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GENERALIZATIONS OF MIDPOINT RULES 
ROBERT E. BARNHILL 

ABSTRACT. A midpoint rule proposed by Jagermann and im­
proved upon by Stetter is generalized to H ermite-type quadrature 
rules and to first degree cubature rules. Remainder terms are 
included in both cases. 

1. Introduction. This note contains two types of generalizations 
of a midpoint rule proposed by Jagermann [ 1] and improved upon by 
Stetter [3]. The first generalization involves a Hermite type of 
midpoint rule and is discussed in §2. The second generalization con­
cerns cubature rules for a function of two variables and is in §3. In 
both cases, error terms are included, from which asymptotic estimates 
can be derived. 

2. Hermite-type midpoint rules. The integral to be approximated 
is Jt p(x)f(x)dx, where p(x) ^ 0, p(x) does not vanish identically 
on any subinterval of [a, b], and Jap(x)dx = 1, Stetter [3] has 
proved the following: 

Let N è 1 and 

Ssif)^ f P(x)f(x)dx- ±-N£j{ai)9 Ja N i=o 

where a{ = N J*'+1 tp(t)dt, i = 0, 1, • •-, N - 1, and the xh a 
= x0 < Xi < - - - < xN = b, are chosen so that UN = / i+lp(x)dx. 
Then SN(f) = T SN(x2)f"(€), a<€<b. 

We generalize this theorem as follows: 

THEOREM 1. Let 

RN(1W^ f P(x)f(x)dx- \ ± N t yCn)+ N±X Enfiati , 
Ja L N i=o i=o J 

where p(x) is as above, 
rxi+\ 

Ei(x) = xp(x)dx — aJN 
Xi 

and the ai are chosen so that 

p(x)(x — ai)2dx = 0 . 
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Then 

RN{1W = * £ f'+1 p(*ÌP>(e,(x))(x - a^dx, 

where x{ < €i(x) < xi+i and (x — ai){k) = (x — ai)klk\, k a positive 
integer. 

PROOF. First, 

f(x) = Jim) + f'(oi)(x - Oi) + f"(oi)(x - ö i )
( 2 ) 

so that 

f'*1 p(x)f(x)dx = -^~-+f'(ai) J*'+ ' p(x)(x - at)dx 

xi 

A summation of the last equation on i from 0 to N — 1 completes 
the proof. Q.E.D. 

We remark that Stetter's choice of the ai was made so that 

p(x)(x — a{)dx = 0. 

His definition of the X{ was the same as the above. 
The definition of a* given above is equivalent to 

ai = I l xp(x)dx ± < I l xp(x)dx J 

— I p(x)dx x2p(x)dx i 1/ p(x)dx 

and it follows that the two possible values of a\ are both complex 
numbers. Either possible value may be used, but the function / 
must now be analytic at the a*. 

The remainder term R^(1) cannot in general be simplified because 
the factor (x — aj)(3) can be of variable sign. However this can be 
remedied as follows: 

THEOREM 2. Let 
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where the Xi are as before and the ai are chosen so that 

rxi+\ rxi+\ 

p(x)(x — ai)3dx = 0, A4 = p(x)(x — a^)dxy 

and 

ft= f '+i p(x)(x- OiY^dx. 

Then RN
(2)(f) = /<4>(€)RN

(2)(*(4)), a < e < b. 

PROOF. NOW 

fa) = fifli) + / '(*)(* - <k) + f (*)(* ~ <**)(2) 

+ PK<k)(* ~ «i)(3) + f{4){€i(x))(x - <n)<4>. 

Multiplication of this equation by p(x), integration from Xi to xi+i, 
and summation on i from 0 to N — 1 yields the desired quadrature 
sum. The remainder term is 

RN{2W = NyZ f'+' p(x)r4\€i(x))(x - o,)<4>ck 

i V - 1 

= / (4)(e) S f'+l p(x)(x - OiY^dx 
t = 0 J v, 

by the application of the two mean value theorems. Finally, if 
Ru^if) = F4Ke)CN, CN 8L constant, then CN = RN

(2)(*(4)) by 
inspection. Q.E.D. 

The deeper reason that RN
(2)(f) has a simpler form than 

RN
il)(f) is that the Peano kernel is of one sign for RN

i2\f). 
Since ai in Theorem 2 must satisfy a cubic equation, there are 

three possible choices for a^ At least one of these is real and it 
must be in (xiy Xi+\) since, if not, the conditions on p imply that 
f'x[+i p(x)(x — Oi)3dx = 0 is impossible. Although Theorem 2 is 
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true for all three choices, the real root is the one that should be 
used. The fact that there is a real root for di makes Theorem 2 an 
improvement over Theorem 1. Also / need only be in C4[a, b] for 
Theorem 2 rather than analytic as in Theorem 1. 

We remark that Theorems 1 and 2 can, of course, be generalized 
to higher-order rules. 

3. Cubature midpoint rules. We discuss two cubatures to approxi­
mate the integral SÌ ÌÌ p(x, y)f[x, y)dydx, p(x, t/) = 0 and > 0 
except on a set of measure zero. The triangular Taylor's expansion 
is the following [2] : 

j{x, y) = fiai, bj) + fh o(oi, bj)(x - ai) + /0, i(ai? bj)(y - bj) 

(1) + i [fa o(€, V)(x - en)* + 2/ l t x(€, r,)(x - a^y - bs) 

+ / o , 2 M ( y - f e , ) * ] , 

€ between x and â  and r\ dually. We must assume that there exist 
%i and î/j such that 

(2) -+—= p(x,y)dydx. 
MN J v. J y.i 

(In the case of functions of one variable, {Xi} such that 1/M 
= JxJ+] p(x)dx exist because the positivity of p(x) ensures the 
existence of the appropriate inverse function. Cf. [3].) A special case 
in which the above always holds is if p(x, y) = pi(x)p2(y) where 
pi and p 2

 a r e both = 0 and > 0 except on a set of measure zero. 
However, there are examples in which equation (2) holds and 
p(x, y) is not of the form p1(x)p2(î/)- Such an example can be con­
structed as follows: On each subrectangle [xÌ7 Xi+Ì] X [yjy i/j+i], 
let p(x, y) be a pyramid that is zero on the boundary of the sub-
rectangle and has positive height hy such that (2) obtains. Specifically, 
for the rectangle [ — 1,1] X [ — 1,1], p(x, y) is defined in the figure 
below. 

Thus (2) is equivalent to the following: 

IIMN = [(x i+1 - Xi)(yj+l ~ yj)hij\l3, 
so that 

hij = 3l[MN(xi+l - Xi)(yj+l - yj)]. 

Now we multiply equation (1) by p(x, y) and integrate from X{ to 
Xi+i and yj to yJ+1. Since 

I rxi+\ r ^ ' + i 
= p(x,y)dydx 

MN Jxi J y j 
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the cubature sum 
M - l N-Ì 

is exact for constant functions. Let the a{ and bj be so chosen that 
rlJj+i rxi+i 

I I p(x, y)(x — dijdxdy = 0 
and 

i tf J V/ J A, P(*> î/)(î/ - bj)dxdy = 0, 

4(g) = J v J f p(*> y)g(*> y)dydx, 

then 

(3) di = 

!,', j^P(*>y)*dxdy =Iij{x) and ^ / j M 

( - 1 , - 1 ) 

( 1 , - 1 ) 

p ( x , y ) = 

• > y 

h ( l - x ) on I 

h ( l - y ) on I I 

h ( l + x ) on I I I 

h ( l + y ) on IV 

( - 1 , 1 ) 

( 1 , 1 ) 
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THEOREM 3. Let 

rb cd i M-l N-l 

RMN(/) = p(x, y)f{x, y)dydx £ S M > hj)> 
Ja Jc MN i=o i-o 

where p(x, y) is as above, the a* and bj are as in equation (3) and 
the Xi and y$ as in (2). Then RMN(/) has the following representa­
tions: 

RMN(J) = A o(8, V)RMN(X^) + /o, 2(y , ô)KMN(t/^)) 

rl/j +1 r v«+ I 

+ 2 P(*> y)/i, ifo(*)> *&(!/))(* - (k)(y - bj)dxdyy 

a < i , y < b and % 8 dually. 

RMN(/) = S A i(ai> bj) 
*,j 

r*Jj+\ 

p(x, y)(x - Oi)(y - bj)dydx 
(5) J v, J y, 

+ A o(«nßi)RMN(xW) + A 2{a2,ß2)RMN(y^) 

-f2,2(a3,ß3)RMN(x^Y% 

a < ai < b, i = 1, 2, 3 and £/ießj dually. 

PROOF. 1. Equation (4) follows from (1), since 

RMN(f) = è S [ J J p(*, y)A o(€>*?)(* - difdxdy 

+ 2 J J p(x, y)Ai(€,i?)(x - öi)(?/ ~ &/)d*dy 

+ J J P(x> y)foA€^v)(y - bj)2dxdy ] , 

where the integrals are over [xi? xi+1] X [t/j, t/j+i] and e = €{(*), 
17 = 7)j(y). The two mean value theorems can be used on the first 
and third integrals, but not on the second one. E.g., the first sum 
becomes f2fi(e, ff) ^ u Zy[(x - ai){2)] and this equals/2,o(ê, V)RMN(X(2)), 

as can be seen by applying RMN to x(2). 
2. We could consider the fx j terms in (4) as part of the cubature 

sum, analogous to §2. If not, then it is desirable to get A i outside 
the integral and this is the motivation for (5). 

Use a rectangular Taylor's expansion [2] as follows: 
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f[x, y) =j[Oi, bj) + /i,o(Oi, bj)(x - Oi)+ folia» bj)(y - ty) 

+ fuiifk, bj)(x - Oi)(y - bj) + R(f), 

where 

R(/) = (x - OiY^oie, y)+(y- bjY^2(x,v) 

- (x - a^\y - bjY%i2(e,v). 

Multiply by p(xyy), integrate over [%x i+i] X [yjy yj+l] and sum 
on i SLiidj to obtain: 

| J" pR(f) = j \ p(x, y)(x - fl,)«)f2>o(e(*), y)dxdy 

+ J J P(x>y)(y - bj){2)fo,2(x,v(y))dxdy 

- jjp(x,y)(x - a^Ky - bj)^f2tMx)My))dxdy. 

The application of the two mean value theorems yields the con­
clusion. Q.E.D. 

We remark that the idea used for one variable of using the a* to 
move out further in the Taylor's expansion (e.g., to i n c l u d e / ' terms 
in the quadrature sum) is not effective for two variables because of 
the binomial effect inherent in two-dimensional Taylor's expansions. 

4. Example. Let p(x,y) = 1, [a, b] = [c, d] = [0, 1]. We 
consider Theorems 1-3 for this case. In Theorem 1, %i = UN, 
i = 0, • • -, N, and 

ai = Xi+l + Xi ± V+i^-* (-1)1/2, i = o, . . ., N - 1. 

I.e., 

2 i + l . (~1)1 / 2 

di = 
2N " 2-31/2N * 

In Theorem 2, the equation for ai is the following: 

ai3 - 3ai2(Xi+i + Xi)/2 + üi(xhi + xi+ìXi + x,2) 

- ( x?+i + Xi+1 Xi + x i+1Xi2 + Xi3) = 0. 

If N = 1, then ÜQ = 1/2, for example. 
In Theorem 3, equation (3) can be simplified. In fact, if p(x, y) 

= pi(x)p2(y), then di is the same as in [3], i.e., 
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çxi+i . r * i + l 
a% — pi(x)xdxj\ pi(x)dx. 

Then the cubature rule in Theorem 3 is a cross-product rule. 
Recalling the notation of §2, we note that, for the above case, Stetter 

showed that 

SN(x2) = 1/12N2. 

The remainder terms in Theorems 1-3 permit us to determine 
analogous results for the integration rules concerned. Noting the 
above equation for a\ in Theorem 1, we see that 

R*<2>(/) = 0(N-3| | /(3) | | ) , 

where norm on / ( 3 ) is the sup norm on [0, 1]. Similarly, in Theorem 

2, 

RN(2)(X(4)) = 0(N-% 

so that 

flN(2>(/)= 0 ( N - i / w | | ) . 

In Theorem 3, by the quadrature results, equation (4) yields 

«»»</) = °(j!p « /».«il ) + °(-fc y/wi) 

where the norm is the sup norm on [0, 1] X [0, 1]. Equation (5) 
yields 

+ O(ii«/o,2|l)+o(^2||/2,2||). 

These asymptotic estimates illustrate the idea motivating Theorems 
1 and 2, as well as showing a connection between the cubature and 
quadrature results. 
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