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SOME PROBABILISTIC REMARKS ON FERMAT'S 
LAST THEOREM 

P. ERDÖS AND S. ULAM 

Let a i < a2 < ' * * be an infinite sequence of integers satisfying 
ön = (c H- o(l))na for some a > 1. One can ask: Is it likely that 
d{ + dj = ar or, more generally, aix + • • • + ain = aif has infinitely 
many solutions. We will formulate this problem precisely and show 
that if a > 3 then with probability 1, ü{ + Oj = ar has only finitely 
many solutions, but for a ^ 3, a* + a, = ar has with probability 1 
infinitely many solutions. Several related questions will also be 
discussed. 

Following [1] we define a measure in the space of sequences of 
integers. Let a > 1 be any real number. The measure of the set of 
sequences containing n has measure Cinl,oc~l and the measure of the 
set of sequences not containing n has measure 1 — Cin1/a_1. It easily 
follows from the law of large numbers (see [1]) that for almost all 
sequences A = {ax < a2 < ' * •} ("almost all" of course, means that 
we neglect a set of sequences which has measure 0 in our measure) 
we have 

(1) A(x) = (1 + o(l))Cl i - i - = (i + 0(i))CiaaciA. 
n = l n 

where A(x) = ^a <x 1. (1) implies that for almost all sequences A 

(2) an = (1 + o(l))(n/ca)« 

Now we prove the following 

THEOREM. Let a > 3. Then for almost all A 

(3) ai 4- Oj = ar 

has only a finite number of solutions. Ifa=3, then for almost all A, 
(3) has infinitely many solutions. 

It is well known that r 3 + y3 = z3 has no solutions, thus the se­
quence {n3} belongs to the exceptional set of measure 0. 

Assume a > 3. Denote by Ea the expected number of solutions of 
ai -I- aj = ar. We show that Ea is finite and this will immediately 
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imply that for almost all sequences A, a* + Oj = ar has only a finite 
number of solutions. Denote by P(u) the probability (or measure) 
that u is in A. We evidently have 

00 

Ea= S P(n) S P(u)P(v) 
n = l u+v=n 

= Cl3 y _-L_ y 1 
1 ^ n l - l / a ^ ul-llavl-lla 

n = l n u+v=n u v 

< c2 S TINTÂT ̂ T^r = c2 S 7i~s; < c3 
n = 1 n n n = 1 rc 

which proves our theorem for a > 3. One could calculate the prob­
ability that (3) has exactly r solutions (r = 0, 1, • • •). 

Let now a = 3. The case a = 3 is the most interesting; the case 
a < 3 can be dealt with similarly. Denote by Ea(x) the expected 
number of solutions of (3) if cu, ÜJ and ar are ^ x. We have 

E,(x) = ± P(n) S P(u)P(v) = Cl3 £ - L S - J -
n = l u + ü = n n = l '* u + ü = n \ u l V 

(4) 

= (1 + 0(l))Cl3 Ì ^ - | = ( l + 0(l))Cl3C2 log*. 
n = l n n 

By a little calculation, it would be easy to determine c2 explicitly. 
Now we prove by a simple second moment argument that for almost 
all A the number of solutions /3( A, x) of a{ + üj = ar, ar^x satisfies 

(5) /3(A, x) = (1 + o(l)Wc2 log x, that is /3(A, x)/E3(x) -> 1. 

To prove (5) we first compute the expected value off3(A, x)2. 
The expected value of/3(A, x) was E3(x) which we computed in 

(4). Denote by E3
2(x) the expected value of/3(A, x)2. We evidently 

have 

(6) E3
2(*) = S P(ni)P(n2) £ P(uu u2, Vl, v2) 

where F(wx, t>1? W2, t;2) is the probability that uÌ7 V\, u2, v2 occurs in 
our sequence. If these four numbers are distinct, then clearly 
P(uh u2, vu v2) = P(ui)P(u2)P(vi)P(v2), but if say uY = u2, the prob­
ability is larger. Hence E3

2(x) > (E3(x))2 and to get the opposite 
inequality we have to add a term which takes into account that the 
four terms do not have to be distinct, or r^ < n2, Wi = u2. 
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E3?(x) < (E3(*))2 

+ c Ì PMPin, + v2 - Vi) S P^Ffo)!^) 
nj = 1 Uj 4-Uj =nj ; v2 < x 

< (EM)2 + Ì.-T- 2 W K + o2 - 0l) 
(7) », = i n i « 2 = i 

< (£3(*))2+ i - i PM2< (E3(x))2+ t f 
nj = l n l u 2 = l n = l n 

<(E 3(x) 2) + c3 logx. 

Thus 

(8) (E3(x2)) < E3
2(x) < (E3(x))2 + c3 log x. 

(8) implies by the Tchebycheff inequality that the measure of the set 
A for which 

(9) \f3(A,x)-E3(x)\>elogx 

is less than ck2 log x. This easily implies that for almost all A 

(10) l im/ 3 (A ,x ) /E 3 (x )= l . 

To show (10) let xk = 2k<l<>& *>2. From (9) and the Borei-Cantelli 
Lemma it follows that 

(11) l im/ 3 (4x) /£ 3 (x f c )= l . 
k= » 

(11) now easily implies (10), ^ (A, x) is a nondecreasing function of 
x, thus if xk < x < xk+l, /3(A, xk) ê /3(A? ac)S/3(A, **+i). Thus (11) 
follows from E3(xn)IE3(xk+i) —» 1. 

By the same method we can prove that for a < 3 

*=«> Ea(x) 

Similarly we can investigate the equation 

(12) aCr = aCl + aC2+ • • • +aCx . 

Here by the same method we can prove that for a > fc + 1 with 
probability 1, (12) has only a finite number of solutions and for 
a S H 1 it has infinitely many solutions. 

Euler conjectured that the sum of fc — 1 (fcth) powers is never a 
fcth power. This is true for fc = 3, unknown for fc = 4 and has been 
recently disproved for fc = 5 [2]. As far as we know it is possible that 
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for every t § 3 there are only a finite number of fcth powers which 
are the sum of k — 1 or fewer fcth powers. 

Let/3 > 1 be a rational number. One can ask whether [nß] + [mß] 
= [lß], has solutions in integers n, m, I. One would guess that for 
ß < 3 the equation always has infinitely many solutions but that the 
measure of the set in ß, ß > 3, for which it has infinitely many solu­
tions has measure 0, but it is not hard to prove that the ß's for 
which it has infinitely many solutions is everywhere dense. 
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