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ABSTRACT. We consider the Cauchy problem in R,
N > 1, for the semi-linear Schrédinger equation with
fractional Laplacian. We present the local well-posedness of
solutions in H*/2(RN), 0 < a < 2. We prove a finite-time
blow-up result, under suitable conditions on the initial data.

1. Introduction. We study the initial-value problem for the non-
linear Schrodinger equation

(1.1) i0pu = Au + NulP  (t,z) € (0,T) x RN,
' u(z,0) = f(z) z e RN,

where the pseudo-differential operator A® := (—A)*/2 with 0 < a < 2
is defined by the Fourier transformation: Ka\u({“ ) = |¢€]*u(§). Moreover,
we assume that T > 0, p > 1, u = u(x,t) is a complex-valued unknown
function, A € C\ {0} and f = f(z) € H*?(R") is a given complex-
valued function.

In recent years, the study of fractional calculus and fractional inte-
grodifferential equations applied to physics and other areas has grown,
see [8, 12, 13] and the references therein. Meltzler and Klafter dis-
cussed recent developments in the description of anomalous diffusion
with the fractional dynamics approach in [12, 13] where many frac-
tional partial differential equations are asymptotically derived from
Lévy random walk models, a natural generalization of the Brownian
walk models. Inspired by the Feynman path approach to quantum me-
chanics, Laskin used the path integral over Lévy-like quantum mechan-
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ical paths to obtain a fractional Schrédinger equation, which extends a
classical result that the path integral over Brownian trajectories leads
to the standard Schrédinger equations, (see [10, 11]). There are also
papers that address fractional Schrodinger equations and their appli-
cations, see e.g., [5, 16].

When a =2, ie.,

(1.2) i0pu + Au = Nul|? (t,z) € (0,T) x RY,
' u(z,0) = f(z) z eRY,

it is well known, see [3], that local well-posedness holds for (1.2) in
HYRM)if 1 < p < 1+ (4/(N —2)4). Moreover, it is also known
that the local solutions can be globally extended for some small data
when p is larger than the Strauss exponent ps, which is the positive
root of Np? — (N +2)p — 2 = 0, see [2]. However, there have been no
results on global existence for p < ps. In 2013, Tkeda and Wakasugi [7]
proved a small-data blow-up result for (1.2) when 1 < p < 14 2/N.
For more information on the semilinear Schréodinger equations without
gauge invariance, we refer the reader to [6].

The main goal in this paper is to generalize the blow-up result of
Tkeda and Wakasugi [7] to the fractional Schrédinger equations (1.1).
The local existence is accomplished by the Banach fixed point theorem,
using semigroup theory and Stone’s theorem on the fractional operator
A = —i(—A)*/2 which is the infinitesimal generator of a Cy group of
unitary operator on L?, see [3]. The method used to prove the blow-
up result is the test function method. This method was introduced by
Baras and Kersner [1] in 1987 and developed by Zhang [17], Pohozaev
and Mitidieri [14] in 2001. It was also used by Kirane, et al., [9] in
2002.

The paper is organized as follows. In Section 2, we present local
existence of solutions for (1.1) with some properties. Section 3 contains
the blow-up result of solutions for (1.1).

2. Local existence. This section is dedicated to showing the local
existence and uniqueness of mild solutions of problem (1.1). Let
Au = —i(—A)*/?u. By applying Stone’s theorem [15, theorem 1.10.8],
we conclude that A is the infinitesimal generator of a Cy group of
unitary operators S(t), —oo < t < oo, on L?(RY). We begin by giving
the following definition.
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Definition 2.1 (Mild solution). Let f € H*/2(RV), 0 <a <2,p>1
and T > 0. We say that u € C([0,T], H*/?(RY)) is a mild solution of
problem (1.1) if u satisfies the following integral equation:

(2.1) u(®) :S(t)f—i)\/ S(t— 8)[u(s)[P ds.
0
We set
00 ifn=1,
2(a—1) o
po = 1 + a(27z04) ) lf n = 27
n(a—1 .

Theorem 2.2 (Local existence). Given f € H®/2(RN), A € C\{0},
0<a<2adl <p <14+ (2a/(N—-a);), there exist T > 0
and a mild solution v € C([0,T], H*/?>(RN)) of (1.1). Moreover, if
1l < a< 2andl < p < pg, then the solution u is unique, and
therefore, there exist a mazximal time Tyax > 0 and a unique mild
solution u € C([0, Tmax), H*?>(RN)) of (1.1). Furthermore, either
Tinax = 00 or else Thax < 00 and ||u||Ha/2(RN) — o0 as t — Tmax.

Proof. Cho, et al., [4, Propositions 4.1-4.3] have shown, using the
Banach fixed-point theorem, that there exists a unique mild solution
u € Mg = C([0,T], H*/?(RN)) of (1.1). Using the uniqueness of
solution, we conclude the existence of a solution on a maximal interval
[0, Tiax ), where

Tmax = sup {T" > 0; there exists a mild solution u € Il to (1.1)}
< +o0.

Next, we prove that ||u| gas2 — 00 as t = Tiyax. We suppose

ll_l’gﬂlnl'ii lul| frasz < oco.

Then, we can find a sequence {tx}ren C [0,Tmax) and a positive
constant M > 0 such that

(2.2) lim t, = Thnax

k—o0
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and

(2.3) sup ||u(te)|| gase < M.
keN

From (2.3) and the first part of Theorem 2.2, we can construct a
solution u € C([tg,ty + T(M)); H*/?(RN)) of (2.1) for all k € N
with some T(M) > 0. However, by (2.2), we can take ¢ satisfying
ty +T (M) > Timax, which contradicts the definition of T},.x. Therefore,
we obtain

lim inf ||u|| ga/2 = 0. O
_>Tu)ax

3. Blow-up of solutions. This section is devoted to deriving the
blow-up result of (1.1). We define the following.

Definition 3.1 (Weak solution). Let f € L (RY) and T' > 0. We
say that u is a weak solution of problem (1.1) if u € L¥ ((0,7) x RY)
which verifies the following weak formulation:

z’RNf xO—l—)\//\uV’ x,t)
(3.1) z_/o /RN w(z, YA o (z, 1)
—i/OT/RN u(z, t)p(x, t),

for all compactly supported real-valued functions ¢ € C2([0,T] x RY)
such that ¢(-,T) = 0.

Lemma 3.2. Consider f € H*/2(RN), and let u € C([0, T], H*/?(RY))
be a mild solution of (1.1). Then, u is a weak solution of (1.1), for all
T > 0.

Proof. Let T > 0, f € H*/2(RN) and u € C([0,T], H*/?>(RN)) be
a solution of (2.1). Given a real-valued function ¢ € C2([0,T] x RY)
such that suppy is compact and ¢(-,T) = 0. Then, after multiplying
(2.1) by ¢ and integrating over RY, we have
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[ uaeta)
— [ S@ @), t) —ir /R ) /O S(t— 8)[u(s)P dse(z, ).

RN
We differentiate to obtain
d
% RN ’U,(.’I,‘, t)(P(Q?, t)
d
(32 - [ 5 S01@e(w0)
RN

oA ,
_M/ﬂw %/0 S(t— 8)[u(s)P dse(z, b).

Now, using that A is a skew-adjoint operator and a property of the
group S(t) [3, Chapter 3], we have:

[ 55O @)e(w.0) do
= [ ABOf) plart)da
(3.3) + - S(t)f(z)pe(x,t) de
- [ @@ ac(e. 0 do
+ [ SOt d.
and

‘ d [* p
M/RN %/0 S(t— s)|u(s)|? dsp(z,t) dx

—ix [ [u®)Pe(e,t) de
RN

1A /R ) /0 A(S(t — 8)|u(s)|?) dsp(z, )
(3.4) +iA /]RN/O S(t — s)|u(s)|? dspi(z,t) dx
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=i\ /RN |u(®)|Po(z,t) da
+M/RN/O S(t — )[uls)|? dsAp(z, 1)
+iA /RN/O S(t — s)|u(s)]P dspi(z,t) d.

Thus, using (2.1), (3.3) and (3.4), we conclude that (3.2) implies

d

Qi Jox u(z, t)p(z,t) das:/ u(z, t)Ap(x, t) dz

RN
+/RN u(z, t)ps(x,t) de
_ix /]R Ju(s) P 1) do

The result follows by integrating in time over [0,7] and using the fact
that ¢(-,T) = 0. O

In order to state our result, we set A = A\; +iAy and f = f1 +ifs.
We introduce the following assumption on the data:

(3.5) f1 € LYRY), A2 fidz >0,
RN

or

(3.6) f2 € LY(RY), A [ fodr <O.
]RN

Theorem 3.3. Under the same conditions as Theorem 2.2, if f satis-
fies (3.5) or (3.6) and if

«
1l<p<1+—
p= +N7

then the mild solution of (1.1) blows-up in finite time.

Proof. We argue by contradiction, supposing that u is a global mild
solution of (1.1). Using Lemma 3.2, we have u € LP((0, R*), L?(Bs))),
for all p > 0 and that it satisfies (3.1), where By, stands for the
closed ball of center 0 and radius 2p. We define the function p(z,t) :=
o1(x/BR)(p2())*, where
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_2p—1

="

)

R,B>0and 0< ¢ € D(AaD/2) is the first eigenfunction of the frac-

tional Laplacian operator A%/ % in Bs, with the homogeneous Dirichlet
boundary condition, associated to the first eigenvalue x, and

er(t) =07z ).

where 1 is a smooth non-increasing function on [0, c0) such that

o(r) =

1 ifo<r<i,
0 ifr>2.

The constant B > 0 in the definition of ¢; is fixed and will be chosen
later. In fact, it plays some role only in the critical case p = 1+ a/Nj;
in the subcritical case p < 1+ a/N we simply take B = 1.

In the following, we denote by Q; and Qs the supports of ¢; and
2, respectively:

Q, ={z eRY : |z| <2BR},
Qy ={t €[0,00) : t <2R"}.

Since u is a weak solution, we have

)\/ / (ul? (2, 8) (2, £) da dt
Qs JQ

+1 f(z)p(z,0)d
1951

B _i/fz /Q u(z, t>901($/BR)8t<p§(t) dx dt
’ /Q /Q u(z, )¢5 (t)A (¢1(x/ BR)) da dt.

In order to obtain non-negativity on the left hand side of (3.7) (for
R, B > 1), we consider four cases:
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Case 1. If Ay > 0, then
f2 dr < 0;
RN
therefore, by taking the real part (Re) on the both sides of (3.7), we
get:
0<x [ [ P tptedede~ [ fa(@)ee0)ds
Qz Ql Q1
= Re [ — z/ / u(x, t)g1(x/ BR)0y b (t) da dt]
Qo JQ
+ Re[ / / (@, Dl (DA (o1 (2 BR)) da dt].
Q Jo,

Case IL If Ay < 0, then [,y fodx > 0; therefore, by taking (—Re)
on both sides of (3.7), we get:

0< —>\1/ P (2, (@, ) dzdt + | fal@)p(a, 0) da
QQ Ql Q1

=Re |:Z/Qz /91 u(z, )1 (z/BR)8,p5(t) dfcdt]

—Re) [/92 /Q1 u(z,t)p Aa(gol(x/BR))dxdt}

Case II1. If Ay > 0, then
f1 dx > 0;
RN

therefore, by taking the imaginary part (Im) on both sides of (3.7), we
get:

0< Ao /Q /Q (o () de i+ (@)l 0) e
- Im{— Z/Q /Q w(z, )1 (z/ BR)OWAL(L) da dt}
+Im[/ﬂz /Q ot A”‘(@l(x/BR))dzdt}
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Case IV. If Ay < 0, then [,y fi dx < 0; therefore, by taking (—Im)
on both sides of (3.7), we get:

0< - /Q [ e ndzdi— [ fi@gee0ds
Im[i /92 /Q1 u(z,t)p1(z/BR)d,p5(t) dwdt}
—|—Im[/Q2 /Ql u(, t)5(t)A® (@1 (x/BR)) d;vdt}

We only consider Case I since the others may be treated identically.
In this case, we assume f» € L' and

(3.8) fadz < 0.
RN

Thus, we have:

)\1/ / |u|P(z, t)p(x, t) de dt
Qo JQ

—a 0 —a
(3.9) < kB /Q2 /91 |u|(z, t)5(t) R~ “p1(z/BR) dx dt

. / / (. )1 (2/ BR)™ (8)Dripa(t) e
Qs JQ
= 12+Il7

where we have used the fact that A%/zgpl (x/BR) = R~*B~“kp1(x/R).

Hence, by the e-Young inequality ab < ea? + C()b~! (note that
1/p+1/(¢ —1) =1) with € > 0, we deduce:

D=t [ [ lulle 07 o/ BRI (00a(t) dndi
Qs JQ
< ﬁ/ |ulP(x, t)p(x,t) da dt
4 Ja, Ja,

+ C/Q /Q (p_(é_l)/pipg[_l)((E/BR)QD%Z_UQ (t)|8ts02(t)‘f—l dx dt
2 1
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<3 [ P et d
4 Qs JQ
v [ [ o/ BRI Dua(0) daat
Qs JQ
and
I, = ,%B_O‘/ / lu|(z,t)p P~ YPRE (t) R~ ¢, (2/ BR) dz dt
Q. Jo,

<M / / P (2, Vo, £) dar dt
4 Qs JQ

+C/ /907“*1)/%5“_1)(t)B*““*”R*“(“)wf_l(x/BR)d“lt
QQ Ql

< &/ / |ulP(z,t)p(x, t) dz dt
4 Ja, Ja,
+C/ / s (t) B~V R==V ) (1:/ BR) du dt.
Qz 91

Hence, from (3.9), we have:
/ / |ulP (z,t)p(x, t) de dt
Q. Jo,
gc/ / 12/ BR)ps (1) Duipa ()] dr
Q0 Jy

v [ [ oe/BRGWE VR drdr
Qy J

Note that N + o — «(f —1) <0 if and only if p <1+ a/N. Therefore,
we consider two cases.

e If p < 1+ a/N, we suppose that B = 1. Thus, by taking the
change of variables ¢ = R™'z and 7 = R™°t, we have

S e dsa
2

Q Q1
< c/ / )2 (R¥T)R™=1|9, 0o (ROT)|[* "' RN R* d¢ dr
|<2

+0/ / ROT)R~ =D RN R® d¢ dr.
§|<2
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Therefore, we easily obtain

(3.10) / / P (a, £)p (0, 1) das dt < CRN+Ha—ale=1),
Qs J Q1

where the constant C' on the right hand side of (3.10) is independent
of R. Hence, computing the limit R — oo and using the Lebesgue
dominated convergence theorem yields

/000 /RN Jul? (2, 1)¢1(0) da dt = 0.

Then, u(z,t) = 0 for all ¢ and almost every z. Hence, we obtain a
contradiction with (3.8).

e In the critical case p = 1+a/N, we choose 1 < B < R large enough
such that, when R — oo, we do not simultaneously have B — co. We
estimate the first term on the right hand side of inequality (3.9) by the
e-Young inequality and the second term by the Holder inequality (with
p=p/(p—1)=L-1), as follows:

)\1/ / |ulPo(z, t) de dt
Q Joy
At
<= |u|Po(x,t) de dt
2 Ja, Jo,

(a1 wo [ [ e BR R dea

1/p
+£</ / |u|Po(z,t) dwdt)
Qs Joy

X (/Q /Q ©1(x/BR) s (t) |0rpa(t)|P dxdt)l/ﬁ.

Here, Q23 = {t € [0,00) : R* < ¢ < 2R*} C )y is the support of J¢ps.
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Note that

lim / / |u|Po(x,t) de dt
R—oo Jo, Jo,
= lim / / lu|Pp(x,t) dt dx
T Roo [t|<2Re Jo,

(3.12) — lim/ / |u|Po(x,t) dt dx
R—o0 ‘tlSRO‘ [oH
| P e
0 RN
= [ e ) ded = o
0 RN

where we have used the Lebesgue dominated convergence theorem and
the fact that u € LP(RY x (0,00)), cf., (3.10). Now, introducing the
new variables £ = (BR)’ z, 7 = R~%*t and recalling that p = 14+ «/N,
we rewrite (3 11)

/ / |u|Po(x,t) da dt
Qs SO

<c / (7)1 (€) B2 de dr
gl<2

(3.13) —|—€</QS /Q1 |u|Pp(x,t) dxdt) v

2 1/p
N p T
( / YOO8 o) dsd)

1/p
SC’BO‘+C’BN/p(/ / |up<p(x,t)da:dt) ,
Q3 J

where the constant C' is independent of R and B. Passing in (3.13) to
the limit as R — 400 and using (3.12) and the Lebesgue dominated
convergence theorem, we obtain

(3.14) /000 /]RN |u|P(z, t)p1(0) dzdt < CB™“.

Finally, computing the limit B — oo in (3.14), we infer that u(z,t) =0
for all ¢ and almost every z. A contradiction with (3.8) is again ob-
tained. O
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