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THE AUTOMORPHISM GROUP OF AN
EXTRASPECIAL p-GROUP

DAVID L. WINTER

1. Let p be a prime. The finite p-group P is called special if either
(i) P is elementary abelian or (ii) the center, commutator subgroup
and Frattini subgroup of P all coincide and are elementary abelian.
A nonabelian special p-group whose center has order p is called an
extraspecial p-group. It is possible to give a uniform treatment of the
subject of automorphisms for all the possible isomorphism types of
extraspecial p-groups and so some cases that are more or less known
are included here. The result when p is odd and P has exponent
p? leads to an interesting subgroup of the symplectic group Sp (2n, q),
q a power of p, n> 1. This subgroup is the semidirect product of
Sp (2n — 2,q) and a normal special p-group of order g2*~! whose
center has order q.

TueEOREM 1. Let p be a prime and let P be an extraspecial p-group
of order p***+1. Let I be the group of inner automorphisms and let H
be the normal subgroup of Aut P consisting of all elements of Aut P
which act trivially on Z(P). Then Aut P = ( 0)H where 0 has order
p — 1, HMN (0) = (1) and H|l is isomorphic to a subgroup of Sp (2n, p).
Furthermore,

(a) If p is odd and P has exponent p, H/I = Sp (2n, p) of order
pr Tli=a(p® = 1).

(b) If p is odd and P has exponent p2, H/I is the semidirect product
of Sp (2n — 2, p) and a normal extraspecial group of order p?*~1. (If
n =1, H/I has order p.)

(c) If p = 2, HII is isomorphic to the orthogonal group O(2n, 2) of
order 2nm=D+1(2n — )[]i5,' (2% — 1). Here € = 1 if P is isomorphic
to the central product of n dihedral groups of order 8 and € = —1
if P is isomorphic to the central product of n — 1 dihedral groups of
order 8 and a quaternion group.

CoroLLary 1. Let p be an odd prime and let P be an extraspecial
p-group of exponent p2 There is a nonidentity element of PIZ(P)
left fixed by every automorphism of P.
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CoroLLARY 2. Let P be an extraspecial p-group of order p?n+!
and let ¢ be an automorphism of P which acts trivially on Z(P) and
irreducibly on P|Z(P). Then the order of ¢ modulo I, the group of
inner automorphisms, is a divisor of pr+ 1. If p is odd, P has
exponent p.

2. As usual, Aut P denotes the automorphism group of P, Z(P) the
center of P. If x € P, ¥ means the coset Z(P)x. If a is a rational integer
@ means its image under the natural map of the integers onto GF(p).
Since P has class 2, for p odd,

(2.1) (xy)P = xPyP,

x,y EP [3, 539]. The terminology and concepts of symplectic
spaces are taken from [1] and [4, II, §9]. The results on extraspecial
p-groups stated below are from [3] and [4].

Let P be an extraspecial p-group. Then P has order p2+! for
some positive integer n. P is the central product of n nonabelian sub-
groups of order p3. In all cases, P has generators x;, * * *, xg, satisfying
the following relations once a suitable generator z of Z(P) is chosen.

[x2i—ls x2i] =z, i= ]-) RPN (3
[x,x] = 1 wunless {j,k} is one of the pairs {2i — 1, 2i} or
{2i,2i — 1} for some i, 1 = i=n.

x? € (z) foralli, zp = 1.

If p is odd, there are two isomorphism classes; one with P of ex-
ponent p and one with P of exponent p2 In the latter case, we may
take x; of order p2, x of order p if i#1 and x,»=2z [3,
5.5.2].

If p = 2, P may be the central product of n dihedral groups of order
8 in which case we may take X2, 1= xé,-— 1, i=1, -+, n If
p = 2, the only other possibility is that P is isomorphic to the central
product of n — 1 dihedral | groups of order 8 and a quatermon group.
In this case, we take x5, =xx=1,i=1, -, n—1,x3,_, =
xz,, = 2.

Let x,y €P. If one sets (%, §)=a where [x,y] = 2% PIZ(P)
becomes a nondegenerate symplectic space over GF(p). The first
two relations above may be expressed as (Fpi_1, %) =1, i=1,

©+, n, (X, %) = 0, unless {j, k} is one of the pairs {2i — 1, 2i} or
2,2 — 1}, 1=i=n.

If p=2, we may also set q(X) =¢ where x2=2° (¢c=0 or 1).
Then q is a quadratic form on P/Z(P). If P is the central product of
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n dihedral groups of order 8, then [4, III, §13]
(2:2) Q(ﬁ' Bz =8&+ o+ b b

If P is the central product of n — 1 dihedral groups of order 8 and a
quaternion group, then

—&on -
Q(xéll xgz exg) = E &4 o+ Gl o+ 5y

+ &b + &

These are precisely the two possible normal forms of a nondegenerate
quadratic form over GF(2) [2, Chapter VIII]. In both cases the
quadratic form and the bilinear form are related by q(x7) = q(%)

+49@) + & 9)

3. (3A) Let ¢ €E AutP. ¢ induces on P/Z(P) an element of
Sp (2n, p) if and only if ¢ acts trivially on Z(P). If p = 2, q(¢(x)) =
q(@(x)) = q(x) forallx € P.

Proor. For x,y € P, (¢(X), ¢(7)) = (¢(x) d)(y)) (%, g) if and
only if [x,y] = [¢(x), d(y)] = ([, y]). Since Z(P) = P’, this proves
the first assertion. If p = 2, the second follows since ¢(x)2 = $(x2) = x>
forallx € P.

From now on H denotes the subgroup of Aut P consisting of all
members of Aut P which act trivially on Z(P). If a« € AutP and
h € H(a ha)(z) = a [h(a(z))] = a 1[a(z)] = z. Hence,H <\ Aut P.
Of course if p = 2, Aut P = H.

(3B) Let m be a primitive root mod p with 0 <m < p. Let 0
be defined by 0(xgi_1) = xgi—1, O(x) = %9, i =1, =+ -, n, 6(z) = z™
Then 6 can be extended to an automorphism of P of order p — 1.
Furthermore, Aut P = (0)H and (0) N H = (1).

Proor. The first statement follows since [xgi_1, x2;] = z™ (also
if p is odd and P has exponent p2, x;”” = z™) and so x3i_1, Xgi, 2™
satisfy the same relations as xg;_;, xp;, 2. That Aut P = (0)H is also
clear since if @ € Aut P, 6°a € H for a suitable power a. From the
definitions {( ) N H = (1).

(3C) The group M of all automorphisms which act trivially on
both Z(P) and PIZ(P) is equal to the group I of inner automorphisms.
It consists of the p2" automorphisms ¢ determined by ¢(x;) = x;z%,
d(z)=20=d<p

Proor. Clearly I of order p?" is contained in M. Each element of
M must be determined by one of the p?" functions mentioned in the
lemma. All statements now follow.

(3D) Each element of P can be expressed uniquely in the form
( 2t 20, 0=a,c<p.

(2.3)
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Proor. This is true because {321-},1221 is a basis of the vector space
PIZ(P).

We now regard Sp (2n, p) as operating on P/Z(P) and preserving
the skew-symmetric bilinear form (%,%). Let T € Sp (2n,p) and
let A = (a;) be the matrix of T relative to the basis {X;}i?, where the
a; are integers with 0 = g; < p for all i and j. Define a function ¢
from P to P by

2n a;

(31) o= [ I (H 5 ) ]

where ([[#xf)z¢, 0= a;, ¢ < p, is the expression for x given in
(3D). Call ¢ the function determined by T. ¢ is well defined, acts
trivially on Z(P) and induces T on P/Z(P). Since T is nonsingular
the range of ¢ generates P modulo Z(P) so the range of ¢ generates
P since Z(P) is the Frattini subgroup. Therefore, ¢ is an auto-
morphism of P if and only if ¢ preserves multiplication. In this direc-
tion it is immediate that

B(x) = (Hx, )" =¢)=  and
(32)

d)( [ﬁ xi“‘]z0> = [ijl ¢(aq)‘”] z° for0 = a;, c < p.

i=1

Furthermore, (¢(x), #(y)) = (T(®), T(7)) = (%, 7). Hence
(3.3) [6(x), d(y)] = [x,y] forallx,y EP.

(3E) HII is isomorphic to the subgroup G of Sp (2n, p) consisting
of all transformations which determine automorphisms of P by (3.1).

Proor. By (3A) each ¢ € H induces a transformation T € Sp (2n, p)
on P/Z(P). The map ¢— T is a homomorphism of H into Sp (2n, p)
whose kernel is I by (3C). The image of the homomorphism obviously
contains the set G of all transformations which determine auto-
morphisms of P. On the other hand, let T be the image of ¢ and let
¢, be the function on P determined by T. We shall show that
¢ = a¢, for some inner automorph1sm .

Let ¢(x;) = (I]_,acJ )z°, 0 = a;, ¢; < p. Then the matrix of T relatlve
to {x;} is (a,,) There exists a unique set of integers d;, ‘-, da,,
0=d;<p such that Da;dj=¢; (modp), i=1, ---, on, By
(3C) there is an inner automorphism a such that a(x;) = x;zd;, i = 1,

. 2n. Letx E Pandletx = (]—[x,» 4)z°,0 = a;, ¢ < p. Then
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(@) = a( [T (I » 5 ) ]=)

= [1 (e ) =

i

= [ (e ) ]

i

- n(l‘[xjj ] =

1

d(x) = ¢ [ <H X% >Z°]

= [ (I 5 )= )" ]= = @i,

i

Hence

Therefore, ¢; = a~'¢ is an automorphism and the image of H under
the homomorphism is G. Thus G is a group and H/I = G.

(3F) Let T € Sp (2n, p) and let ¢ be the function on P determined
by T. Then¢ € Aut Pifand only if¢(x;)r = x,7, i =1, - - -, 2n.

Proor. Since ¢ acts trivially on Z(P), the condition is necessary.
Conversely, assume ¢(x;)? = 27 = 2%, 0= y; < p,i=1, - -+, 2n. Let

2n 2n
v= (I w= )z y= (IT = )= 0=aboa<p
i=1 i=1
We have
~1

2n 2n
IT H x;b =< l—[l x;-“"”") -H1
1 1= Jj=

i

2n
IT [t %t
k=j+1
2n
=< H xia,+b.' )ze
i1
for some e. By (3.2) and (3.3),

TTex) TIex = [Tl 1

Thus, ¢(xy) = ¢[(| [x**P)za+a+e]. Now set a;+ bi=r+ 6,p
and ¢; + co+ e+ Dydi= r+tp with 0——r,,r<p, =1, --
2n. Then ¢(xy) = d)[(l_[x, = [[]¢(x:)"]z". On the other hand
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By = (Mo Ttz 2+
= [[[(xi)2+b]zer+ere
= [[Te(x)"] [[]z700zc1 e e,
Hence, ¢(xy) = ¢(x)¢(y) as desired.

4. If p is odd and P has exponent p, the condition of (3F) is always
satisfied. Therefore, in this case, H/I = Sp (2n p).

If p=2, the condition is ¢(x;)?= 2% i=1, -+, 2n. This is
equivalent to q(b(%:)) = q(T(%)) = q(%;) for all i. Thus the neces-
sary condition q(¢(%)) = q(T(x)) = q(x) given by (3A) is also suf-
ficient to guarantee that T determines an automorphism. Hence,
H/I is the orthogonal group associated with the appropriate quadratic
form (2.2) or (2.3). The orders as well as other properties of these
groups have been given by Dickson [2, Chapter VIII].

Assume now that p is odd and P has exponent p% As stated in §2
we may take x;” =z, x» =1 for i > 1. Then ¢(x;)» = ([[j;*)” =
[Iix"* = 2z by (2.1). Hence the group G of (3E) consists of all
elements of Sp(2n,p) whose matrices relative to (%} satisfy
g1 =1, @, =0 for i > 1. The structure of G can be studied in a
more general context.

Let g = p" where p is any prime. Regard Sp (2n, q) as transforma-
tions of a nondegenerate symplectic space V over GF(q) preserving
its skew-symmetric form. Let x;, * -, %2, be a basis of V such that
Xgi—1, Xgiis a hyperbolic pairfori =1, - - -, nand

V= {(x;,x3) L -+ L {xpn1, Xs).

By the matrix of a linear transformation of V we shall mean the matrix
relative to this basis. Let L be the subgroup of Sp (2n, q) of all trans-

formations whose matrices have first column (1,0, - - -, 0).
(4A) FordllT € L, T(xp) = xs.
Proor. Let T € L and let T(x) =1y, i=1, -+, 2n. Since T is an

lsometry, =(yoys) L - L (yzn 1> Yan). Let Hl = <yl, yz>and let
Hy denote its orthogonal complement. Then by the definition
of L,

(4.1) Hll = <y3, y4> L1 (yzn—l, y2n> C (xg, x5, * * *, Xon).

Let A= (az) be the matrix of T and suppose ag = 0. Then
(yl, X1 + a12x2) (xl + 2 —9@1iX;, X1 + QIQX2) = —aq + ajg = 0 and
(Y2, x1 + ay2x3) = (El Z3asj%j, X1 + aiaxz) = 0. Therefore (x; + ajoxs)
€ H/', contrary to (4.1). Hence agy # 0.

Now ¢ € (yo)* if and only if
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2n 2n
(2 Az;%j, 2@%) = —cC1a2 t+ 2 a9iCi(%;, X;)

j=2 i,§=2

2n n n
= —cag + 2 [ 2 aziczz(xj, Xoe) + 2 aziczt—l(xj, x2t—l)]
j=2 L =1 t=2

n
= —ciagp + D (@220-1C2t — Ga2:Coe-1) = 0,
=2

since ag; = 0. Hence ¢ € (yo)" if and only if

n
= [ Y (as0e-102: — 02,2t02t—1)] lags.
=2

On the other hand, Y.cix; € (y; )l if and only if

2n
(xl + 2 ayx;, Ec,'x,- >
ji=2

=cp— cia;p + X, (@1,20-1C2 — @1,26€36-1) = 0.
t=2

This implies Zcixi € Hi ifcs, ca, *°°, Con are chosen arbitrarily and
c; and ¢, are taken as indicated above. But by (4.1) we know ¢; = 0
always and this requires ag; = 0 for i > 2. We already know ay; = 0
and since (y;,y2) = 1= (x; + Eflgau, AgeXe) = agp, (4A) is proved.

We note at this point that if n =1, then L is isomorphic to the
group of all matrices of the form

( 1 012>

0 1

and hence is an elementary abelian p-group of order q. From now
on let n > 1 hold.

Each of the g2"~! pairs y,;,y, with y; = x, +2?:2 a1%;, Y2 = Xy
is a hyperbolic pair and the set of these pairs is invariant under L.
Suppose T € L fixes all of these pairs. Then T fixes the pairs xj, x,
and x; + x;, xp, i > 2, which implies T is the identity. Therefore L
is a permutation group on these pairs.

If y1, yo is one such pair, the map T(x;) = y;, T(xz) = y; has an
extension to an element S € Sp (2n, g) by Witt’s theorem [4, I, 9.9].
But for each i> 2, S(x;) is in the orthogonal complement of (x;)

which is (xg, * - *, x2,) and therefore S € L. Hence L acts transitively
on the pairs.
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It follows that |L| = g2"~!|K| where K is the subgroup fixing the
pair x1, xo. But each element of K yields an isometry of (x5, x4, * * *, Xn)
by restriction and conversely each such isometry can be extended in a
unique way to an element of K. Hence K= Sp (2n — 2, q). Therefore

n—1
R el | URE
i=1

n—1
=" T @~ 1.
i=1

The group of matrices of elements of K is the set of all matrices

S O -

S = O
S o
(=]

where B is the matrix of an arbitrary element of Sp (2n — 2, q) relative
to the basis x3, x4, * * *, Xon.

Let S be the group of transformations whose matrices relative to
X1, * * *, %o, have the form

I ap a3t Gign
0 1 o - - - 0
0 A4
0 —ap
C=
I
0 ay2n
0 —ajn

where [ is the identity matrix of rank 2n — 2. Since
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1 may, ma,s * Mmaj on
0 1 0 0
0 may
0 —may,
Ccm=
I

0 malygn

0 —ma, on—1

S has exponent p. If p is odd, it is easily verified that S is a special
p-group of order g?*~! whose center has order q. If p =2, S is ele-
mentary abelian. Clearly KM S = (1) and from the group orders
L= KS.

Computing with the matrices above, we have

1 ae (a13, = * ", a12n) B
0 1 0o - - - 90
0 ay
Rg~!CRp = : —a; I
B-1
0 T A2n—1

This shows that S <I L. This completes the proof of Theorem 1.

Proor or CoroLLARY 1. For a coset decomposition of H relative to
I we may write H = U I¢: where ¢; runs over all automorphisms of
P which are determined by transformations in G (refer to (3E)). If
p is odd and P has exponent p2 we have seen that ¢y(%;) = %, for
each such ¢;. Thus ¢(x;) = %, for all @ € H and the same is true
for all ¢ € Aut P by (3B).

Proor oF CoroLLARY 2. Let ¢ satisfy the hypotheses of Corollary
2. Then ¢ € H and from the preceding paragraph ¢ = a¢; where
is an inner automorphism and ¢; is an automorphism of P determined
by some T € Sp (2n, p). Thus the action of ¢ on P/Z(P) is the same as
T on P/Z(P). Hence (T) acts irreducibly on P/Z(P) and by [4,
IL, 9.23] if the order of T is m, m | (p™ + 1). This m is the least positive
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integer such that ¢™ acts trivially on P/Z(P) and hence by (3C) the
least positive integer such that ¢™ € L.
If p is odd, P cannot have exponent p2 by Corollary 1.
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