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ABSTRACT. The aim of this paper is to discuss the
global existence, uniqueness and asymptotic stability of mild
solutions for a class of semilinear evolution equations with
nonlocal initial conditions on infinite interval. A sufficient
condition is given for judging the relative compactness of a
class of abstract continuous family of functions on infinite
intervals. With the aid of this criteria the compactness of
the solution operator for the problem studied on the half
line is obtained. The theorems proved in this paper improve
and extend some related results in this direction. Discussions
are based on stochastic analysis theory, analytic semigroup
theory, relevant fixed point theory and the well known
Gronwall-Bellman type inequality. An example to illustrate
the feasibility of our main results is also given.

1. Introduction. In the past two decades, stochastic differential
and integro-differential systems have attracted great interest because
of their practical applications in many areas, such as physics, econom-
ics, population dynamics, chemistry, medicine biology, social sciences
and other areas of science and engineering. For more details, we refer
the reader to the books by Sobczyk [23], Grecksch and Tudor [14],
Da Prato and Zabczyk [9] and Liu [17]. One of the branches of sto-
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chastic differential equations is the theory of stochastic evolution equa-
tions. Because semi-linear stochastic evolution equations are abstract
formulations for many problems arising in the domains of engineering
technology, economic systems and biology, etc., stochastic evolution
equations have attracted increasing attention in recent years. There
are many interesting results on the existence, uniqueness and asymp-
totic behavior of mild solutions to stochastic evolution equations, see
[1, 5, 12, 18, 21, 24] and the references therein. Taniguchi, Liu
and Truman [24] discussed the existence, uniqueness, pth moment and
almost sure Lyapunov exponents of mild solutions to a class of stochas-
tic partial functional differential equations with finite delays by using
semigroup methods. El-Borai, Mostafa and Ahmed [12] studied expo-
nentially asymptotical stability of stochastic differential equation in a
real separable Hilbert space. Luo [18] discussed the exponential sta-
bility of mild solutions for stochastic partial differential equations by
using the contraction mapping principle and stochastic integral tech-
niques. By introducing a suitable metric between the transition proba-
bility functions of mild solutions, Bao, Hou and Yuan [1] obtained the
exponential stability of mild solutions to a class of stochastic partial dif-
ferential equations. Ren, Zhou and Chen [21] established the existence,
uniqueness and stability of mild solutions for a class of time-dependent
stochastic evolution equations with Poisson jumps and infinite delay
under the non-Lipschitz condition. Recently, Chen, Li and Zhang [5]
discussed the existence of saturated mild solutions and global mild solu-
tions, the continuous dependence of mild solutions on initial values and
orders as well as asymptotical stability in the pth moment for the ini-
tial value problem of a class of fractional stochastic evolution equations
in real separable Hilbert spaces by using α-order fractional resolvent
operator theory, the Schauder fixed point theorem and the piecewise
extension method.

In addition, the theory of nonlocal evolution equations has become
an important area of investigation in recent years due to their appli-
cation to various problems arising in physics, biology, aerospace and
medicine. It has been demonstrated that nonlocal problems have better
affects in applications than classical Cauchy problems. For example, it
has been used to represent mathematical models for evolution of various
phenomena, such as nonlocal neural networks, nonlocal pharmacokinet-
ics, nonlocal pollution and nonlocal combustion, see McKibben [19].



STOCHASTIC EVOLUTION EQUATIONS 327

For this reason, differential equations with nonlocal initial conditions
were studied by many authors, and some basic results on nonlocal prob-
lems have been obtained, see [2, 3, 11, 13, 16, 25, 26, 27] and the
references therein. In particular, Byszewski [3] obtained the existence
and uniqueness of classical solutions to a class of abstract functional
differential equations with nonlocal conditions of the form

(1.1) u′(t) = f(t, u(t), u(ξ(t))), t ∈ I = [t0, t0 + b],

(1.2) u(t0) +

p∑
k=1

cku(tk) = u0,

where b > 0 is a constant, t0 < t1 < · · · < tp ≤ t0+b; f : I×E×E → E
and ξ : I → I are given functions satisfying some assumptions; E is
a Banach space, u0 ∈ E, ck ̸= 0, k = 1, 2, . . . , p, and p ∈ N. The
author pointed out that, if ck ̸= 0, k = 1, 2, . . . , p, then the results
of the paper can be applied to kinematics to determine the location
evolution t → u(t) of a physical object for which we do not know the
positions u(0), u(t1), . . . , u(tp), but we know that the nonlocal condition
(1.2) holds. The nonlocal condition of type (1.2) has also been used by
Deng [11] to describe the diffusion phenomenon of a small amount of
gas in a transparent tube. In this case, condition (1.2) allows for the
additional measurements at tk, k = 1, 2, . . . , p, which is more precise
than the measurement merely at t = t0. Consequently, in order to
describe some physical phenomena, the nonlocal condition can be more
useful than the classical initial condition u(t0) = u0.

Very recently, Cui, et al. [8] studied the existence results of mild
solutions for a class of stochastic integro-differential evolution equa-
tions with nonlocal initial conditions in Hilbert spaces assuming that
the nonlocal item is only continuous but without imposing compact-
ness and convexity. By using a new strategy which relies on the com-
pactness of the operator semigroup, Schauder fixed point theorem and
approximating techniques, Chen and Li [4] obtained the existence of
α-mild solutions for a class of fractional stochastic integro-differential
evolution equations with nonlocal initial conditions in a real separable
Hilbert space. Sakthivel et al. [22] investigated the approximate con-
trollability of fractional stochastic differential inclusions with nonlocal
conditions with the help of the fixed point theorem for multi-valued
operators and fractional calculus. Chen, et al. [6] obtained the ex-
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istence of mild solutions for a class of fractional stochastic evolution
equations with nonlocal initial conditions in Hilbert spaces under the
situation that the nonlinear term satisfies some appropriate growth con-
ditions by using fractional calculations, Schauder fixed point theorem,
stochastic analysis theory, α-order fractional solution operator theory
and α-resolvent family theory.

However, the following two aspects should be considered. Firstly,
to the best of the authors’ knowledge, all existing articles (such as
[4, 6, 8, 22]) are devoted only to the study of the local existence of mild
solutions for stochastic evolution equations with nonlocal conditions
on compact interval; there are not yet any results on the existence of
global mild solutions for stochastic evolution equations with nonlocal
initial conditions on infinite interval. Secondly, we have not yet seen
any research on the globally asymptotical stability of mild solutions
for stochastic evolution equations with nonlocal conditions on [0,+∞).
Motivated by all of the above-mentioned aspects, in this article we
discuss the global existence, uniqueness and asymptotic stability of
mild solutions for a class of semilinear stochastic evolution equations
with nonlocal initial conditions on the infinite interval

(1.3) du(t) +Au(t) dt = f(t, u(t)) dW(t), t ∈ J,

(1.4) u(0) =
∞∑
k=1

cku(tk),

where the state u(·) takes values in the real separable Hilbert space
H with inner product (·, ·), and norm ∥ · ∥, A : D(A) ⊂ H → H is a
positive definite self-adjoint operator.

Let K be another separable Hilbert space with inner product (·, ·)K
and norm ∥ · ∥K. Assume that {W(t) : t ≥ 0} is a cylindrical K-valued
Wiener process with a finite trace nuclear covariance operator Q ≥ 0
defined on a filtered complete probability space (Ω,F , {Ft}t≥0,P). We
shall also employ the same notation ∥ · ∥ for the norm of L(K,H),
which denotes the space of all bounded linear operators from K into
H. We set L(H) = L(H,H), and f : J × H → L(K,H) is a continuous
nonlinear mapping J = [0,+∞), 0 < t1 < t2 < · · · < tk < · · · ,
tk → +∞ (k → +∞), ck are real numbers, ck ̸= 0, k = 1, 2, · · · . As we
can easily see, the general nonlocal initial condition (1.4) contains as
particular case (1.2). By using the theory of operator semigroups, we
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can transform nonlocal problem (1.3)–(1.4) into an equivalent integral
equation, see Definition 2.1, and then, applying Schauder’s fixed point
theorem, the theory of analytic semigroups and stochastic analysis
theory to discuss the global existence of mild solutions for nonlocal
problem (1.3)–(1.4). The asymptotic stability of mild solutions for
nonlocal problem (1.3)–(1.4) have also been discussed, in which the
Gronwall-Bellman type inequalities paly an important role.

In the next section, we first introduce some notation and prelimi-
naries, which are used throughout this paper, as well as the definition
of the mild solution for stochastic evolution equation nonlocal problem
(1.3)–(1.4) is also given. In Section 3, we state and prove the global
existence, uniqueness and asymptotic stability of mild solutions for
semilinear stochastic evolution equation nonlocal problem (1.3)–(1.4).
In the last paragraph, we give an example to illustrate the feasibility
of our abstract results.

2. Preliminaries. Let H and K be two real, separable Hilbert
spaces and L(K,H) the space of bounded linear operators from K into
H. For convenience, we will use the same notation ∥ · ∥ to denote
the norms in H, K and L(K,H), and use (·, ·) to denote the inner
product of H and K without any confusion. Throughout this paper,
we assume that (Ω,F , {Ft}t≥0,P) is a complete filtered probability
space satisfying the usual condition, which means that the filtration
is a right continuous increasing family and F0 contains all P-null sets
of F . In general, we just write u(t) instead of u(t,W) and u(t) : J → H.
Let {ek, k ∈ N} be a complete orthonormal basis of K. Suppose
that {W(t) : t ≥ 0} is a cylindrical K-valued Wiener process defined
on the probability space (Ω,F , {Ft}t≥0,P) with a finite trace nuclear
covariance operator Q ≥ 0. Denote Tr(Q) =

∑∞
k=1 λk = λ <∞, which

satisfies that Qek = λkek, k ∈ N. Let {Wk(t), k ∈ N} be a sequence of
one-dimensional standard Wiener processes mutually independent on
(Ω,F , {Ft}t≥0,P) such that

(2.1) W(t) =
∞∑
k=1

√
λkWk(t)ek.

We further assume that Ft = σ{W(s), 0 ≤ s ≤ t} is the σ-algebra
generated by W and F .
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For φ, ψ ∈ L(K,H), we define LQ = L2(Q
1/2K,H) as the space of all

Q Hilbert-Schmidt operators from Q1/2K to H with the inner product
(φ,ψ)Q = Tr(φQψ∗), where ψ∗ is the adjoint of the operator ψ. Clearly,
for any bounded operator ψ ∈ L(K,H),

(2.2) ∥ψ∥2Q = Tr(ψQψ∗) =
∞∑
k=1

∥
√
λkψek∥.

Let A : D(A) ⊂ H → H be a positive definite self-adjoint operator
in Hilbert space H, and let it be compact resolvent. By the spectral
resolution theorem of positive definite self-adjoint operators, the spec-
trum σ(A) only consists of real eigenvalues, and it can be arrayed in a
sequence as

(2.3) 0 < λ1 < λ2 < · · · < λn < · · · , λn → ∞ n→ ∞.

From [15, 20], we know that −A generates an analytic operator
semigroup T (t)(t ≥ 0) on H, which is exponentially stable and satisfies

(2.4) ∥T (t)∥ ≤ e−λ1t, for all t ≥ 0.

Since the positive definite self-adjoint operator A has compact resol-
vent, the embedding D(A) ↩→ H is compact, and therefore, T (t), t ≥ 0,
is also a compact semigroup.

Throughout this paper, we assume that the constant ck, k = 1, 2, . . .,
satisfies the condition

(P1)
∞∑
k=1

|ck| < eλ1t1 .

By assumption (P1), we have

(2.5)

∥∥∥∥ ∞∑
k=1

ckT (tk)

∥∥∥∥ ≤
∞∑
k=1

|ck|e−λ1t1 < 1.

By the operator spectrum theorem, we know that the operator

(2.6) B :=

(
I −

∞∑
k=1

ckT (tk)

)−1
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exists and is bounded. Furthermore, by Neumann expression, B can
be expressed by

(2.7) B =
∞∑

n=0

( ∞∑
k=1

ckT (tk)

)n

.

Therefore,

∥B∥ ≤
∞∑

n=0

∥∥∥∥ ∞∑
k=1

ckT (tk)

∥∥∥∥n =
1

1−
∥∥∥∥ ∞∑

k=1

ckT (tk)

∥∥∥∥ ≤ 1

1− e−λ1t1
∞∑
k=1

|ck|
.

(2.8)

By the above discussion, we can obtain the definition of mild solu-
tions for nonlocal problem (1.3)–(1.4).

Definition 2.1. An Ft-adapted stochastic process u : J → H is called
a mild solution of nonlocal problem (1.3)–(1.4) if u(t) ∈ H has cádlág
paths on t ∈ J almost surely and, for each t ∈ J , u(t) satisfies the
integral equation

u(t) =
∞∑
k=1

ckT (t)B

∫ tk

0

T (tk − s)f(s, u(s)) dW(s)(2.9)

+

∫ t

0

T (t− s)f(s, u(s)) dW(s), P-almost surely.

The collection of all strongly measurable, square integrable H-valued
random variables, denoted L2(Ω,H), is a Banach space equipped with
the norm

∥u(·)∥L2 = (E∥u(·,W)∥2)1/2,

where E(·) denotes the expectation over (Ω,P). An important subspace
of L2(Ω,H) is given by

(2.10) L2
0(Ω,H) = {u ∈ L2(Ω,H) | u is F0-measurable}.

Denote the continuous Ft-adapted progressively measurable processes
satisfying supt∈J E∥u(t)∥2 < +∞ by

Ce(J, L
2(Ω,H)).
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Then it is easy to see that Ce(J, L
2(Ω,H)) is a Banach space endowed

with the norm

(2.11) ∥u∥e =
(
sup
t∈J

e−tE∥u(t)∥2
)1/2

.

For any constant r > 0, let

(2.12) Br = {u ∈ Ce(J, L
2(Ω,H)) : ∥u∥2e ≤ r}.

Clearly, Br is a bounded closed, convex set in Ce(J, L
2(Ω,H)).

The next result plays an important role in the proof of our main
result.

Lemma 2.2. A set H ⊂ Ce(J, L
2(Ω,H)) is relatively compact if

(i) the set H(t) = {u(t) | u ∈ H} is relatively compact in L2(Ω,H)
for every t ∈ J ;

(ii) limt→+∞ e−tE∥u(t)∥2 = 0 uniformly for any u ∈ H;
(iii) H is a locally equicontinuous family of functions, i.e., for any

constant a > 0, the functions in H are equicontinuous in [0, a].

Proof. From condition (ii), we know that, for all ϵ > 0, a constant
a > 0 exists big enough such that, when t > a,

(2.13) e−tE∥u(t)∥2 < ϵ2

5
, for all u ∈ H.

Denote
(2.14)

Ja = [0, a], u|Ja = {u(t) | t ∈ Ja}, Ha = {u|Ja | u ∈ H}.

Then it is easy to see that Ha ⊂ C(Ja, L
2(Ω,H)). By conditions (i) and

(iii), we know that Ha(t) is relatively compact for every t ∈ Ja, and Ha

is an equicontinuous family of functions in C(Ja, L
2(Ω, H)). By means

of the well known Ascoli-Arzela theorem in the finite closed interval one
obtains that Ha is a relatively compact set. From Hausdorff’s theorem,
we know that finite ϵ-networks {u1|Ja , u2|Ja , . . . , uk|Ja} ⊂ Ha exist.
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Next, we prove that {u1, u2, . . . , uk} is a finite ϵ-network of H. For
arbitrary u ∈ H, some ui, i = 1, 2, . . . , k, exists such that

(2.15) sup
t∈Ja

e−tE∥u(t)− ui(t)∥2 < ϵ2.

Therefore,

∥u− ui∥2e = sup
t∈J

e−tE∥u(t)− ui(t)∥2(2.16)

= sup
t∈[0,a]∪(a,+∞)

e−tE∥u(t)− ui(t)∥2.

By (2.13), we obtain

(2.17) sup
t∈(a,+∞)

e−tE∥u(t)− ui(t)∥2 ≤ 4ϵ2

5
.

By (2.15)–(2.17) and the fact

sup
t∈[0,a]∪(a,+∞)

e−tE∥u(t)− ui(t)∥2

≤ max

{
sup

t∈[0,a]

e−tE∥u(t)− ui(t)∥2, sup
t∈(a,+∞)

e−tE∥u(t)− ui(t)∥2
}
,

we obtain that
(2.18)

∥u− ui∥e =
(
sup
t∈J

e−tE∥u(t)− ui(t)∥2
)1/2

< ϵ, i = 1, 2, . . . , k.

Therefore, {u1, u2, . . . , uk} is an ϵ-network of H. Combining this fact
with completeness of Ce(J, L

2(Ω,H)) as well as Hausdorff’s theorem,
one obtains that H is a relative set in Ce(J, L

2(Ω,H)). �

Next, let us state the following well-known lemmas which will be
used in the sequel of this paper.

Lemma 2.3 ([9, Lemma 7.7]). Let p ≥ 2, and let Φ be an L(K,H)-
valued, predictable process such that

E
∫ t

0

∥Φ(s)∥pds <∞ for every t > 0.

Then
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(2.19) sup
0≤s≤t

E
∥∥∥∥∫ s

0

Φ(u) dW(u)

∥∥∥∥p
≤

(
p(p− 1)

2

)p/2(∫ t

0

(E∥Φ(s)∥p)2/p ds
)p/2

.

Lemma 2.4 ([7]). If

(2.20) m(t) ≤ g(t) +

∫ t

t0

k(s)m(s) ds, t ∈ [t0,K),

where all the functions involved are continuous on [t0,K), K ≤ +∞,
and k(t) ≥ 0 and g(t) are nondecreasing, then

(2.21) m(t) ≤ g(t) exp

(∫ t

t0

k(s) ds

)
, t ∈ [t0,K).

3. Main results. In this section, we state and prove the global ex-
istence, uniqueness and asymptotic stability of mild solutions for semi-
linear evolution equations with nonlocal initial conditions on infinite
interval (1.3)–(1.4).

Theorem 3.1. Let A be a positive definite self-adjoint operator in
Hilbert space H, and let it have a compact resolvent, the function
f : J ×H → L(K,H) continuous. If the condition (P1) and

(P2) there exist constants

0 < α <

λ1

(
1− e−λ1t1

∞∑
k=1

|ck|
)2

( ∞∑
k=1

|ck|
)2

+

(
1− e−λ1t1

∞∑
k=1

|ck|
)2

and β > 0 such that

E∥f(t, u(t))∥2 ≤ α E∥u(t)∥2 + β,

for all t ∈ J , u(t) ∈ H, hold, then, the nonlocal problem (1.3)–(1.4) has
at least one global mild solution on [0,+∞).
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Proof. We consider the operator F on Ce(J, L
2(Ω,H)) defined by

(3.1)

(Fu)(t) =
∞∑
k=1

ckT (t)B

∫ tk

0

T (tk − s)f(s, u(s))dW(s)

+

∫ t

0

T (t− s)f(s, u(s)) dW(s), t ∈ J.

By condition (P1) and Definition 2.1, it is easy to see that the mild
solution of nonlocal problem (1.3)–(1.4) is equivalent to the fixed point
of the operator F defined by (3.1).

In the following, we will prove that operator F has a fixed point by
applying the famous Schauder fixed point theorem.

First, we prove that the operator F maps the functions in Ce(J,
L2(Ω,H)) to Ce(J, L

2(Ω,H)), and it is continuous. For any u ∈
Ce(J, L

2(Ω,H)), by the definition of the space Ce(J, L
2(Ω,H)), we know

that a constant γ > 0 exists such that

(3.2) γ := sup
t∈J

E∥u(t)∥2 < +∞.

By (2.4), (2.8), (3.1), (3.2), conditions (P1), (P2) and Lemma 2.3, we
obtain that
(3.3)

E∥(Fu)(t)∥2 ≤ 2E
∥∥∥∥ ∞∑

k=1

ckT (t)B

∫ tk

0

T (tk − s)f(s, u(s)) dW(s)

∥∥∥∥2
+ 2E

∥∥∥∥∫ t

0

T (t− s)f(s, u(s)) dW(s)

∥∥∥∥2
≤ 2

( ∞∑
k=1

|ck|e−λ1t∥B∥
)2∫ tk

0

e−2λ1(tk−s)[αE∥u(s)∥2+β] ds

+ 2

∫ t

0

e−2λ1(t−s)[αE∥u(s)∥2 + β] ds

≤ Λ(αγ + β),
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where

(3.4) Λ =

( ∞∑
k=1

|ck|
)2

+

(
1− e−λ1t1

∞∑
k=1

|ck|
)2

λ1

(
1− e−λ1t1

∞∑
k=1

|ck|
)2 .

From (3.3), we know that

(3.5) lim
t→+∞

e−tE∥(Fu)(t)∥2 = 0,

and therefore Fu ∈ Ce(J, L
2(Ω,H)).

On the other hand, let {un}∞n=1 ⊂ Ce(J, L
2(Ω,H)) be a sequence

such that limn→+∞ un = u in Ce(J, L
2(Ω,H)). By the continuity of

the second variable of the nonlinear term f , we have

(3.6) lim
n→+∞

f(s, un(s)) = f(s, u(s)), almost everywhere s ∈ J.

Let

(3.7) η = sup
t∈J

E∥un(t)∥2 < +∞, for all n ∈ N.

From condition (P2), we obtain that

e−2λ1(t−s)E∥f(s, un(s))− f(s, u(s))∥2

≤ e−2λ1(t−s)
(
2E∥f(s, un(s))∥2 + 2E∥f(s, u(s))∥2

)
(3.8)

≤ 4e−2λ1(t−s)[α(γ + η) + β] for all t ∈ J.

By (3.7), we know that, for each s ∈ [0, t], t ∈ J ,

(3.9)

∫ t

0

e−2λ1(t−s)E∥f(s, un(s))− f(s, u(s))∥2ds

≤ 4

∫ t

0

e−2λ1(t−s)[α(γ + η) + β] ds ≤ 2[α(γ + η) + β]

λ1
.

Therefore, by (2.4), (2.8), (3.1), (3.6)–(3.9), Lemma 2.3 and the
Lebesgue dominated convergence theorem, we obtain
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E∥(Fun)(t)− (Fu)(t)∥2

≤ 2E
∥∥∥∥ ∞∑

k=1

ckT (t)B

∫ tk

0

T (tk − s)[f(s, un(s))− f(s, u(s))] dW(s)

∥∥∥∥2

+ 2E
∥∥∥∥ ∫ t

0

T (t− s)[f(s, un(s))− f(s, u(s))] dW(s)

∥∥∥∥2
(3.10)

≤
2

( ∞∑
k=1

|ck|
)2

(
1− e−λ1t1

∞∑
k=1

|ck|
)2

∫ tk

0

e−2λ1(tk−s)E∥f(s, un(s))−f(s, u(s))∥2ds

+ 2

∫ t

0

e−2λ1(t−s)E∥f(s, un(s))− f(s, u(s))∥2ds

−→ 0 as n→ ∞.

Hence, by (3.10), we obtain that

∥(Fun)− (Fu)∥e =
(
sup
t∈J

e−tE∥(Fun)(t)− (Fu)(t)∥2
)1/2

−→ 0(3.11)

as n→ ∞.

Therefore, we have proved that F : Ce(J, L
2(Ω,H)) → Ce(J, L

2(Ω,H))
is a continuous operator.

Subsequently, we prove that there exists a positive constant R such
that F(BR) ⊂ BR. In fact, if we choose

(3.12) R ≥ β

1− αΛ
,

where Λ is defined by (3.4), then, for every u ∈ BR, it follows from
(2.4), (2.8), (3.1), (3.12), condition (P2) and Lemma 2.3 that

e−tE∥(Fu)(t)∥2 ≤ E∥(Fu)(t)∥2

≤ 2E
∥∥∥∥ ∞∑

k=1

ckT (t)B

∫ tk

0

T (tk − s)f(s, u(s)) dW(s)

∥∥∥∥2
+ 2E

∥∥∥∥ ∫ t

0

T (t− s)f(s, u(s)) dW(s)

∥∥∥∥2(3.13)
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≤ 2

[ ∞∑
k=1

|ck|∥B∥
]2 ∫ tk

0

e−2λ1(tk−s)(αR+ β) ds

+ 2

∫ t

0

e−2λ1(t−s)(αR+ β) ds

≤ Λ(αR+ β) ≤ R,

which means that ∥Fu∥2e = supt∈J e
−tE∥(Fu)(t)∥2 ≤ R. Therefore,

F : BR → BR is a continuous operator.

Next, we prove that F : BR → BR is a compact operator. In order
to prove this fact, we first show that {(Fu)(t) | u ∈ BR} is relatively
compact in L2(Ω,H) for every t ∈ J . It is easy to see that, for every
u ∈ BR,

(3.14) (Fu)(0) =
∞∑
k=1

ckB

∫ tk

0

T (tk − s)f(s, u(s)) dW(s).

For any 0 < ϵ < t1 and u ∈ BR, we define the operator F ϵ
0 by

(3.15)

(F ϵ
0u)(0) =

∞∑
k=1

ckB

∫ tk−ϵ

0

T (tk − s)f(s, u(s)) dW(s)

= T (ϵ)
∞∑
k=1

ckB

∫ tk−ϵ

0

T (tk − s− ϵ)f(s, u(s)) dW(s).

Since T (t) is compact for every t > 0, the set {(F ϵ
0u)(0) : u ∈ BR}

is relatively compact in L2(Ω,H) for every ϵ ∈ (0, t1). Moreover, for
every u ∈ BR, by (2.4), (2.8), (3.4), (3.14), (3.15), condition (P2) and
Lemma 2.3, we obtain that

E∥(Fu)(0)− (F ϵ
0u)(0)∥2

= E
∥∥∥∥ ∞∑

k=1

ckB

∫ tk

tk−ϵ

T (tk − s)f(s, u(s)) dW(s)

∥∥∥∥2

≤

( ∞∑
k=1

|ck|
)2

(
1− e−λ1t1

∞∑
k=1

|ck|
)2 ·

∫ tk

tk−ϵ

e−2λ1(tk−s)[αE∥u(s)∥2 + β] ds

(3.16)
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≤

( ∞∑
k=1

|ck|
)2

(αR+ β)(
1− e−λ1t1

∞∑
k=1

|ck|
)2 as ϵ→ 0.

Therefore, we have proved that there are relatively compact sets
{(F ϵ

0u)(0) : u ∈ BR} arbitrarily close to the set {(Fu)(0) : u ∈ BR}.
This means that the set {(Fu)(0) : u ∈ BR} is relatively compact in
L2(Ω,H). Let 0 < t < +∞ be given, 0 < ϵ < t and u ∈ BR. We define
the operator (F ϵu) by

(3.17)

(F ϵu)(t) =

∞∑
k=1

ckT (t)B

∫ tk

0

T (tk − s)f(s, u(s)) dW(s)

+

∫ t−ϵ

0

T (t− s)f(s, u(s)) dW(s).

Since the operator T (t) is compact for every t > 0, the set {(F ϵu)(t) :
u ∈ BR} is relatively compact in H for every ϵ ∈ (0, t). By applying
a similar method which was used in (3.16), we can prove that there
is a relatively compact set {(F ϵu)(t) : u ∈ BR} arbitrarily close to
the set {(Fu)(t) : u ∈ BR} in L2(Ω,H) for 0 < t < +∞. Therefore,
the set {(Fu)(t) : u ∈ BR} is also relatively compact in L2(Ω,H) for
0 < t < +∞.

Further, we prove that, for every u ∈ BR, the following equality

(3.18) lim
t→+∞

e−tE∥(Fu)(t)∥2 = 0

is satisfied. In fact, by (3.13), we know that, for every u ∈ BR,
E∥(Fu)(t)∥2 ≤ R. Combining this fact with the property of exponential
functions, one can easily see that (3.18) is satisfied.

Finally, we demonstrate that F(BR) is a locally equicontinuous
family of functions in Ce(J, L

2(Ω, H)). Suppose that 0 < a < +∞
is an arbitrary constant. For any u ∈ BR and 0 ≤ t′ < t′′ ≤ a, by
means of (2.8) and Lemma 2.3 we obtain that

E∥(Fu)(t′′)− (Fu)(t′)∥2

≤ 3E
∥∥∥∥(T (t′′)− T (t′))

∞∑
k=1

ckB

∫ tk

0

T (tk − s)f(s, u(s)) dW(s)

∥∥∥∥2
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+ 3E
∥∥∥∥∫ t′′

t′
T (t′′ − s)f(s, u(s)) dW(s)

∥∥∥∥2
(3.19)

+ 3E
∥∥∥∥∫ t′

0

(T (t′′ − s)− T (t′ − s))f(s, u(s))dW(s)

∥∥∥∥2
≤ 3E

∥∥∥∥(T (t′′)− T (t′))
∞∑
k=1

ckB

∫ tk

0

T (tk − s)f(s, u(s))dW(s)

∥∥∥∥2
+ 3

∫ t′′

t′
e−2λ1(t

′′−s)[αE∥u(s)∥2 + β] ds

+ 3

∫ t′

0

∥T (t′′ − s)− T (t′ − s)∥2[αE∥u(s)∥2 + β] ds

:= I1 + I2 + I3,

where

I1 = 3E
∥∥∥∥(T (t′′)− T (t′))

∞∑
k=1

ckB

∫ tk

0

T (tk − s)f(s, u(s)) dW(s)

∥∥∥∥2,
(3.20)

I2 = 3

∫ t′′

t′
e−2λ1(t

′′−s)[αE∥u(s)∥2 + β] ds,

(3.21)

I3 = 3

∫ t′

0

∥T (t′′ − s)− T (t′ − s)∥2[αE∥u(s)∥2 + β] ds.

(3.22)

Therefore, we only need to check that Ii tends to 0 independently of
u ∈ BR when t′′ → t′, i = 1, 2, 3. For I1, by (2.4), (2.8), condition (P2)
and Lemma 2.3, we have

E
∥∥∥∥ p∑

k=1

ckB

∫ tk

0

T (tk − s)f(s, u(s)) dW(s)

∥∥∥∥2
≤

( p∑
k=1

|ck|
)2

∥B∥2
∫ tk

0

e−2λ1(tk−s)[αE∥u(s)∥2 + β] ds(3.23)
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≤

( ∞∑
k=1

|ck|
)2

(αR+ β)

2λ1

(
1− e−λ1t1

∞∑
k=1

|ck|
)2 .

Therefore, from the strong continuity of the semigroup T (t), t ≥ 0,
(3.20) and (3.23), we can easily obtain that I1 → 0 as t′′ → t′. For I2,
we can get by direct calculus that

(3.24) I2 ≤ 3(αR+ β)(t′′ − t′) −→ 0 as t′′ → t′.

For I3, by (3.22) and the property of Lebesgue integral, we obtain

(3.25)

I3 ≤ 3(αR+ β)

∫ t′

0

∥T (t′′ − s)− T (t′ − s)∥2ds

= 3(αR+ β)

∫ t′

0

∥T (t′′ − t′ + s)− T (s)∥2ds

−→ 0 as t′′ → t′.

As a result, E∥(Fu)(t′′) − (Fu)(t′)∥2 tends to 0 independently of u ∈
BR as t′′ → t′, which means that the operator F : BR → BR is
equicontinuous in [0, a] for arbitrary constant 0 < a < +∞, namely, the
operator F : BR → BR is locally equicontinuous. Hence, by Lemma 2.2,
one gets that F : BR → BR is a compact operator. Therefore, by
Schauder’s fixed point theorem, see [10], we obtain that F has at least
one fixed point u ∈ BR, which is in turn is a mild solution of nonlocal
problem (1.3)–(1.4) on [0,+∞). �

Theorem 3.2. Let A be a positive definite self-adjoint operator in
Hilbert space H, and let it have a compact resolvent, the function
f : J × H → L(K,H) continuous and supt∈J E∥f(t, θ)∥2 < +∞ (θ
denotes the 0 element in H). If condition (P1) and the following
condition

(P3) there exists a constant

0 < ϑ <

λ1

(
1− e−λ1t1

∞∑
k=1

|ck|
)2

( ∞∑
k=1

|ck|
)2

+

(
1− e−λ1t1

∞∑
k=1

|ck|
)2
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such that

E∥f(t, u(t))− f(t, v(t))∥2 ≤ ϑE∥u(t)− v(t)∥2,

for all t ∈ J , u(t), v(t) ∈ H,

hold, then nonlocal problem (1.3)–(1.4) has a unique global mild solution
û in Ce(J, L

2(Ω,H)), and it is globally asymptotically stable.

Proof. The proof is divided into two steps.

Step 1. Uniqueness of the global mild solution. From Theo-
rem 3.1, we know that the mild solution of problem (1.3)–(1.4) is
equivalent to the fixed point of the operator F defined by (3.1). For
any u ∈ Ce(J, L

2(Ω,H)), by condition (P3), definition of the space
Ce(J, L

2(Ω,H)) and the fact that supt∈J E∥f(t, θ)∥2 < ∞, we know
that, for any t ∈ J ,

(3.26) E∥f(t, u(t))∥2 ≤ E∥f(t, θ)∥2 + ϑE∥u(t)∥2 < +∞.

Therefore, by (3.25) and the proof of Theorem 3.1, we know that the
operator F defined by (3.1) maps Ce(J, L

2(Ω,H)) to Ce(J, L
2(Ω,H)),

and it is continuous. For any u, v ∈ Ce(J, L
2(Ω,H)), by (2.4), (2.8),

(3.1), assumption (P3) and Lemma 2.3, we have

e−tE∥(Fu)(t)− (Fv)(t)∥2

≤ 2e−tE
∥∥∥∥ ∞∑

k=1

ckT (t)B

∫ tk

0

T (tk−s)[f(s, u(s))−f(s, v(s))] dW(s)

∥∥∥∥2
+ 2e−tE

∥∥∥∥ ∫ t

0

T (t− s)[f(s, u(s))− f(s, v(s))] dW(s)

∥∥∥∥2

≤
2e−t

( ∞∑
k=1

|ck|
)2

ϑ(
1− e−λ1t1

∞∑
k=1

|ck|
)2

∫ tk

0

e−2λ1(tk−s)E∥u(s)− v(s)∥2ds

(3.27)

+ 2ϑe−t

∫ t

0

e−2λ1(t−s)E∥u(s)− v(s)∥2ds

≤ Λϑ sup
t∈J

e−tE∥u(t)− v(t)∥2,
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where Λ is defined by (3.4). By (3.27) and condition (P3), we have

(3.28) ∥(Fu)− (Fv)∥e ≤
√
Λϑ∥u− v∥e < ∥u− v∥e.

Hence, F : Ce(J, L
2(Ω,H)) → Ce(J, L

2(Ω,H)) is a contraction operator,
and therefore, F has a unique fixed point û in Ce(J, L

2(Ω,H)), which
is, in turn, the unique mild solution of nonlocal problem (1.3)–(1.4) on
[0,+∞).

Step 2. Asymptotic stability. By using a totally similar method as
that used in Theorem 3.2, condition (P3) and the Banach contraction
theorem, we know that, for any continuous function f : J × H →
L(K,H) satisfying supt∈J E∥f(t, θ)∥2 < +∞ and u0 ∈ H, the initial
value problem of the stochastic evolution equation

(3.29)

{
du(t) +Au(t)dt = f(t, u(t)) dW(t) t ∈ J,

u(0) = u0,

has a unique global mild solution u ∈ Ce(J, L
2(Ω,H)), and it satisfies

(3.30) u(t) = T (t)u(0) +

∫ t

0

T (t− s)f(s, u(s)) dW(s), t ∈ J.

By Step 1 and the semigroup representation of the solutions, the
unique global mild solution û of nonlocal problem (1.3)–(1.4) satisfies
the integral equation (3.30). From (2.4), (3.30), Lemma 2.3 and
condition (P3), we obtain that

E∥û(t)− u(t)∥2 ≤ 2E∥T (t)[û(0)− u(0)]∥2

+ 2E
∥∥∥∥ ∫ t

0

T (t− s)[f(s, û(s))− f(s, u(s)] dW(s)

∥∥∥∥2
≤ 2e−2λ1tE∥û(0)− u(0)∥2(3.31)

+ 2ϑ

∫ t

0

e−2λ1(t−s)E∥û(s)− u(s)∥2ds

= 2e−2λ1tE∥û(0)− u(0)∥2

+ 2e−2λ1tϑ

∫ t

0

e2λ1sE∥û(s)− u(s)∥2ds, t ∈ J.
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Let m(t) = e2λ1tE∥û(t)− u(t)∥2, t ∈ J . From (3.31), it follows that

(3.32) m(t) ≤ 2m(0) + 2ϑ

∫ t

0

m(s) ds, t ∈ J.

Hence, by Lemma 2.4 and (3.32), we know that

(3.33) m(t) = e2λ1tE∥û(t)− u(t)∥2 ≤ 2m(0)e2ϑt, t ∈ J.

Set ρ := 2(λ1 − ϑ). From condition (P3), we know that ρ > 0.
Therefore, by (3.33), we have

(3.34) E∥û(t)− u(t)∥2 ≤ 2m(0)e−ρt −→ 0 as t→ +∞.

Hence, the global mild solution û of nonlocal problem (1.3)–(1.4) is
globally asymptotically stable. Furthermore, from the proof process,
we can easily see that the global mild solution û exponentially attracts
every solution of the initial value problem (3.29). �

4. Application. In order to illustrate our main results, we consider
the following one-dimensional semilinear parabolic stochastic evolution
equation with nonlocal condition

(4.1)


du(x, t)− ∂2/∂x2u(x, t) dt− νu(x, t)dt

= f(x, t, u(x, t)) dW(t), x ∈ [0, 1], t ∈ J,

u(0, t) = u(1, t) = 0, t ∈ J,

u(x, 0) =
∑∞

k=1 4/π arctan 1/(2k
2)u(x, k), x ∈ [0, 1],

where ν < π2 is a constant, W(t) denotes a one-dimensional standard
cylindrical Wiener process defined on a stochastic space (Ω,F , {Ft}t≥0,P),
J = [0,+∞).

Let H = L2(0, 1) with the norm ∥ · ∥2. Then H is a Hilbert space.
Define an operator A in H by

(4.2) Au = − ∂2

∂x2
u− νu;

its domain D(A) is defined by

(4.3) D(A) = H2(0, 1) ∩H1
0 (0, 1).

From [15, 20], we know that A is a positive definite self-adjoint
operator on H and −A is the infinitesimal generator of an analytic,
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compact semigroup T (t), t ≥ 0. Moreover, A has a discrete spectrum
with eigenvalues λn = n2π2 − ν, n ∈ N and associated normalized
eigenvectors vn(x) =

√
2 sin(nπx). The set {vn : n ∈ N} is an

orthonormal basis of H and

(4.4) T (t)u =
∞∑

n=1

e(ν−n2π2)t(u, vn)vn.

Therefore, for every t ≥ 0, we have

(4.5) ∥T (t)∥ ≤ e(ν−π2)t.

Let u(t) = u(·, t), f(t, u(t)) = f(·, t, u(·, t)), ck = 4/π arctan 1/(2k2),
tk = k, k = 1, 2, . . . . Then the nonlocal problem of semilinear parabolic
stochastic evolution equation (4.1) can be rewritten into the abstract
form of nonlocal problem (1.3)–(1.4).

Conclusion 4.1. If ν ≤ 5 and f(x, t, u(x, t)) = e−|u(x,t)|/(1 + |u(x, t)|),
then the nonlocal problem of semilinear parabolic stochastic evolution
equation (4.1) has at least one global mild solution u ∈ Ce([0, 1] ×
[0,+∞)).

Proof. By the fact that

∞∑
k=1

arctan
1

2k2
= π/4,

we know that
∞∑
k=1

|ck| = 1 < eπ
2−ν ,

and therefore, condition (P1) holds. From the definition of nonlinear
term f , we can easily verify that condition (P2) is satisfied with
α = β = 2. Therefore, our conclusion follows from Theorem 3.1 �

Conclusion 4.2. If ν ≤ 7 and f(x, t, u(x, t))=cos(πt)/
√
2(1 + |u(x, t)|).

Then the nonlocal problem of semilinear parabolic stochastic evolution
equation (4.1) has a unique global mild solution û ∈ Ce([0, 1]×[0,+∞)),
and it is globally asymptotically stable.
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Proof. By the fact that

∞∑
k=1

arctan
1

2k2
= π/4,

we know that
∞∑
k=1

|ck| = 1 < eπ
2−ν ,

and therefore, condition (P1) holds. From the definition of nonlinear
term f , we can easily verify that condition (P3) is satisfied with ϑ = 1.
Therefore, our conclusion follows from Theorem 3.2. �
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