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A NOTE ON THE INTERSECTION OF THE POWERS
OF THE JACOBSON RADICAL
MAX D. LARSEN AND AHMAD MIRBAGHERI

1. Introduction and preliminaries. All rings will be assumed to
have identity. If R is a ring, ] = J(R) will denote its Jacobson radical.
The purpose of this note is to establish conditions on R such that
N2, Ji= 0. In particular, we show that if R is a right Noetherian
J-prime ring such that every ideal of R is a principal right ideal,
and in addition, J is a principal left ideal, then J is the nilpotent
radical of R or (2, J'=0. Further, we show that (2, Ji= 0 if
R is a right Noetherian ring, J is a principal right ideal, and N2, J
is a finitely generated left ideal of R. The methods of ]J. C. Robson
[5] are used throughout, and Theorems 3.5 and 5.3 of Robson’s paper
are generalized.

A ring is called an ipri-ring (ipli-ring) if every ideal is a principal
right (left) ideal [5, p. 127]. Condition (a) is said to hold in R if
ab being regular in R is equivalent to both a and b being regular in
R. Combining [1, Theorems 4.1 and 4.4, pp. 212-213] and [4, Corol-
lary 2.6, p. 603] one sees that if R is a semiprime right Noetherian
ring, then (a) holds in R. A ring R is said to be J-prime (J-simple)
if R/J is a prime (simple) ring. The nilpotent radical of a ring is
denoted by W and W-simple is defined similarly. The symbol C
will denote proper containment.

A result important to our work is the following lemma [3, p. 200]:

LemMma 1.1, For any ring R, if G is a nonzero ideal of R finitely
generated as a right (left) ideal of R and G C J = J(R), then
GJC G (JGCG).

Lemma 1.2. Let R be a right Noetherian J-prime ipri-ring. If
T is an ideal of R such that T (_I Jthen] C T.

Proor. Let B= T+ J= bR and J = aR. Assume JC B. Then
the image of B in R/J is a nonzero ideal and hence the image of b
is regular since R/J is a prime right Noetherian ring [5]. Since
J C bR, we have J= bJ. Hence JC T + J? and there exist t €T
and r € Rsuch thata(l —ar)=t. Butl — arisaunitin Rsoa € T.
Thus JC T.
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CoroLLARY 1.3. Let R be as in Lemma 1.2. If A, B are ideals of
R such that AB= 0and B# 0,then AC J.

2. Results concerning N2, T

Tueorem 2.1. Let R be a right Noetherian [-prime ipri-ring.
Assume that ] = aR = Rb. Then either ] = W or
(i) Nl Ji=0,
(ii) Ris a prime ring,
(iii) J = aR = Ra = bR = R),
(iv) J k=1,2, - - -, are the only proper ideals of R, and
(v) Risalso an ipli-ring.

Proor. Assume J # W. Let S be the set of all ideals B of R such
that a* € B for all k. Let C be a maximal element of S containing
G=(\2, J. By Lemma 1.2, CCJ. Since C is a prime ideal of R,
the image of a in R/C is regular and C = aC. Thus C = G and,
therefore, R = R/G is a prime ring. Now J = aR = Rb is a proper
idezil of R. Hence_& is regular in R and @ = 75_for some 7 € R,
so b is regular in R since condition (a) holds in R. Thus GC Rb
implies G= Gb and consequently G= GJ. Hence by Lemma
1.1, G = 0. Thus (i) and (ii) have been proved.

To prove (iii) note that @ = ub and b = av for some u, v € R.
Then a = uav and since ua € J, a = awv for some w € R. Since
R is a prime ring, 1 = wv and since condition (&) holds in R, w
and v are regular in R. This means v is a unit in R so bR = avR = aR.
The proof of the other part is similar.

Let M = xR be an ideal of R properly containing J. By passing
to R[] we see that J = xJ. Thus a = xra for some r € R. Condi-
tion (a) and the regularity of a imply that x is a unit in R. Hence
J is the unique maximal ideal of R. Now let T be any nonzero ideal
of R. Pick n so that TC J», T J**L. Then S= {x ER|a™ € T}
is an ideal of R not contained in J; hence S = R. This proves that
T = J»and completes the proof.

J. C. Robson proves a theorem [5, p. 133] similar to the above
theorem under the assumptions that R is Noetherian (on both sides)
and W-simple where W is a principal left ideal and a principal right
ideal.

We immediately get the following

CoroLLArY 22. If R is a right Noetherian prime ipri-ring such
that ] = Rb for some 0 # b € R, then ] is a prime ideal if and only
if ] is maximal.

TueoreM 2.3. Let R be a right Noetherian ring with | = aR for
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some a ER. If G= N2 Jiisa finitely generated left ideal of R,
then G = 0.

Proor. Since G= ()i, @R, x € G, implies that x = ar; = a’n,

= -+, for r, ry, ++- in R Since R is right Noetherian, there
exists an integer k such that ., € R+ R+ - - + R Hence
Tee1 = 118 + 198 + + - + nisx for some s, s5, -+, sx € R. Thus

x = ak*ln,, = aKar))s, + -+ + a(d*n)sk € JG. Hence G=JG
and since G is a finitely generated left ideal of R, G = 0 by Lemma
L1

To see that the finite generation of G as a left ideal is necessary in
the above theorem consider the following example [2, pp. 35-36].
Let A be the ring of rationals with odd denominators. Let R be the
ring of all matrices of the form

(6 )
0 B

where a € A and o, B are rationals. Then R is a right Noethe-
rian ring such that J= J(R) is a prinicpal right ideal. However

N Ji#o.

CoroLLARY 24. If R is a Noetherian ring with | = aR for some
a € R, then n.:lji = 0.

If in Corollary 24 we assume in addition that J = Rb for some
b € R and that R is J-simple, then using [5, Theorem 5.3, p. 133] in
the case = W and Corollary 2.4, otherwise, we can show that
aR= Ra= Rb = bR, that J5, k=1, 2, ... are the only proper
ideals of R, that R is W-simple or a prime ring, and that R is an ipri-
and ipli-ring.

TueoreM 2.5. If R is a nonsemisimple right Noetherian ipri-
J-prime ring, then ] is nilpotent if and only if | does not properly
contain a prime ideal of R.

Proor. If J is nilpotent, the result is trivial. Suppose J does not
properly contain a prime ideal of R and suppose that J is not nil-
potent. Then J = xR for some nonnilpotent element x of R. Let I
be a nonzero prime ideal of R maximal with respect to the exclusion
of powers of x. Then I J and so by Lemma 1.2, J C I which is
a contradiction.

One can see that the assumption that R is a J-prime ipri-ring in
Theorem 2.5 is necessary by reexamining the example cited after
Theorem 2.3. The Jacobson radical of R is the set of matrices of the
form
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G %)
0 0
where a is in the Jacobson radical of A and « is a rational. Hence R

is not semisimple. Moreover J(R) does not properly contain a prime
ideal of R and J(R) is not a prime ideal, but yet J(R) is not nilpotent.

CoroLLary 2.6. If R is a right Noetherian ipri- J-prime
ring such that O;l Ji=0, then either R is a prime ring or else
J is nilpotent.

Proor. If ] = 0, then R is a prime ring. Suppose R is not a prime
ring and let I be a prime ideal of R with I C J. Then] = x R, for some
x € R, is a nonzero ideal in the right Noetherian prime ring R = R/L
Hence I=xI= ---andso I C ﬂiil Ji = 0. This contradiction shows
that no prime ideal is properly contained in J. Hence ] is nilpotent.

3. Noetherian ipri-rings.

TueoreMm 3.1. Let R be a Noetherian J-prime ipri-ring. Then R
is J-simple or a prime ring.

_Proor. If J=0, then R is a prime ring. Assume ] # 0 and let
A = aR be a nonzero ideal of the prime ring R = R/J. Using an argu-
ment similar to that of Lemma 1.2, we get [ =aJ = a?] = - - - and
by [5, Corollary 3.2, p. 129] (1 — au) ;@R = 0 for some u € R.
But JC M2 aR so (1 — au)] = 0. Hence the fact that R(1 — au)-RJ
= 0 and Corollary 1.3 show that 1 — au € J. Therefore a is a unit in
R. Thus A= R.
If we combine Theorem 3.1 and Corollary 2.4 we obtain

Tueorem 3.2. If R is a Noetherian J-prime ipri-ring, then R is
W-simple or is a prime ring.

Tueorem 3.3. Let R be a Noetherian J-simple ring such that
J = aBR = Rb. Let R* be the associated graded ring of R with respect
to J [5, p. 137]). Then R* is a Hilbert polynomial ring over RI] of
index n where n is the index of nilpotency of W or R* is a Hilbert
polynomial ring over RI] [5, p. 134]. In the former case, R* is a
Noetherian W-simple ipri- and ipli-ring, and in the latter case, R*
is a Noetherian, prime, ipri- and ipli-ring.

Proor. Apply the results of the remark following Corollary 2.4 to
assert that R is an ipri- and ipli-ring and R is either W-simple or is
a prime ring. Then Theorems 7.1 and 7.4 of [5, pp. 137-138] give the
result.
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The authors have been unable to decide whether, in the second case
of the last theorem, R* is necessarily semisimple.
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