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LARGE ABELIAN SUBGROUPS OF SOME INFINITE GROUPS
VANCE FABER

ABsTRACT. A generalization of the following conjecture of
W. R. Scott is proved. If (H,)q=s is a well-ordered descending chain
of subgroups of a group with the property that Hg = (y<gH, for
limit ordinals, then [Hg: Hg] = Ily<s[H,: Hot+1]. Using this,
we show that the members of certain classes of infinite groups are
guaranteed to have large abelian subgroups.

1. Introduction. Following Kurosh [5, p. 171], a totally ordered
system U of subgroups of a group is said to be complete if for an
arbitrary subsystem of U, the unions and the intersections of the sub-
groups forming the subsystem belong to U. W. R. Scott [8, p. 21]
has conjectured that, if (H,).s, is a well-ordered descending complete
system of subgroups of a group Hy, then

(1) [Ho:Hs] = [] [Ho: Hot]-
a<é
In a private communication, Scott has shown that this is indeed
true for § = w, the first infinite ordinal, and has stated that under
these same conditions both he and, independently, A. Kruse have
proved that '

(Ho:Hy) = [ T] [He: ot | 1.

a<d

In §3 we shall establish a generalized form of Scott’s conjecture
from which the latter can be deduced. In addition, we shall find a
lower bound for [ Hy : Hs] which will be useful in §4.

If m is a cardinal number, we define exp m = exp!m = 2™, Induc-
tively, if n is any positive integer, we define exp"*lm = exp exp™m.
In §4 we utilize equation (1) to investigate the existence of large
abelian subgroups of ccrtain infinite groups. For example, C. R.
Kulatilaka has shown [4, p. 241] that every infinite SI*-group G
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has an infinite abelian subgroup A such that A<1? G (A is normal in
its normal closure, A%). We shall show that every infinite SI*-group
G has an abelian subgroup A such that exp?|A| = |G, in fact, Theorem
5 states that G need only have an ascending invariant series with FC
factors. For similar results on large discrete subspaces of topological
spaces, the reader should see [2] and [3].

2. Notation. Let S and T be sets. S< T will always mean strict
inclusion. The cardinality of S will be denoted by |S|. If G is a group
and H is a subgroup, we write H<]" G if there is an ascending normal
series

H=H0<H1<I"'<Hn=G

from H to G. C(H) = C (H = G) denotes the centralizer of H in G,
while N(H) = N (H = G) denotes the normalizer of H in G. A trans-
versal for H in G is a full set of distinct coset representatives for H
in G; if a transversal contains the identity, it is said to be normalized.

Let sym [S| = sym! |S| be the order of the symmetric group on [§|
letters; if n is a positive integer, define sym"*!|S| = sym sym"|S|. We
shall frequently make use of the fact that

|Aut (G)] = sym |G|,

where Aut (G) is the group of automorphisms of G.

We assume the terminology of §57 and {63 of [5] to denote
various classes of generalized solvable and nilpotent groups.

Let Fi(G) be the set of all elements in G which have at most a
finite number of conjugates in G. As in [1], we define the upper
FC-series of G to be the ascending characteristic series

E=F(GQ) < (G dFG) -

where F, . (G)/[F(G) = F(GIF(G)), and if B is a limit ordinal, then
Fs(G) = U,<sF.(G). If F)(G)= G, G is said to be an FC-group.
If F,(G) = G for some a, then G is a ZFC-group; if a is an integer, G
is FC-nilpotent.

If m is an infinite cardinal, let M,(G) be the set of all elements in
G which have at most m conjugates in G. By analogy with the upper
FC-series, we define the upper mC-series of G to be the ascending
characteristic series

E=M(GIM(GQ - IMG A"

where M, 1(G)/IM,(G) = M(GIM,(G)), and if 8 is a limit ordinal, then
Mg(G) = U,<sM,(G). If M{(G) = G, G is an mC-group; if M(G) = G
for some a, then G is a ZmC-group.
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If X is a class of groups, we let ¥ I* be the class of all groups having
an ascending invariant series with factors in X . If every subgroup
and every homomorphic image of an ¥ -group is an ¥ -group, then
the same holds true for X I*-groups [5, §56].

Let U = (A,)eecw be a complete ordered system of subgroups of a
group G. We shall suppose that W is ordered by a relation < such
that « < B implies that A, < Az. If a has an immediate successor
in W, we denote it by a + 1. Let 7 be the set of all ain W for which
a+ 1 exists. If W is well ordered, U is an ascending series; if W
with the inverse ordering is well ordered, U is a descending series.

If & is an ordinal, we say e« is of the first kind if it has an immediate
predecessor; otherwise, a is of the second kind. A limit ordinal is any
nonzero ordinal of the second kind.

3. The index theorems.

TuEoREM 1. Let ‘U = (Aj)acwbe a complete ordered system of
subgroups % a group G containing the whole group G= A, and
some Ag = [ l.ewA.. Then

[G: Ao] = [] [Aus1: Al
aEJ .

Proor. Let R, be a transversal for A, in A, for each a € J.
Let T, be a transversal for A, in G for each a« € W. For each g € T,
let g, be the unique element in T, such that A,g. = Ag. faE€EJ,
then consider A,g.(g,+1)~ ! Since A,y1Z.+1 = Aer1g and A g, = Ag,
it follows that g(g,+1)~! € A,+; and that gg 1€ A, = A,,;; and,
consequently, that g(g,+1)"! € A,+1. Thus we can define a unique
point Fy in the cartesian product,Hﬂ esR., by the two conditions

(i) Fy(a) € R,,

(ii) AaFg(a) = Aga(gau)“,
for all « € J. If the function F taking g to F; is one-to-one, then
|To| = Haeg |R,], the conclusion of the theorem.

If Fg = Fyfor g and h in T, then by (ii)

*) ABu(Bar1) ™' = Adha(har1) ™!

for all @ € J. Let P(a) be the statement that g, = h, for all a € W.
Since there is only one element in T,, P(u) obviously holds. If
[S(1), 8(2)] is a Dedekind section taken in W having the property
that P(a) holds for all elements a € S(2), then we can easily find some
B € 5(1) for which P(8) holds. Suppose this were not the case, then
& 74 h, for every a € S(1). Since Ag= Ag, # Ah,= Ah, then
gh-1 & A, for every a € S(1); and so gh~1 & U.es)A.. But by
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assumption, gh~! € A, for all a« € §(2), and thus A, = U.es)A,
must be the last element of S(1). Similarly, A,g = Ah for each
a € 5(2) implies that gh~!' € ﬂaes(z)Au. Hence ﬂaES(Z)Aa cannot be
in S(1) and, therefore, must be the first element of S(2), namely
A, 1. But(*)and g, = h,., togetheryield A,g, = A h,, contradicting
the assumption that g, # h,.

Let $'(2) = {« € W |a= B} and let S'(1) be its complement in
W. Then [S'(1), S'(2)] is a section in W with S'(2) > S(2). Since
gs = hg, we have gh=1 € Ay = A, for every a= B, that is, g, = h,
for all @« € S'(2). Thus, by induction on the ordered set W [9, p.
264], P(a) holds for all a € W.

"To complete the proof, we note that g, = h, for all « € W implies
that gh—! € A, for all «, and hence that gh—! € MNaecwA, = Ap. Thus
= hand F is one-to-one.

Statement (1) in the introduction is easily seen to be that special
case of Theorem 1 in which W with the inverse ordering is a well-
ordered set.

THEOREM 2. Let U = (A,),ew be a complete ordered system of sub-
groups of a group G containing the whole group G = A, and some
AO = naEWAa' Then

S [Aceri Al = [G: Adl.
aEYd ’

Proor. If 7 is finite, one can easily establish by induction that

S [Awri: A = I [Aaer: AL
L= a€J
the desired result in this case.

If 7 is infinite, we shall establish the somewhat stronger statement
@) gg[Aoﬁl : Ao) = [G: Ag].

Let R, be a normalized transversal for A, in A, for each a € 7.
Let L, be a normalized transversal for Ag in A, for each « € J. The
main steps in the proof consist of showing that:

(i) L,R,is a transversal for Agin A, for eacha € J;

(ii) {1} Upeg(L,R,\L,)is a transversal for Ay in G, and this union
is disjoint;

(i) |LR,|= 2|LR\L,]

Since J is infinite, (iii) implies (2). Details are omitted.
ReEmMagrk. If U is a complete ordered system as in the theorem, let

(U= Y [Awi: A, (W) =[] [Ai: Al
aEld a€J
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If the complete ordered system U’ is a refinement of U, then it is
easily shown that

SUNSE (U [G: A] = (W)= (U,

that is, the finer the system becomes, the worse the approximation to
[G: Ay)]. However, using a general fact from cardinal arithmetic
[9, p. 418], we obtain

M(u) = [=(u)]?

By examining first the case where 7 is finite, and then the case where
J is infinite, one gets

3 (U)S [G: Ag] = T(U) = exp 3 (U) = exp [G: A].

Hence both 2%(U) and II(U) are limited in range. In fact, if G is
infinite and we assume the generalized continuum hypothesis, there
are only two possible values for [G: Ag]: 2(U) or exp 2(U); also,
there are only two possible values for IT1(U): [G: Ag] or exp [G: Ag].
The only combination of these possibilities which cannot occur is

[G: Ag) = exp Z(U) andII(U) = exp [G: Ag].
4. Large abelian subgroups.

LemMa [4, p. 240]. If A is a maximal normal abelian subgroup of
a group G and if G/A is a ZA-group, then A = C(A).

CoroLLaRY 1. If A is a maximal normal abelian subgroup of an
infinite group G and if G/A is a ZA-group, then exp |A| = |G].

Proor [4, p. 240]. By the lemma, A= C(A). Hence G/A is
isomorphic to a subgroup of the group of automorphisms of A; and
so if A were finite, G would also be finite. Thus A must be infinite
and |Aut (A)| = exp |A|. It follows that

|Gl = |A| |GIA| = |A] |Aut (A)| = exp |A|.

TueoreM 3. If A, is a normal abelian subgroup of an infinite group
G and if G/A, is a ZFC-group, then G has an abelian subgroup A
containing A, such that exp [A| = |G|.

Proor. Let Ag=E, Hy= G and H, = C(A; = G). Inductively,
suppose that we have defined the ascending chain (A,),<s and the
descending chain (H,),<g such that A, = Z(H,) for all a<B. If B
is a limit ordinal, let Ag = U,<pA, and let Hy = (\,<zH,. IfB = a+ 1
for some ordinal @, let the superscript — denote homomorphic images
in HJZ(H,). Since H, is a ZFC-group, if it is not trivial, there exists
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an element x,,; in H\Z(H,) such that %,,, is in F,(H,). Let Ay,
= (x,+1) Z(H,), and let H,,; = C (Ay+1 = H,). Hence for all a,
A, < A, unless H, = Z(H,), that is, unless H, is abelian. Let y be
the first ordinal such that H, is abelian.

_ We note that since X, has only a finite number of con]ugates in
H, ne = [H,: NAyy, = H,)] = [H,:N(A,,, = H,)] is finite.
Thus

[Hy: Hyph] = wt1[N(Agi1 = H,) : C(A, 1 = H,)]

= o+ JAut (A )|
Hence by Theorem 1

Gl = |H,| [G: H,] = |H,| [] [H.: Hos1]

a<y

= |H,| H Not1 [Aut (Ags1)];
a<y
and so if H, were finite, G would also be finite. Thus H, is infinite and
it follows by equation (2) that
CI= [, T Rt =[H, | XgE-= vt

a<y

= |H,| Rl = exp |H,|.

TueoreMm 4. If A, is a normal FC-subgroup of an infinite FCI*-
group G, then G has a ZFC-subgroup H containing A, such that
exp [H|Z |G].

Proor. Let Hy= G and let Ay = E. If possible, let A,.; be a
normal subgroup of H, such that A, /A, is a nontrivial normal FC-
subgroup of H,/A,, then let H,,, be the normal subgroup of H, such
that H,, /A, = (Ae+1/AL)C (Aur /A, = HJA,). If B is a limit ordinal,
let Ay = Ua<ﬁAa and let Hp = n,,,<,gHa. Since H,/A, is an FCI*-
group, if it is not trivial, then it has a nontrivial normal FC-subgroup.
Hence A, > A, unless H, = A,. Thus there is a first ordinal y such
that H, = A,.

Since A,+1/A, is an FC-group, using the definition of H,,, we see
that each element in A,.,/A, has only a finite number of conjugates in
A/JA,. Thus A, is a ZFC-group. It follows by the method of the pre-
vious argument (Theorem 3) that

[(G:A] = [ [HdAs: HordlA) = T |Aut (Auii/A))].

a<y a<y

Again, A, must be infinite, so by Theorem 2
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[G:A] = [] RoMer1/Ad= RoFecilMart/Add = Rolo1

Thus
|G| = Rolt!= exp |4,].
Theorem 3 together with Theorem 4 gives

TaeoREM 5. If G is an infinite FCI*-group and if A, is a normal
abelian subgroup of G, then G has an abelian subgroup A containing
A, such that exp?|A| = |G|.

We would like to show that an infinite group G, every subgroup of
which is subnormal, has an abelian subgroup A such that exp2[A| = |G|
Since SI*-groups are FCI*-groups, this would certainly be the case if
G were always an ST*-group; but this is an open problem, so we settle
for

Tueorem 6. If an infinite group G has an abelian subgroup A
such that A " G and such that |C(A)| = sym |A|, then exp"|A| = |G].

Proor. Let A=Ay <JA;d - << A, = G be a finite normal
series from A to G. For each integer k < m,

| A1 = IN(A)| = [N(Ax) : C(AW)] |C(AL)]
= sym |Ax|*|C(A)| = sym |Ax|.
Proceeding by induction, we get
Gl = |Ad] = sym"[A]
Again, A cannot be finite, so sym"|A| = exp”|A|.

Tueorem 7. If Hy is a normal mC-subgroup of an infinite mCI*-
group G, then G has a ZmC-subgroup H containing H, such that
exp |[H|= |G|. If A, is a normal abelian subgroup of an infinite
ZmC-group H, then H has an abelian subgroup A containing A, such
that mIAI=Z |H|. Thus, if A, is a normal abelian subgroup of an
infinite mCI*-group G, then G has an abelian subgroup A containing
A, such that exp mlAI Z |G].

Proor. The arguments used above are easily applied here. Details
are omitted.

Remagrk. If G is any group, the Fitting subgroup of G, v(G), is de-
fined to be the product of all of the normal nilpotent subgroups of
G. If G coincides with »(G), G is said to be a Fitting group. If G is
an SI*-group, then C(¥(G)) is contained in ¥(G). (For details see
[7, p. 16].) Thus, if G is an infinite SI*-group, exp [V(G)| = |G|
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Consequently, if we knew that every infinite Fitting group N had an
abelian subgroup A such that exp |[A|= |N|, then we could easily
deduce that every infinite SI*-group G has an abelian subgroup A
with exp? [A] 2 |G| We show

TuEOREM 8. If one assumes the generalized continuum hypothesis,
then every infinite Fitting group G has an abelian subgroup A such
that exp |A|Z |G|.

Proor. Since Fitting groups are SI*-groups, by Theorem 5, G has an
abelian subgroup A with exp? |A| = |G|.

Let X, be the order of G. If a is of the second kind, then we must
have |A| = |G| If « is of the first kind, but @ — 1 is of the second
kind, then we cannot have exp |A|< |G| For, if |A| < R,_;, then
exp? |A| < R,_j, whileif [A] = R,_;, thenexp [A] = R, = |G].

So we may assume that neither a nor a — 1 is of the second kind.
If |x¢] = |G| for some x € G, then by Corollary 1, x¢ has an abelian
subgroup B with exp |B|= |x¢| = |G| Thus we may assume that
[x¢| < |G| for all x in G. But then G is an R,_;C-group; and so by
Theorem 7, G has an abelian subgroup B such that R, = K,. If
IB|= R,_», then X = X¥1> = NX._,, a contradiction. Thus
|[B|= R,_y; but then exp [B| = exp Ro—1 = N,

Remark. If G is any group, the Gruenberg (respectively, Baer)
radical of G, p(G), is the group generated by all the ascendant (re-
spectively, subnormal) abelian subgroups of G [7, p. 100]. One can
prove that if G is an SN*-group (respectively, SJ*-group), then
C(p(G)) is contained in p(G). (See, for example, [6, p. 352].)
Thus, if G is an infinite SN*-group (respectively, S]*-group), then
exp |p(G)|= |G|. We note, however, that the Kovacs-Neumann
example [7, p. 110] is an infinite locally nilpotent p-group with
trivial Gruenberg radical. If we generalize this example by wreathing
together w, copies (instead of only w, copies) of Z,, and if we assume
the generalized continuum hypothesis, we then discover that there
exists a locally finite p-group G in which each abelian subgroup A
has exp" |A| < |G| for all positive integers n. For details, see [7,

. 111].

P There is an infinite two-step nilpotent group G which has a maximal
normal abelian subgroup A such that exp |A| = |G| [8, 9.2.17]. This
shows that the bounds given in Corollary 1 and Theorem 3 are the
best possible. The author does not know whether any of the other
results are the best possible. There seems to be no known counter-
example to the following question: Does every locally nilpotent
group of order > exp m have an abelian subgroup of order > m?



LARGE ABELIAN SUBGROUPS 685

AckNOWLEDGEMENT. This paper contains many of the results pre-
sented by the author to the Graduate School of Arts and Sciences of
Washington University in partial fulfillment of the requirements for
the Ph.D. degree. During the years 1968-1970, the author was
supported by an NDEA Title IV Fellowship. The author wishes to
express his gratitude both to Professor W. R. Scott for several en-
lightening communications, and to Professor F. Haimo, his advisor,
whose great patience and optimistic encouragement helped to make

this paper possible.

BiBLIOGRAPHY

1. F. Haimo, The FC-chain of a group, Canad. ]J. Math. 5 (1953), 498-511.
MR 16, 216.

2. A. Hajnal and I. Juhész, Discrete subspaces of topological spaces, Nederl.
Akad. Wetensch. Proc. Ser. A 70 = Indag. Math. 29 (1967), 343-356. MR
37 #4769.

3. , Discrete subspaces of topological spaces. II, Nederl. Akad. Wetensch.
Proc. Ser. A 72 = Indag Math. 31 (1969), 18-30. MR 41 #9177.

4. C. R. Kulatilaka, Infinite Abelian subgroups of some infinite groups, J.
London Math. Soc. 39 (1964), 240-244. MR 28 #5112.

5. A. G. Kuro$, The theory of groups. Vol. II, GITTL, Moscow, 1953;
English transl., Chelsea, New York, 1960. MR 15, 501; MR 22 #727.

6. R. E. Phillips and C. R. Combrink, A note on subsolvable groups, Math.
7. 92 (1966), 349-352. MR 33 #5732.

7. D. ]J. S. Robinson, Infinite soluble and nilpotent groups, Queen Mary
College Math. Notes, University of London, London, England, 1968.

8. W. R. Scott, Group theory, Prentice-Hall, Englewood Cliffs, N. J., 1964.
MR 29 #4785.

9. W. Sierpinski, Cardinal and ordinal numbers, 2nd rev. ed., Monografie
Mat., vol. 34, PWN, Warsaw, 1965. MR 33 #2549.

WasHINGTON UNIVERsITY, ST. Louts, Missourt 63130






