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LARGE ABELIAN SUBGROUPS OF SOME INFINITE GROUPS 
VANCE FABER 

ABSTRACT. A generalization of the following conjecture of 
W. R. Scott is proved. If (Ha)a^g is a well-ordered descending chain 
of subgroups of a group with the property that Hß = Oa<ßHa for 
limit ordinals, then [ H 0 : H8] ^ 11« <«[**<* : H a + 1 ] . Using this, 
we show that the members of certain classes of infinite groups are 
guaranteed to have large abelian subgroups. 

1. Introduction. Following Kurosh [5, p. 171], a totally ordered 
system <7Z of subgroups of a group is said to be complete if for an 
arbitrary subsystem of li, the unions and the intersections of the sub­
groups forming the subsystem belong to ^U. W. R. Scott [8, p. 21] 
has conjectured that, if (Ha)a^s is a well-ordered descending complete 
system of subgroups of a group H0, then 

(1) [H0:H6] ^ I ] [Ha:Ha+l\. 
a<ò 

In a private communication, Scott has shown that this is indeed 
true for 8 = o>, the first infinite ordinal, and has stated that under 
these same conditions both he and, independently, A. Kruse have 
proved that 

[H0:H,]^ [ f i [Ha:Ha+1]]w. 

In §3 we shall establish a generalized form of Scott's conjecture 
from which the latter can be deduced. In addition, we shall find a 
lower bound for [ Ho : H8] which will be useful in §4. 

If m is a cardinal number, we define exp m = exp lm = 2m. Induc­
tively, if n is any positive integer, we define expn+1ra = exp expnm. 
In §4 we utilize equation (1) to investigate the existence of large 
abelian subgroups of certain infinite groups. For example, C. R. 
Kulatilaka has shown [4, p. 241] that every infinite SJ*-group G 
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has an infinite abelian subgroup A such that A<i2 G (A is normal in 
its normal closure, AG). We shall show that every infinite SI*-group 
G has an abelian subgroup A such that exp2|A| ^ \G\, in fact, Theorem 
5 states that G need only have an ascending invariant series with FC 
factors. For similar results on large discrete subspaces of topological 
spaces, the reader should see [2] and [3]. 

2. Notation. Let S and T be sets. S < T will always mean strict 
inclusion. The cardinality of S will be denoted by |S|. If G is a group 
and H is a subgroup, we write H < n G if there is an ascending normal 
series 

H= H0<HX< • "<Hn= G 

from H to G. C(H) = C (H ^ G) denotes the centralizer of H in G, 
while N(H) = N (H ^ G) denotes the normalizer of H in G. A trans­
versal for H in G is a full set of distinct coset representatives for H 
in G; if a transversal contains the identity, it is said to be normalized. 

Let sym |S| = sym1 |S| be the order of the symmetric group on |S| 
letters; if n is a positive integer, define symn+1 |S| = symsymn|S|. We 
shall frequently make use of the fact that 

| A u t ( G ) | ^ s y m | G | , 

where Aut (G) is the group of automorphisms of G. 
We assume the terminology of §57 and §63 of [5] to denote 

various classes of generalized solvable and nilpotent groups. 
Let Fi(G) be the set of all elements in G which have at most a 

finite number of conjugates in G. As in [1], we define the upper 
FC-series of G to be the ascending characteristic series 

E = Fo(G) < F^G) < • • • < Fa(G) < • • • 

where Fa+l(G)IFa(G) = Fi(G/Fa(G)), and if ß is a limit ordinal, then 
Fß(G) = LU/?Fa(G). If F^G) = G, G is said to be an FC-group. 
If Fa(G) = G for some a, then G is a ZFC-group; if a is an integer, G 
is FC-nilpotent. 

If m is an infinite cardinal, let Mi(G) be the set of all elements in 
G which have at most m conjugates in G. By analogy with the upper 
FC-series, we define the upper mC-series of G to be the ascending 
characteristic series 

E = Mo(G) < M^G) < • • • < Ma(G) < • • • 

where Ma+l(G)lMa{G) = Mi(G/Mtt(G)), and if 0 is a limit ordinal, then 
Mß(G) = (Ja<ßMa(G). If Mi(G) = G, Gis anmC-group; if Ma(G) = G 
for some a, then G is a ZmC-group. 
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If H is a class of groups, we let 3Ê I* be the class of all groups having 
an ascending invariant series with factors in $ . If every subgroup 
and every homomorphic image of an H -group is an # -group, then 
the same holds true for TU Z*-groups [5, §56]. 

Let ^U = (AJaGW be a complete ordered system of subgroups of a 
group G. We shall suppose that W is ordered by a relation < such 
that a<ß implies that A« < Aß. If a has an immediate successor 
in W, we denote it by a + 1. Let ^ be the set of all a in W for which 
a + 1 exists. If W is well ordered, H is an ascending series; if W 
with the inverse ordering is well ordered, U, is a descending series. 

If a is an ordinal, we say a is of the first kind if it has an immediate 
predecessor; otherwise, a is of the second kind. A limit ordinal is any 
nonzero ordinal of the second kind. 

3. The index theorems. 

THEOREM 1. Let ^U = (A^aswbe a complete ordered system of 
subgroups of a group G containing the whole group G = \ and 
some Ao = \\aewAx- Then 

[ G : A o ] g r i [ 4 , + i : 4 J . 

PROOF. Let R^ be a transversal for Aa in A a + 1 for each a G <ß. 
Let Ta be a transversal for Aa in G for each a G W. For each g G T0, 
let g« be the unique element in Ta such that Aag„ = Aag. If a EL £ , 
then consider AagB(gB+1)"1. Since A a + 1g a + 1 = A^+ig and Aaga = Aag, 
it follows that g(g a+i) - 1 G A a + 1 and that gag"1 €z Aa^ Aa+1; and, 
consequently, that ga(ga+i) -1 G. Aa+i. Thus we can define a unique 
point Fg in the cartesian product, J][a e^K«, by the two conditions 

(i) Fg(a) G ZL 
(ii) AaFg(a) = Aaga(ga+1)~1, 

for all a G ^. If the function F taking g to Fg is one-to-one, then 
| T01 = n « ^ l ^ * l > t n e conclusion of the theorem. 

If Fg = Fh for g and /i in T0, then by (ii) 

(*) A*ga(g«+l)_1 = AAtiK+l)'1 

for all a G ^ . Let P(a) be the statement that gfx= ha for all a G W. 
Since there is only one element in Tß, P(fx) obviously holds. If 
[S(l), S(2)] is a Dedekind section taken in W having the property 
that P(a) holds for all elements a G S(2), then we can easily find some 
ß G S(l) for which P(ß) holds. Suppose this were not the case, then 
ga^ ha for every a G S(l). Since A«g = A ^ ^ AJia = AJi, then 
gh-l^Aa for every a £ S ( l ) ; and so gh~l $ Uaes(i)Aa. But by 
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assumption, gh~l E A, for all a G S(2), and thus Ay = UaES(i)A* 
must be the last element of S(l). Similarly, A„g = A„/i for each 
a G S(2) implies that gh~l G Haes^A«. Hence n«es(2)Aa cannot be 
in S(l) and, therefore, must be the first element of S(2), namely 
Ay+i. But(*) andg y + 1 = hy+i together yield Aygy = Ayhy, contradicting 
the assumption that gy ^ hy. 

Let S ' (2 )= {aEW\a^ß} and let S'(l) be its complement in 
W. Then [S'( l) , S'(2)] is a section in W with S'(2) > S(2). Since 
gß = hß, we have gh~l G Aß ^ \ for every a^ ß, that is, goc= ha 

for all a E S '(2). Thus, by induction on the ordered set W [9, p. 
264], P(a) holds for all a G W. 

To complete the proof, we note that g0L= ha for all a E W implies 
that gh~l E A« for all a, and hence that gh~l E C\aewAx = AQ. Thus 
g = h and F is one-to-one. 

Statement (1) in the introduction is easily seen to be that special 
case of Theorem 1 in which W with the inverse ordering is a well-
ordered set. 

THEOREM 2. Let ^U = ( A ^ e w be a complete ordered system of sub­
groups of a group G containing the whole group G = A^ and some 
Ao = Pl«ewAa. Then 

S l i W A J ^ [G:Ao]. 

PROOF. If Q is finite, one can easily establish by induction that 

2[À. + i :ÀJ ^ I l [ 4 . + i : 4 J , 

the desired result in this case. 
If Q. is infinite, we shall establish the somewhat stronger statement 

(2) E [ 4 . + i : 4 > ] ^ [G:Ao]. 

Let i^ be a normalized transversal for A^ in A„+1 for each a E £. 
Let La be a normalized transversal for Ao in A„ for each a E Q. The 
main steps in the proof consist of showing that: 

(i) LaRa is a transversal for Ao in Aa+i for each a £ ^ ; 
(ii) {1} \Ja GgiLaRcSLat) is a transversal for Ao in G, and this union 

is disjoint; 
(iii) | I « , f t , | S 2 M l Z t f | . 

Since ^ is infinite, (iii) implies (2). Details are omitted. 
REMARK. If ^U is a complete ordered system as in the theorem, let 

2 {<U) = 2 [ 4 , + 1 : A J , n ( ^ ) = f i [4.+1 : AJ. 
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If the complete ordered system ll ' is a refinement of fZZ, then it is 
easily shown that 

2(7*')^ S(^)g [G:Ao] =s n(^)ân(^'), 
that is, the finer the system becomes, the worse the approximation to 
[ G : AQ] . However, using a general fact from cardinal arithmetic 
[9, p. 418], we obtain 

By examining first the case where £ is finite, and then the case where 
£ is infinite, one gets 

S ( ^ ) g [G:AQ] g 11(00 g exp X {11) g exp [ G : ilo]. 

Hence both 2(0/) and n(cZ^) are limited in range. In fact, if G is 
infinite and we assume the generalized continuum hypothesis, there 
are only two possible values for [ G : Ao] : 2 (7^) or exp 2((7^); also, 
there are only two possible values for II(TÌ): [G : Ao] or exp [G : Ao]. 
The only combination of these possibilities which cannot occur is 
[G : Ao] = exp 2 ( ^ ) andll(TZ) = exp [G : Ao]. 

4. Large abelian subgroups. 

LEMMA [4, p. 240]. If A is a maximal normal abelian subgroup of 
a group G and if Gl A is a ZA-group, then A— C(A). 

COROLLARY 1. If A is a maximal normal abelian subgroup of an 
infinite group G and if Gl A is a ZA-group, then exp \A\ i= |G|. 

PROOF [4, p. 240]. By the lemma, A = C(A). Hence Gl A is 
isomorphic to a subgroup of the group of automorphisms of A; and 
so if A were finite, G would also be finite. Thus A must be infinite 
and |Aut (A)| g exp |A|. It follows that 

\G\ = \A\ \G1A\ =§ \A\ |Aut (A)| S exp |A|. 

THEOREM 3. If Ax is a normal abelian subgroup of an infinite group 
G and if GlAi is a ZFC-group, then G has an abelian subgroup A 
containing Ax such that exp |A| ^ |G|. 

PROOF. Let Ao = E, H0 = G and HY = C(Al â G). Inductively, 
suppose that we have defined the ascending chain (Atx)a<ß and the 
descending chain (Ha)a<ß such that Aa^Z(Ha) for all a<ß. If ß 
is a limit ordinal, let Aß = {Ja<ßA« and let H^ = f]a<ßHa. If0 = a + 1 
for some ordinal a, let the superscript ~ denote homomorphic images 
in HJZ(Ha). Since Ha is a ZFC-group, if it is not trivial, there exists 
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an element xa+i in ffa\Z(Ha) such that xa+i is in Fi(Ha). Let A*+i 
= (xa+l)Z(Ha), and let H a + 1 = C (A^+i = Ha). Hence for all a, 
\ < ii^+i unless Ha = Z(ffa), that is, unless Ha is abelian. Let y be 
the first ordinal such that Hy is abelian. 

We note that since xa+i has onlv a finite number of conjugates in 
Hm n a + 1 = [H a :N(A, + 1 ^ H t t ) ] = [H t t :N(£ , + 1 ^ Ha)] is finite. 
Thus 

[Ha : ffa+1] = V i [ N ( 4 + i ^ Ha) : C(4 , + 1 ^ Htt)] 

^ n a + 1 |Aut(A*+i)|. 

Hence by Theorem 1 

| G | = \Hy\[G:Hy]ê \Hy\ ft[Ha:Ha+1] 

g |Hy| n»V.+i |Aut(A,+ i ) | ; 

and so if Hy were finite, G would also be finite. Thus Hy is infinite and 
it follows by equation (2) that 

| G | g \Hy\ FI No | A " + l l =|H y |Ko 2 " < ï | A " + l i 

g |Hy |Xo^l=exp|H7 | . 

THEOREM 4. If Ax is a normal FC-subgroup of an infinite FCre­
group G, then G has a ZFC-subgroup H containing Ax such that 
exp \H\ ^ \G\. 

PROOF. Let H0 = G and let AQ = E. If possible, let Aa+i be a 
normal subgroup of Ha such that Aa+iIAa is a nontrivial normal FC-
subgroup of H J An, then let Ha+i be the normal subgroup of Ha such 
that Ha+lIAa = (Aa+1/Aa)C (A a + 1 /A a ^ HJAJ. If 0 is a limit ordinal, 
let Aß = Ua</sAa and let Hß = Oa<ßHa. Since HJA^ is an FCZ*-
group, if it is not trivial, then it has a nontrivial normal FC-subgroup. 
Hence Aa+i > \ unless Ha = A«. Thus there is a first ordinal y such 
that Hy = Ay. 

Since Aa+iIAa is an FC-group, using the definition of Ha+1 , we see 
that each element in Aa+iIAa has only a finite number of conjugates in 
AylAa. Thus Ay is a ZFC-group. It follows by the method of the pre­
vious argument (Theorem 3) that 

[G:A,]^ f i [HJAa:Ha+lIAa\ ^ U |Aut (Aa+lIAa)l 
a <y ex <y 

Again, Ay must be infinite, so by Theorem 2 
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* < y 

Thus 

|G |^ Ko '^^expKI. 

Theorem 3 together with Theorem 4 gives 

THEOREM 5. If G is an infinite FCI*-group and if Ax is a normal 
abelian subgroup of G, then G has an abelian subgroup A containing 
Ai such that exp2|A| i? |G|. 

We would like to show that an infinite group G, every subgroup of 
which is subnormal, has an abelian subgroup A such that exp2|A| ^ |G|. 
Since S/*-groups are FCI*-groups, this would certainly be the case if 
G were always an SZ*-group; but this is an open problem, so we settle 
for 

THEOREM 6. If an infinite group G has an abelian subgroup A 
such that A<\nG and such that \C(A)\ g sym \A\, then expn|A| ^ |G|. 

PROOF. Let A = AQ < Ax < • • • < ] A n = G b e a finite normal 
series from A to G. For each integer k < m, 

|Afc+1| ^ \N(Ak)\ = [N(Ak) : C^)] \C(Ak)\ 
^ s y m l A f c H C ^ I ^ s y m l A f c l . 

Proceeding by induction, we get 

\G\ = |A„| g sym»|A|. 

Again, A cannot be finite, so symn|A| = expn|A|. 

THEOREM 7. If Hi is a normal mC-subgroup of an infinite mCI*-
group G, then G has a ZmC-subgroup H containing Hi such that 
exp |H| = |G|. If Ai is a normal abelian subgroup of an infinite 
ZmC-group H, then H has an abelian subgroup A containing Ai such 
that mlAl== \H\. Thus, if AY is a normal abelian subgroup of an 
infinite mCI*-group G, then G has an abelian subgroup A containing 
Ai such that exp m'Al i? |G|. 

PROOF. The arguments used above are easily applied here. Details 
are omitted. 

REMARK. If G is any group, the Fitting subgroup of G, *>(G), is de­
fined to be the product of all of the normal nilpotent subgroups of 
G. If G coincides with v(G)9 G is said to be a Fitting group. If G is 
an S7*-group, then C(v(G)) is contained in v(G). (For details see 
[7, p. 16].) Thus, if G is an infinite S/*-group, exp KG)I = |G|. 
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Consequently, if we knew that every infinite Fitting group N had an 
abelian subgroup A such that exp \A\ = |N|, then we could easily 
deduce that every infinite SZ*-group G has an abelian subgroup A 
with exp2 \A\ è |G|. We show 

THEOREM 8. If one assumes the generalized continuum hypothesis, 
then every infinite Fitting group G has an abelian subgroup A such 
that exp | A | ^ |G|. 

PROOF. Since Fitting groups are SZ*-groups, by Theorem 5, G has an 
abelian subgroup A with exp2 |A| = |G|. 

Let Ka be the order of G. If a is of the second kind, then we must 
have |A| = |G|. If a is of the first kind, but a — 1 is of the second 
kind, then we cannot have exp \A\ < \G\. For, if \A\ < Ka_i, then 
exp2 \A\ < Ka_i, while if \A\ = Ka_1? then exp \A\ = Xa = |G|. 

So we may assume that neither a nor a — 1 is of the second kind. 
If |xG| = \G\ for some x G G, then by Corollary 1, xG has an abelian 
subgroup B with exp |B|i^ |xG| = |G|. Thus we may assume that 
|xG| < \G\ for all x in G. But then G is an Xa_iC-group; and so by 
Theorem 7, G has an abelian subgroup B such that Xj?!i = Xa. If 
| B | S X a _ 2 , then KJ^i = KT-F 2 = Ka-i, a contradiction. Thus 
\B\ è K«_i; but then exp |B| ^ exp Xa_i = Xa. 

REMARK. If G is any group, the Gruenberg (respectively, Baer) 
radical of G, p(G), is the group generated by all the ascendant (re­
spectively, subnormal) abelian subgroups of G [7, p. 100]. One can 
prove that if G is an SN*-group (respectively, S/*-group), then 
C(p(G)) is contained in p(G). (See, for example, [6, p. 352].) 
Thus, if G is an infinite SN*-group (respectively, S/*-group), then 
exp |p (G) |= |G|. We note, however, that the Kovacs-Neumann 
example [7, p. 110] is an infinite locally nilpotent p-group with 
trivial Gruenberg radical. If we generalize this example by wreathing 
together cô  copies (instead of only o>x copies) of Zp, and if we assume 
the generalized continuum hypothesis, we then discover that there 
exists a locally finite p-group G in which each abelian subgroup A 
has expn \A\ < \G\ for all positive integers n. For details, see [7, 

p. m ] . 
There is an infinite two-step nilpotent group G which has a maximal 

normal abelian subgroup A such that exp \A\ = \G\ [8, 9.2.17]. This 
shows that the bounds given in Corollary 1 and Theorem 3 are the 
best possible. The author does not know whether any of the other 
results are the best possible. There seems to be no known counter­
example to the following question: Does every locally nilpotent 
group of order > exp m have an abelian subgroup of order > m? 
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