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CURVATURE AND CHARACTERISTIC CLASSES OF 
COMPACT PSEUDO-RIEMANNIAN MANIFOLDS1 

CHUAN-CHIH HSIUNG AND JOHN J. LEVKO III 

Introduction. In the last three decades various authors have studied 
the relationships between curvatures and certain topological invariants 
such as characteristic classes of a compact Riemannian manifold. One 
of the earliest results was the Gauss-Bonnet formula [1], [6], which 
expresses the Euler-Poincaré characteristic of a compact orientable 
Riemannian manifold of even dimension n as the integral, over the 
manifold, of the nth sectional curvature or the Lipschitz-Killing curva­
ture times the volume element of the manifold. 

Later, Chern [8] obtained curvature conditions respectively for 
determining the sign of the Euler-Poincaré characteristic and for the 
vanishing of the Pontrjagin classes of a compact orientable Riemannian 
manifold. Recently, Thorpe [11] extended a special case of Chern's 
conditions by using higher order sectional curvatures, which are 
weaker invariants of the Riemannian structure than the usual sectional 
curvature, and Cheung and Hsiung [5] jointly further extended the 
conditions of both Chern and Thorpe. 

On the other hand, Avez [3] and Chern [9] used different methods 
to show that the Gauss-Bonnet formula is also true up to a sign on a 
compact orientable pseudo-Riemannian manifold. Very recently, from 
general remarks on connexions and characteristic homomorphisms of 
Weil [7, pp. 57-58], Borei [4] elegantly deduced this fact and expressed 
the Pontrjagin classes of a compact orientable pseudo-Riemannian 
manifold in terms of the curvature 2-forms. 

The purpose of this paper is to give an independent proof of Borel's 
result on the Pontrjagin classes and to extend the above mentioned 
joint work of Cheung and Hsiung to a compact orientable pseudo-
Riemannian manifold. 

§1 contains some fundamental formulas for a pseudo-Riemannian 
manifold such as the equations of structure, and the formulas for the 
higher order sectional curvatures and related differential forms. §2 is 
devoted to expressing the Euler-Poincaré characteristic and the Pon­
trjagin classes of a compact orientable pseudo-Riemannian manifold in 
terms of the curvature 2-forms in the sense of de Rham's theorem. In 
§3, we extend the above mentioned joint results of Cheung and Hsiung 
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to the pseudo-Riemannian case by first establishing several lemmas 
and then deducing the proofs of the two main theorems of this section. 

1. Fundamental formulas. Let Mn be a compact orientable mani­
fold of dimension n ( = 2) with a pseudo-Riemannian metric gaß(uK) 
of signature r, the number of positive eigenvalues of the matrix of the 
metric, where u1, • • -, un are local coordinates of an arbitrary point 
x €: Mn; throughout this paper all Greek and Latin indices take the 
values 1, • • -, n unless stated otherwise. At any point x €E Mn and 
over a neighborhood U of x we consider the spaces Vx and V* of 
tangent vectors and covectors respectively, and the family xeY • • • en 

of orthonormal frames and linear differential forms cu1, • • #, <on with 
respect to an orthonormal basis in Vx and its dual basis in V*; that is, 

(ei9a>i) = òij = 1, if i = / , 
(1.1) 

= 0, Xifij. 

The pseudo-Riemannian metric of Mn is of the form 

(1.2) dé = S (o>02- E (<o')2. 
i = l i=r+l 

For indices we use l(p) to indicate the ordered set of p integers 
ii, - • -, ip among 1, • • -, n. When more than one set of indices is 
needed at one time, we shall use other capital letters in addition to I. 
The equations of structure of the pseudo-Riemannian metric are 

da)1 = ]£ co' A a)), ofj + co>i = 0, 

(1.3) j 

dtfj = X o>kj A o>\ + % &j + ufi = 0, 
k 

where the components for the curvature 2-form fty satisfy 

« , = £!(, (1 ^ i ^ r), 

(1.4) « , = - % • (r < i ^ n), 

%= % ( l S y â n ) . 
Then, for any even p ^ n and distinct set of integers il9 • • -, ip we 
define the p-form 

(1.5) ef(P) = 4 r S (-^«fS«**A • • • A<V,, , 
r- UP) 

where c(J) denotes the number of the curvature 2-forms Ojfc with 

j > r for each combination (J1J2, ' ' % JP-UP)>
 a n d 
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SÌ(p) = + 1 , if/(p) is an even permutation of I(p), 

(1.6) = — 1, if/(p) is an odd permutation of Z(p), 

= 0, otherwise. 

In terms of a natural orthonormal basis in local coordinates ul, • • •,. 
un in the neighborhood U we have 

(1.7) fy = £ % , « * A «*, 
where repeated indices imply summation over their ranges, and 
Rijkz is the Riemann-Christoffel tensor. Thus (1.5) can be written as 

a-») »KP) = - - s i r ^ « î S ) * 1 ^ ^ • • • ^ - , j ^ - 1 ^ v H ( p ) , 
Z ' P l J(p),H(p) 

where 

(1.9) rfVH(p) = o>hl A • • • Aû/v = do*! A • • • A duh" 

is the volume element of the p-dimensional submanifold of Mn with 
local coordinates uh\ • • -,uhl>. 

Let P be any p-dimensional plane in the tangent space Vx of the 
manifold Mn at a point x. Then the Lipschitz-Killing curvature at x 
of the pdimensional geodesic submanifold of Mn tangent to F at x 
is called the pth sectional curvature of Mn at x with respect to P, and 
is given (see, for instance, [2, p. 257] ) in terms of any orthonormal 
basis eix • • • eifl of Pby 

(Lio) KI(P)(P) = -^r^ c c * ^ • • • HVW.V 
2. Characteristic classes. Let Mn be a connected manifold of dimen­

sion n (§£ 2) endowed with a pseudo-Riemannian metric gaß of 
signature r. Consider any Riemannian metric haß on Mn. In the 
tangent space Mx of Mn at each point x, g ^ defines the field T of 
symmetric linear transformations by means of haß. Now, consider the 
decomposition 

(2.1) Mx= S W ; + £ W,, 
i ;Aj>() j;kj<0 

where 

Wi = {X G Mx | T*(X) = XiX} 

= {X G Mx | g*(X, Y) = X^(X, Y), for all Y (= Mx} . 

Put r = 5]t;A,>o dim Wf. Since g and therefore T are nonsingular, r 
is constant and we have 
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n — r = ^ dim W,. 

Suppose that 

(2.3) W'n = £ Wh W » - ' , = 2 Wj. 

Then the distributions Wr:x^>Wr
x and Wn~r : x-* Wn~r

x are dif­
ferentiate, and this leads us to define 

(2.4) g x | W ^ = a , - gx\W»-'x = b, 

where the distributions a : x —» ax and b : x->bx are differentiable. 
Now, define 

(2.5) g = a + b . 

Then g is positive definite, and with respect to this g, g has eigenvalue 
1 of multiplicity r and eigenvalue —1 of multiplicity n—r, that is, for 
each x G Mn, Mx = Wr

x + Wn~\ is the eigenspace-decomposition 
with respect to g. By considering the tensor 

(2.6) m = g + tb, 
or 

(2.7) i(t) = a + (1 + t)by 

where f i s a real parameter, we see that £ defines a nonsingular pseudo-
Riemannian metric on Mn for tj^—1, which is Riemannian for 
t> —1 and is of signature r for t < — 1; in particular, £( — 2) = g. 

The inverse tensor of (2.6) is given by 

(2.8) l*ß(t) = g«ß - -1—b*v . 

Let ry
aß(t) be the Christoffel symbols with respect to Zaß(t). Then 

Cy
aß(t) = Ty

aß(t) - r>a/3(0) defines a tensor, where Tvaß(0) are the Chris-
toffel symbols with respect to £a/s(0) = g^ . 

Let V(f) and V (0) be the covariant derivation operators in the 
Riemannian connexion associated with Zaß(t) and gaß = Kß(0), re­
spectively. By using normal coordinates at a point x on Mn with 
respect to g^ß so that ry

a/3(0) = 0 at the point x, we have 

o = va<*>W*) 
(2.9) 

= v a % w - M')o>a(t) - ißy{t)c*jt). 
The cyclical permutation of the indices a, j8, a in (2.9) yields 
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(2.10) 0 = V^Kßit) - Hyß(t)Cya<r(t) - M ' ) C V ( ' ) , 

(2.11) 0 = V / » U * ) - tya(t)Cyaß(t) - Ky(t)Cyaß(t). 

Subtracting (2.10) from the sum of (2.9) and (2.11) we thus obtain 

(2.12) Cyaß(t) = lfl-(t)(VJ°%ß(t) + V„«»U*) - VJ°\ß(t)). 

Now, for a contravariant vector «''on M" we have 

Va(')üM = Va
(0>ü" + O ^ o " , 

7x(0Va«)«i«= Vx«>(Va
(0>t;>;) + Vx<

(>(Oa„ü») 

= (Vx<°>Va<
0>t>* + C % V „ < V - 0\Q Vp«»t;«) 

+ [ ( V k " » C " > ' + C^f V x«%" 

+ OvPOa/,o"-Ox<,C3*p/,o''], 

and therefore 

(Vx«>Va
(,) - V a «>V x «V = (VX«»V„<°> - V„«»VA<°>)f 

+ [(vx<°»c^) - (va«»ev) 
+ C^O^-C^pOxplo' ' . 

Thus the Ricci identity gives 

* , * ( * ) = * „ A ( 0 ) + Vx«»Oa„(*) - Va<°>Ox„(t) 

+ C^(t)C»aß(t) - &ap(t)Q>Kß(t), 

where Rfß^t) and Bfß^O) are the Riemann-ChristofFel tensors with 
respect to ry

aß(t) and Ty
aß(0) respectively. 

Let dV(t) and dV(0) be the volume elements of Mn associated 
with Zaß(t) and laß(0) respectively. By using equation (2.7) and 
orthonormal local coordinates ul, • • -, wn, we readily obtain 

(2.14) 

(2.15) 

dV(0) = \det(SLaß(0))\M dui A • • • A du" 

= |det (a) det (b)\"*dul A • • • A du", 

dV(t) = |det (laß(tW
2 dui A ••• A dun 

= |1 + *|<"-')'2dV(0). 

More generally, the volume elements dVu{4k)(t) and dVH(4*)(0), respec­
tively, associated with ^ ^ ( t ) and Äfc,hj(0), i,j=\, • • -, 4k, of the 4k-
dimensional submanifold of M", 4k ^ n, with the local coordinates 
(uh», • • -, u*«* ) are related by 
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dVH{4k)(t) = |det(JiM.,(*))lI/2<*u'" A • • • A duh« 
(2.16) 

= ii+*rdvH(4*)(o), 
where s Ks are greater than r, and the remaining h's are less than or 
equal to r. 

THEOREM 2.1. Let Mn be a compact orientable manifold of even 
dimension n with a pseudo-Riemannian metric of signature r. Then 
the Euler-Poincaré characteristic X(Mn) of the manifold Mn is given by 

(2-17) x(Mn) = Ì'^IT^I f ®i--
v / v ; 2n7Tn/2(n/2)! JM" 
where@l...n is given by (1.5). 

Theorem 2.1 is due to Allendorfer and Weil [1] and Chern [6] 
for the Riemannian case, and due to Avez [3] and Chern [9] for the 
pseudo-Riemannian case. Our proof is essentially the same as that 
of Avez. 

PROOF. By means of (1.8) we have 

@1 -« = 9n/2„t S d l-n»"1 j2M2 

(2.18) 
•••Rh'-ij„h„-lhudVH(n). 

Now let@1...n(t) be the form©i...n associated with Zaß(t) given by (2.6). 
Then 

e1 . . .„(t)=u
r E (-i)^8r„«JlJ2W---n,„_ iy„w 

= 2"'2n! ? 81" « « S y . , ^ ) 
J(n),H(n) 

and from (2.13), (2.12), (2.8), (2.7), (2.15) it follows that 

(2.19) 0 1 . . . n W = | l + ^ | ( n - r , / 2 _ m _ , 

where P(i) is a polynomial in £. Thus 

( - l ) n / 2 n! r 

^ ) s ^ P 4 ^ T J - e i " - ( 0 

(2.20) 
= II + f|(n-r)/2 V W 
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where Q(t) is a polynomial in t. 
Now, suppose that r is even. Since Zaß(t) for t > — 1 defines a 

Riemannian metric on Mn, it is known [1], [6] that/(t) for t > —1 is 
the Euler-Poincaré characteristic X(Mn) of Mn. Thus from (2.20) we 
have 

(2.21) Q(t) = (1 + t)(n+r)/2X(M«) 

for t > - 1 and therefore for all t. Substitution of (2.21) in (2.20) thus 
gives 

(2.22) ^ ) = X(Mn)|1 + f')(n_r)/2 , forali*. 

For t < -1 we have 1 + £ < 0 so that 

|1 + f|<»-r)/2 = (~l)("-'-)/2(l + t)(»-')/2 9 

and hence 

# ) = (-1)<"-'>'2X(M»), 

which proves our formula (2.17) for even r. 
Finally, suppose that r is odd such that r = 2r ' + 1. Then we have, 

for* > - 1 , 

»*» *<""> = ( T i ^ s r ' (TTÖT5 • 

which implies that Q(t) = 0 for f > — 1 and therefore for all t. Hence 
X(Mn) = 0 = ft) for all t, which shows that our formula (2.17) is also 
true for odd r, and completes the proof of Theorem 2.1. 

THEOREM 2.2. Let Mn be a compact orientable n-dimensional 
manifold with a pseudo-Reimannian metric of signature r. Then the 
differential form 

{2M> ^-(24 (!2)W»,| ,9 '»A e '« 
defines the kth Pontrjagin class Pk of the manifold Mn in the sense of 
de Rhams theorem. 

Theorem 2.2 is due to Chern [8] for the Riemannian case and 
due to Borei [4] for the pseudo-Riemannian case. However the 
proof given below is different from that of Borei. 

PROOF. By means of (1.8) we can rewrite (2.24) as 
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*4fc = (22*«)2(ar)2* f S _ Ä W ^ h , 

(2.25) • • • Rj^J2kH2k_lh2k 

' 8I(ïk)RJiJ.2h2k+ih2k + 2 ' ' ' RJlk~lJ2lh4k-\h4kdVH{4k). 

Now let^4fc(£) D e the form^4fc associated with laß(t). Then 

(2.26) 
(2«Jfc!)2(%)« ,, H2 J * C ) « ' ' ^ ' . . (') 

•ö/(l*)B'«;2;la+|;iäj!+,(*) 

and from (2.13), (2.12), (2.8), (2.7), (2.16), (2.25) it follows easily that 
y?4k(t) can be expressed in the following general form: 

(2.27) *4fc(t) = (1 + *)-•** Y |1 + t|i«Ç,(t), 
i=0 

or 

(2.28) ¥4fc(t) = (1 + t)-^(E(t) + |1 + tpF(*)) , 

where Qi(f), E(£) and F(£) are polynomials in t. It is known [8] that 
^4fc(£) for £ > — 1 defines the fcth Pontrjagin class Pk of Mn with real 
coefficients, so that 

(2.29) Pk = V4k(t) + £4fc 

for £ > — 1, where B4k is the group of the exact 4/c-forms of the mani­
fold Mn, which is obviously independent of t. Substitution of (2.28) in 
(2.29) thus gives 

(2.30) (1 4- tykPk = E(t) + |1 + t\li2F(t) + ( 1 + *)4fcB4fc, for t > - 1 . 

Since E(£) and F(£) are polynomials in t, (2.30) implies that F(t) = 0 
for £ > — 1 and therefore for all t. Hence from (2.28), (2.30) we see 
that (2.29) holds for all t, so that ^4k{t) defines the fcth Pontrjagin class 
Pk for all t, and in particular the case where t = — 2 gives our Theorem 
2.2. 

3. Relationships between curvatures and characteristic classes. Let 
Mn be a connected manifold of dimension n ( = 2) with a pseudo-
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Riemannian metric g ^ of signature r, p be an even positive integer 
g n, and a^ = ahi (», fo = 1, • • -, n) be given smooth real-valued 
functions on Mn. Denote 

(3.1) A/(p)>H(p) = det(alah^) (a,ß = 1, • • Vp), 

where the rows and columns of det(aiahß) are arranged in the natural 
order of a and /3, respectively. Consider the following curvature 
condition at x G Mn: 

(3.2) 2 8f$#i i i M i ' ' • Rj*-V„-.*,= ^ A W ( P ) » 
/(p) 

for all l(p), H(p) G (1, • • -, n), where #cp is a smooth real-valued 
function on Mn at x. In the Riemannian case, this condition was first 
used by Chern [8] for p = 2, by Thorpe [11] for a general p but 
#ih = 8th (in this case (3.2) implies that the Lipschitz-Killing curvature 
Knp)(P) is constant at x for every P and all I(p))r and then jointly by 
Cheung and Hsiung [5] for general p and a^. Furthermore, it is easy 
to see another geometric significance of the condition (3.2) for the 
Riemannian case, namely, if Mn is a hypersurface of a Euclidean space, 
then the symmetric tensor a^ may be taken to be the second funda­
mental form of Mn. 

From (3.2), (1.8), (1.9), (1.10) follows immediately 

LEMMA 3.1. For a fixed set of indices I(p), condition (3.2) implies 

(3.3) 0 / ( p ) = ±KpAI(p)iH(p)a>H(r>r 

(3.4) fc(p) = ( - l ) * V W < p ) , 
and also equation (3.3) implies condition (3.2), where 

(3.5) o)H^ = cô i A • • • A (ohr. 

In particular, when a% = 8#, then 

(3.6) 

where 

(3.7) A/(p), H(p) = det(8,ah/|) (a,/3 = 1, • • -, p). 

Therefore (3.3), (3.4) are reduced to 

(3.8) 0/(p, = KPW^ , 

(3.9) K / ( P ) = ( - 1 ) ^ K P . 

Thus, from (3.9) we have 
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LEMMA 3.2. Condition (3.2) with a^ = 8% implies that the pth 
sectional curvature KI{P)(P) at the point x of the manifold Mn is con­
stant, that is, independent of the p-dimensional plane P at the point x. 

On the other hand, from (1.8), (1.9), (1.10) it follows immediately 
that (3.8) implies (3.9). The converse is also true (can be proved 
in exactly the same way as given by Thorpe [11] for the Riemannian 
case), so that we can state, altogether, 

LEMMA 3.3. Equations (3.7) and (3.8) are equivalent. 

For the converse of Lemma 3.2, we notice that [ 10, p. 238] 

(3.10) à'i(p)= &i(p),H(P) > 

so that (3.8) can be written as 

®HP) = —TKP 2 8i 
P' Hip) 

(3.11) 
= J 7 « P A / ( P ) I H ( P ) ^ . 

p\ 

A comparison of (3.11) with (1.8), (1.9) yields immediately condition 
(3.2) with aij = 8ij. By combining this result with Lemma 3.2 and 
using Lemma 3.3 we hence obtain 

LEMMA 3.4. The pth sectional curvature Ki{p) of the manifold Mn 

at a point x is constant if and only if condition (3.2) with a^ = 8ij 
holds. 

LEMMA 3.5. On a pseudo-Riemannian manifold Mn of dimension 
n, if condition (3.2) holds for some even p and q with p + q = n, 
then 

(3.12) eHp+q) = 7Z±^KpKqAHp+qhHiP+q)œ
H^^ , 

(p + <?)! 

so that (3.2) also holds for p + q withicp+q = KpKq. 

PROOF OF LEMMA 3.5. Let the set I(p + q) have distinct elements, 
and (Ii(p), /2(g)) be a partition of I(p + 9), where Ix(p) = ( i n , • • -, flp) 
and I2(q) = (i2i, * ' % feq)- Then, from (1.5), 

\p "+• q)1 (I1J2), 

(3.13) A • • • Aaihp_liip Afti21i22 

A • ' ' A ftM.iS , 
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where c(h), c(h) denote the numbers of the curvature 2-forms (ijk 
with j > r for the combinations (inti2 , • * •, i^p-ihp) and (Ì2i*22> 
• • -, Ì2,q-iÌ2q)> respectively, and ^ ( j ^ ) denotes the summation over all 
such partitions of I(p + 9) into (hip), h(q))- For a fixed I(p + q), 
let J(p + 9 ) be an even permutation of I(p + q) such that j \ 9 • • -, 

jp G h(p), and j p + 1 , • • -, j p + q G h(q). By denoting J ' (9) = (jp+lt 

• • -, jp+q), using (1.5) and noticing that altogether there are (ppq) 
such partitions of I(p + q) into (h(p), h(q))> from (3.13) we then 
obtain 

(3.14) A ( - i r ^ ) h i 2 l i 2 2 A • • • A n , , . , . ^ 

= 0 / ( p ) A e w . 

On the other hand, by the Laplace theorem we can expand the deter­
minant AjiP+q)iH(p+q) according to the first p rows. By using this expan­
sion it is easily seen that all (p+q) terms of Aj{p+q)iH(p+q)<*>H{p+q) are equal 
so that we have 

(o.lo) 

where Jf'(g) = (hP+i, • * % hp+q). Substituting (3.3) in (3.14) and 
using (3.15) we arrive at (3.12), and an application of Lemma 3.1 
hence completes the proof of Lemma 3.5. 

By repeatedly applying Lemma 3.5 we can easily obtain 

COROLLARY 3.5.1. Let pÌ9 •• • -, pk be even positive integers, and 
(miy • • -, mk) a k-tuple of nonnegative integers such that 
9 = ^i^imipi— n. On a pseudo-Riemannian manifold Mn of 
dimension n, if condition (3.2) holds for px, • • -, pk, then it also holds 
for q with 

« , - ( « p , ) m ' - • • ( « * ) " " • 

COROLLARY 3.5.2. On a pseudo-Riemannian manifold Mn of even 
dimension n, if condition (3.2) holds for some positive even integer p 
dividing n, then 

(3.16) 0!...n = (Kp)^ d e t r a i 1 A • • • A (on, 

where co1 A • • • A a>n is the volume element ofMn. 

Combination of Theorem 2.1 with Corollary 3.5.2 gives immediately 
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THEOREM 3.1. On a compact orientable pseudo-Riemannian mani­
fold Mn of even dimension n with a pseudo-Riemannian metric of 
signature r, if condition (3.2) holds at every point xfor a positive even 
integer p dividing n, and (— l)[r/2](#cp)

n/p det(a^) keeps a constant 
sign, then this sign is the sign of the Euler-Poincaré characteristic 
X(Mn) of Mn. Moreover, under this hypothesis, X(Mn) = 0 only when 
(#Cp)n/p det(ay) vanishes identically. 

For the Riemannian case, this theorem was obtained by Chern 
[8] for p = 2, by Thorpe [11] for a^ — 8& and jointly by Cheung and 
Hsiung [5] for a general p. 

For studying Pontrjagin classes we need 

LEMMA 3.6. Equation (3.3) can be written in the following form: 

(3.17) e / ( p ) = KpSfM , 

where ûl(X are linear forms defined by 

(3.18) aï« = aiaha>h (a = 1, — , p ) . 

PROOF. Let p l s p2
 D e a n y two positive integers such that p\ + p 2 = p. 

By using p\,p2 for p, q, from (3.15) we then have 

A/(P),H(p)û)H(p) 

(3.19) 

P1JP2I 

where 

(3.20) l'{p2) = (iPl+h • • -, ip\ H'(p2) = (hPi+u • • -, hp). 

Repeatedly applying the same argument as above to both factors on 
the right-hand side of (3.19) yields immediately (3.17). 

Now we are in a position to prove the following theorem concerning 
the general curvature conditions for the vanishing of the Pontrjagin 
classes. 

THEOREM 3.2. On a compact orientable pseudo-Riemannian mani­
fold Mn of dimension n, if condition (3.2) holds at every point x for a 
positive even integer p ^ n, then the kth Pontrjagin class Pk(Mn) of 
Mn is zero for all k ^ p/2. 

For the Riemannian case, this theorem is due to Chern [8] for 
p = 2, to Thorpe [11] for a^ = Si,-, and jointly due to Cheung and 
Hsiung [5] for a general p. 
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PROOF. First, we consider the case p ^ 2k < 2p. Let(Ii(p),I2(2k—p)) 
be a partition of a fixed I(2k), and J(2k) an even permutation of l(2k) 
such that j i , • • -, jp G lx(p) and j p + 1 , • • -, 72* G *2(2fc - p). By 
denoting/ '(2k — p) = (/p+i, * * *,72fc)> from (3.14) we have 

(3.21) 0/(afc) = 2 ®/(P) A ®/'(2fc-p)> 

where 5](/J) denotes the summation over all such partitions of I(2k) 
into (J(p), J'(2k — p)). By using condition (3.2) for p and Lemmas 
3.1 and 3.6, equation (3.21) is reduced to 

(3.22) ez(2fc) = *p E ûJ{p) AeA2fc-p), 

where J>J«are linear forms defined by (3.18), so that @/(2fc) A 0/(2/k) is a 
sum, each term of which contains an exterior factor 

(3.23) &JW A &JW , 

where all the superscripts j , 7 G I(2fc). Since 2fc < 2p, at least two of 
t h e / s and j ' s in (3.23) must be equal, so that each of such factors (3.23) 
is zero. Thus0/(2fc) A 0/(2fc) = 0 for all I(2k). By Theorem 2.2 we hence 
obtain Pk(M

n) = 0 for all k with p/2 ^ k < p. 
Finally, since condition (3.2) is assumed to hold for p, by Corollary 

3.5.1 it also holds for 2*p (i = 1, 2, • • •). Applying the same argu­
ments as above we therefore have 

Pk(M
n) = 0 (2f'lp ^k< %p; i = 1,2, • • •). 

Hence P^(Mn) = 0 for all k ^ p/2, and the theorem is proved. 
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