8Ì = r + tp with 0 S r*, r < p, i = 1, • • •, 
2n. Then </>(**/) = <t>[([\xir')zr] = [Yl<t>(xi)r']zr. On the other hand, 
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</>(*>%) = [Yi<t>(*i)ai] [ n * ( ^ ) b i ] ^ i + c 2 

= [Y[<l>(Xi)a*+bt\Zci+c2+e 

= [114>(*i)ri] [ n ^ 6 i l ] * c l + c 2 + É ? -
Hence, <f>(xy) = </>(*)</>((/) as desired. 

4. If p is odd and P has exponent p, the condition of (3F) is always 
satisfied. Therefore, in this case, HU = Sp (2n, p). 

If p = 2, the condition is 0(XJ)2 = x*2, i = 1, • • -, 2n. This is 
equivalent to q(<f>(xi)) = q(T(Xi)) = q(%i) for all i. Thus the neces­
sary condition q(<l>(x)) = q(T(x)) = g(x) given by (3A) is also suf­
ficient to guarantee that T determines an automorphism. Hence, 
HU is the orthogonal group associated with the appropriate quadratic 
form (2.2) or (2.3). The orders as well as other properties of these 
groups have been given by Dickson [2, Chapter VIII]. 

Assume now that p is odd and P has exponent p2. As stated in §2 
we may take x^ = z, xf = 1 for i > 1. Then ^(x^ = (Y\jXjaii)p = 
WjXj^J = za» by (2.1). Hence the group G of (3E) consists of all 
elements of Sp(2n, p) whose matrices relative to {Xi} satisfy 
a n = 1> OU = 0 for i > 1. The structure of G can be studied in a 
more general context. 

Let q = pr where p is any prime. Regard Sp (2n, q) as transforma­
tions of a nondegenerate symplectic space V over GF(q) preserving 
its skew-symmetric form. Let Xi, • • *, x2n be a basis of V such that 
X2i— l? x%i i s a hyperbolic pair for i = 1, • • -, n and 

V = (XUX2) 1 ' * * 1 <*2n-l, *2n>. 

By the matrix of a linear transformation of V we shall mean the matrix 
relative to this basis. Let L be the subgroup of Sp (2n, q) of all trans­
formations whose matrices have first column (1, 0, • • -, 0). 

(4A) Forali T G L, T(x2) = x2. 
PROOF. Let T G L and let Tfa) = yiy i = 1, • • -, 2n. Since T is an 

isometry, V = <J/i, f/2> -L " ' * i- <J/2n-i> J/2n>- Let Hi = (t/i, t/2> and let 
fii denote its orthogonal complement. Then by the definition 
ofL, 

(4.1) Hi = (t/3, !/4> 1 ' ' * 1 (f/2n-l,t/2n> C <X2, X3, ' ' ', X2n). 

Let A = (ay) be the matrix of T and suppose a22
 = 0- Then 

(f/i, xi + ai2*2)
 = (*i + 2f=2flii*«> *i + ^12*2) = -Û12 + «12 = 0 and 

(j/2, «i + 012*2) = ( X I = 3 Ö 2 Ä *i + ^12*2) = 0. Therefore (xi + 012*2) 
G Hi1, contrary to (4.1). Hence a22 7̂  0. 

Now ^CiXi G (t/2)1 if and only if 
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2n v 2n 
S Ozfö^CiXi) = - c i a 2 2 + S ^Ci{Xj,Xi) 

j=2 ' i,j=2 

2n p n n _ 

= -C!fl22+ S S a2JC2t(Xj, X2t)+ S û^2t- i (^ ,X 2 t - l ) | 
j-=2 L t = l *=2 J 

n 

= — Cxfl22 + S (a2,2t-\C2t - Ö2,2tC2t-l) = 0 , 
f=2 

since a2i = 0. Hence ^Ci%i G (i/2) if and only if 

°l = 2 (a2,2t-lC2t - a2,2tC2t-l) M22. 
L t=2 J 

On the other hand, ^CiXi G (t/i ) if and only if 

/ 2n v 

( *1 + 2 aU*/> E^i ) 
X j=2 7 

n 
= C2 — C1CI12 + 2 ( f ll,2t-lC2t ~~ al,2tC2t-l) = 0. 

*=2 

This implies 2c»xt G Hi if C3, c4, • • -, c2n are chosen arbitrarily and 
Ci and c2 are taken as indicated above. But by (4.1) we know Ci = 0 
always and this requires a2i = 0 for i > 2. We already know a21 = 0 
and since (t/x, t/2) = 1 = (xi + 2i=2fly, #22*2) = Ö22, (4A) is proved. 

We note at this point that if n = 1, then L is isomorphic to the 
group of all matrices of the form 

/ 1 a1 2 \ 
^ 0 1 / 

and hence is an elementary abelian p-group of order q. From now 
on let n > 1 hold. 

Each of the q2n~l pairs yÌ9 y2 with t/i = Xi + X f = 2 a i Ä y2 = *2 
is a hyperbolic pair and the set of these pairs is invariant under L. 
Suppose T G L fixes all of these pairs. Then T fixes the pairs x1? x2 

and Xi + Xi, x2, i > 2, which implies T is the identity. Therefore L 
is a permutation group on these pairs. 

If yi, y2 is one such pair, the map T(x\) = t/i, T(x2) = t/2 has an 
extension to an element S G Sp (2n, q) by Witt's theorem [4, II, 9.9]. 
But for each i> 2, S(x$) is in the orthogonal complement of (x2) 
which is (x2, • • -, x2n) and therefore S G L . Hence L acts transitively 
on the pairs. 
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It follows that \L\ = q2n~l\K\ where K is the subgroup fixing the 
pair xi, x2. But each element of Kyields an isometry of (x3, x4, • • -, x2n) 
by restriction and conversely each such isometry can be extended in a 
unique way to an element of K. Hence K = Sp (2n — 2, q). Therefore 

| L | = 9 2 » - y n - i ) 2 j j ( g 2i_ !) 

i = l 

n - 1 
= q"2 I I (92i - l)-

i = l 

The group of matrices of elements of K is the set of all matrices 

Kß = 

B 

0 0 

where B is the matrix of an arbitrary element of Sp (2n — 2, q) relative 
to the basis x3, x4, • • •, x2n-

Let S be the group of transformations whose matrices relative to 
*i> ' ' "> 2̂n have the form 

1 

0 

0 

0 

Ö12 

1 

« 1 4 

- « 1 3 

Ö13 ' 

0 • 

* ' « l , 2n 

• • 0 

c = 

^ l , 2 n 

" ö l , 2 n - l 

where / is the identity matrix of rank 2n — 2. Since 
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1 
0 

0 

0 

ma12 

1 

mai4 

-mal3 

mai3 • 
0 

• • mah2r{ 

' ' 0 

C m = 

0 mö1)2„ 

vO -mah2n-i 

S has exponent p. If p is odd, it is easily verified that S is a special 
p-group of order q2n~l whose center has order q. If p = 2, S is ele­
mentary abelian. Clearly KC\ S = (1) and from the group orders 
L = KS. 

Computing with the matrices above, we have 

RB 1CRB — 

Ö 1 2 

1 

Ö14 N 

" « 1 3 

(«13 , * 

0 • 
* %ûl,2n)B 

• • o 

I 

B - i 

0 \ — Û 2 n - 1 

This shows that S <3 L. This completes the proof of Theorem 1. 
PROOF OF COROLLARY 1. For a coset decomposition of H relative to 

I we may write H = U l<i>i where fa runs over all automorphisms of 
P which are determined by transformations in G (refer to (3E)). If 
p is odd and P has exponent p2, we have seen that <k(jc2) = *2 for 
each such fa. Thus <£(x2) = x2 for all <f> G H and the same is true 
for all 0 G AutPby(3B). 

PROOF OF COROLLARY 2. Let <f> satisfy the hypotheses of Corollary 
2. Then <\> G H and from the preceding paragraph <f> = afa where a 
is an inner automorphism and fa is an automorphism of P determined 
by some T G Sp (2n, p). Thus the action of </> on P/Z(P) is the same as 
T on P/Z(P). Hence (T) acts irreducibly on P/Z(P) and by [4, 
II, 9.23] if the order of T is m, m \ (pn + 1). This m is the least positive 
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integer such that <f>m acts trivially on PIZ(P) and hence by (3C) the 
least positive integer such that <j>m G /. 

If p is odd, P cannot have exponent p2 by Corollary 1. 
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