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GENERALIZATIONS OF MIDPOINT RULES
ROBERT E. BARNHILL

ABsTRACT. A midpoint rule proposed by Jagermann and im-
proved upon by Stetter is generalized to Hermite-type quadrature
rules and to first degree cubature rules. Remainder terms are
included in both cases.

1. Introduction. This note contains two types of generalizations
of a midpoint rule proposed by Jagermann [1] and improved upon by
Stetter [3]. The first generalization involves a Hermite type of
midpoint rule and is discussed in §2. The second generalization con-
cerns cubature rules for a function of two variables and is in §3. In
both cases, error terms are included, from which asymptotic estimates
can be derived.

2. Hermite-type midpoint rules. The integral to be approximated
is [t p(x)f(x)dx, where p(x)= 0, p(x) does not vanish identically
on any subinterval of [a, b], and I p(x)dx = 1, Stetter [3] has
proved the following:

Let N=1and

b 1 N-1
(=[] pefwds— - S fla)

where @; = Nfi_"'“tp(t)dt, i=0,1 --+, N—1, and the x; a
=x<x < ‘- <zxy=Db, are chosen so that 1/N = fz"_“p(x)dx.
Then Sy(f) =3 Sy(x2)f"(e), a<e <b. ‘

We generalize this theorem as follows:

THeOREM 1. Let
1 N-1 N-1
RN(I)(f) = Jz p(x)ﬂx)dx — [?\]“_20 f(a,‘) + 20 E:(X)f’(at)] 5

where p(x) is as above,

E(x) = J:H xp(x)dx — aiIN

and the a; are chosen so that

| T ) — a)dx = 0.

i
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Then

N—1 rxip
R = 3 [ plafOreto)x - a)oids,
i=0 7 Xi

where x; < €(x) < x;41 and (x — a;))® = (x — a)¥k!, k a positive
integer.

Proor. First,
flx) = flai) + f(a)(x — @) + f"(@)(x — a)®
+ o) — @)
so that

Xi+ 1

[ plafs = L4 ) [ plas - ane

+ J":ﬂ p(x)f(f})(ei(x))(x _ ai)(S)dx,

A summation of the last equation on i from 0 to N — 1 completes
the proof. Q.E.D.
We remark that Stetter’s choice of the q; was made so that

Jii+l p(x)(x — a;)dx = 0.

His definition of the x; was the same as the above.
The definition of @; given above is equivalent to

o= [ I z”' xp(x)dx = { [ j IH xp(x)dx ]2

i

1/2

= [ b [ ] 3] piwas

i

and it follows that the two possible values of a; are both complex
numbers. Either possible value may be used, but the function f
must now be analytic at the a;.

The remainder term Ry‘! cannot in general be simplified because
the factor (x — @;)® can be of variable sign. However this can be
remedied as follows:

TueoreM 2. Let



GENERALIZATIONS OF MIDPOINT RULES 605

Ry®(f) = f: p(x)flx)dx

N-1 )
=5[22+ ap@+ Br@].

i=1

where the x; are as before and the a; are chosen so that

J’jﬂ p(x)(x — a;)’dx = 0, A= J:H p(x)(x — a;)dx
and
B; = J:'H p(x)(x — a;)@dx.
Then Ry3(f) = f(e)Ry®(x¥), a < e < b.
Proor. Now
fix) = fla) + f(@)x = @) +£" a-><x — a)®
+ FOa)(x = @) + fOeD)x = ).

Multiplication of this equation by p(x), integration from x; to xi. 1,
and summation on i from 0 to N — 1 yields the desired quadrature
sum. The remainder term is

RN‘Z’(ﬂ 2 J o p(x)f‘“(e,(x))(x — a;)Vdx

N-1

S fote) [ plax = v

i=0

N-1 Vit
= fe0) X [ pla)x — a)@da
i=0 X;

by the application of the two mean value theorems. Finally, if
Ry®(f) = f4(e)Cy, Cn a constant, then Cy= Ry®(x'Y) by
inspection. Q.E.D.

The deeper reason that Ry®(f) has a simpler form than
Ry'Y(f) is that the Peano kernel is of one sign for Ry2)(f).

Since a; in Theorem 2 must satisfy a cubic equation, there are
three possible choices for a;. At least one of these is real and it
must be in (x;, x;;,) since, if not, the conditions on p imply that
f f'i*'p(x)(x— a;)*dx = 0 is impossible. Although Theorem 2 is
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true for all three choices, the real root is the one that should be
used. The fact that there is a real root for a; makes Theorem 2 an
improvement over Theorem 1. Also f need only be in C#[a, b] for
Theorem 2 rather than analytic as in Theorem 1.

We remark that Theorems 1 and 2 can, of course, be generalized
to higher-order rules.

3. Cubature midpoint rules. We discuss two cubatures to approxi-
mate the integral o p(x, yfix, y)dydx, p(x, y)=0 and >0
except on a set of measure zero. The triangular Taylor’s expansion
is the following [2]:

flx, y) = flai, b)) + fi, olai, by)(x — @) + fo, 1(ai, bj)(y — by)
(1) + 3 [fa, ole,m(x — @2 + 2f (e, m)(x — @)y — by)
+ fo, 2(€,m)(y — b;)?],

€ between x and a; and 7 dually. We must assume that there exist
x; and y; such that

1 St Yj+1

(2) MN f f , P ydydz

(In the case of functions of one variable, {x;} such that 1/M
= [1*! p(x)dx exist because the positivity of p(x) ensures the
existence of the appropriate inverse function. Cf. [3].) A special case
in which the above always holds is if p(x, y) = pi(x)pa(y) where
p1 and py are both = 0 and > 0 except on a set of measure zero.
However, there are examples in which equation (2) holds and
p(x, y) is not of the form p,(x)pa(y). Such an example can be con-
structed as follows: On each subrectangle [x;, xiii] X [y, yj+1],
let p(x, y) be a pyramid that is zero on the boundary of the sub-
rectangle and has positive height hy such that (2) obtains. Specifically,
for the rectangle [—1,1] X [—1,1], p(x, y) is defined in the figure
below.

Thus (2) is equivalent to the following:

UMN = [(xi+1 — x)(gjr1 — Yjhyl /3,
so that
hij = 3I[MN(xiv1 — x:)(Y5+1 — 45)]-
Now we multiply equation (1) by p(x, y) and integrate from x; to
xi+1 and y; to y;,. Since
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the cubature sum

]. Aﬁ-l le b)
a;, b;
MN S 5% fiew b

is exact for constant functions. Let the a; and b; be so chosen that

J jl J px, y)(x — a)dxdy = 0

and
Yj+1 Vit
Xi+1 Yji+1
Iyg) = f f , P& ylel y)dyds,
then ' Y
Yj+1 Xt
, ~ plx, y)x dxdy ; )
(3) a; = jj-’ J“" = L&) and b; = I——U(y).
h(1l-x) on I
h(l-y) on II
p(x,y) =
h(1l+x) on III
h(l+y) on IV
(‘l,-l) (-'l)l)

III

v IT

(1,-1) l__> y (1,1)
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TueoreMm 3. Let
b d N
R = [ 7 peofispdyds— —— S5 flab)

where p(x, y) is as above, the a; and b; are as in equation (3) and

the x; and y; as in (2). Then Ryn(f) has the following representa-
tions:

Run(f) = fo, o€ 1) Run(x®) + fo, 2y, 8) Run(y®)
(4) ) Yie1  Xip
3, [ Pl ) = ay = b)dsdy

a <&y <band?, §dually.

Run(f) = 2 fi,1(ai, by)
X4 Yj+1
. j,\. Jy» p(x, y)(x — &)y — b;)dydx
+ f5, oo, B) Run(x®) + fo, 2(0, B2) Run(y®)
— fo, 2(ag, B3) Run(x2y2),

(5)

a<a<b,i=1,23 and theB; dually.

Proor. 1. Equation (4) follows from (1), since

Run(f) = % 2 [ JJP(% Y)fe, ol€, m)(x — a;)?dxdy
+2 [ [ ple yfialemix = a)ly — b)dxdy

+ [ [ pl y)foste.mly — by)2dxdy ]

where the integrals are over [x;, xi41] X [y, yj+1] and € = €(x),
71 =n;(y). The two mean value theorems can be used on the first
and third integrals, but not on the second one. E.g., the first sum
becomes f50(€, 1) D ; i [ (x — ;)] and this equals f; o(€, %) Run(x?),
as can be seen by applying Ry to x.

2. We could consider the f;, terms in (4) as part of the cubature
sum, analogous to §2. If not, then it is desirable to get f;, outside
the integral and this is the motivation for (5).

Use a rectangular Taylor’s expansion [2] as follows:
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fx, y) = fla, b)) + fiolas, b)(x — @) + fo(ai, by)ly — by)
+ fiila b)(x — ai)(y — by) + R(f),
where
R(f) = (x — a)®fa0(€, y) + (y — b)) @fo,e(x,m)
— (x = a)®(y — b))Pfaa(e, ).

Multiply by p(x,y), integrate over [x;, xi+1] X [y yj+1] and sum
on i and j to obtain:

IJPR(f) = pr(x, y)(x — a;)@f; o(e(x), y)dxdy
+ f f P, y)y = by)>fo.2(x, n(y))dxdy

— [ [ ) = @)@y — b)@faae(x), n(y)dady.

The application of the two mean value theorems yields the con-
clusion. Q.E.D.

We remark that the idea used for one variable of using the a; to
move out further in the Taylor’s expansion (e.g., to include f' terms
in the quadrature sum) is not effective for two variables because of
the binomial effect inherent in two-dimensional Taylor’s expansions.

4. Example. Let p(xy)=1, [a, b] = [c, d] = [0, 1]. We
consider Theorems 1-3 for this case. In Theorem 1, x; = i/N,
i=0, -+ N, and

Xt x Xivl — X : ;= —
a; = 2 * 2.312 (=113, i=0, N =1

e,

Lo-2itl  (Zhe
t 2N - 9.312N -

" In Theorem 2, the equation for g; is the following:
a® = 3a(xiv1 + X2 + axiy + xiox + 1Y)
- (x,'3+1 + x,fZH Xi + x,-+1xi2 + x,-3) = (.

If N = 1, then ay = 1/2, for example.
In Theorem 3, equation (3) can be simplified. In fact, if p(x, y)
= p1(x)p2(y), then a; is the same as in [3], i.e.,
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a; = J: pi(x) xdx/J o pi(x)dx.

Then the cubature rule in Theorem 3 is a cross product rule.
Recalling the notation of §2, we note that, for the above case, Stetter
showed that

Sn(x2) = 1/12N2.

The remainder terms in Theorems 1-3 permit us to determine
analogous results for the integration rules concerned. Noting the
above equation for g; in Theorem 1, we see that

Ry®(f) = 0N,
where norm on f® is the sup norm on [0, 1]. Similarly, in Theorem
2,
Ry®@(xW) = O(N-4),
so that

B(f)= O(N=* ).
In Theorem 3, by the quadrature results, equation (4) yields

Runif) = 0 (=5 I feol ) + 0 (3 1foal)
+ O( I£:. 1||>

where the norm is the sup norm on [0, 1] X [0, 1]. Equation (5)
yields

Run(f) = O( 3 lfial ) + 0 (35 1ol
+0(35 Ifual )+ 0 (i el )

These asymptotic estimates illustrate the idea motivating Theorems
1 and 2, as well as showing a connection between the cubature and
quadrature results.
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