
JOURNAL OF INTEGRAL EQUATIONS
AND APPLICATIONS
Volume 29, Number 1, Spring 2017

COMPARISON BETWEEN NUMERICAL METHODS
APPLIED TO THE DAMPED WAVE EQUATION

A. AIMI, M. DILIGENTI AND C. GUARDASONI

Communicated by Francisco-Javier Sayas

ABSTRACT. For the numerical solution of Dirichlet-
Neumann problems related to 1D damped wave propagation,
from a numerical point of view, we compare the so-called
energetic approach, considered here separately for boundary
and finite element methods with classical finite difference
schemes, both explicit and implicit. The analysis reveals
the superiority of energetic approximations with respect to
unconditional stability and accuracy with respect to any
choice of discretization parameters.

1. Introduction. The study of wave propagation modeled by par-
tial differential equations (PDEs) of hyperbolic type is frequently en-
countered in a variety of physical and engineering problems. For in-
stance, in the design of antennas, the interaction with electromagnetic
waves must be known; for earthquake analysis, elastodynamic wave
propagation is essential. Also, the analysis of damping phenomena
that occur, for example, in fluid dynamics and in kinetic theory, is of
particular interest: the dissipation is generated by the interaction of
waves with the propagation medium and is also closely related to the
dispersion, as in interactions between water streams and surfaces waves
[7, 8, 12, 13, 23].

The use of advanced numerical techniques to solve PDEs, such as
the finite element method (FEM), for instance in structural mechanics,
and finite difference (FD) methods, primarily for fluid flow calculations,
is now well established.
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On the other hand, both frequency-domain and time-domain bound-
ary element methods (BEM) can be used for hyperbolic boundary value
problems [9, 10, 17, 18, 22]. Space-time BEM has the advantage that
it directly yields the unknown time-dependent quantities. In this last
approach, the construction of boundary integral equations (BIEs), via
the representation formula in terms of single and double layer poten-
tials, uses the fundamental solution of the hyperbolic PDE and jump
relations, see e.g., [2, 14, 15, 19, 24]. For the numerical solution of
these problems, one needs consistent approximations and accurate sim-
ulations, even on large time intervals. Numerical results have shown
that the standard BEM formulation can be unstable in some applica-
tions [2]; to overcome this drawback, a great deal of research has been
devoted to the study of stability of the dynamic BEM formulation.

For the numerical solution of the damped wave equation in 1D
unbounded layered media, we have recently considered [4, 6] the
extension of the so-called energetic BEM-FEM coupling, introduced
for the undamped wave equation [1, 3, 5]. This approximation
technique is based on a weak formulation directly expressed in the
space-time domain, thus avoiding the use of the Laplace transform and
its inversion.

Weak problems, both on the boundary and in the domain, are
strictly related to the energy of the second-order hyperbolic problem
at hand, involving the use of test functions, which belong to the same
functional spaces where the related weak solutions are searched and
derived with respect to time. Even if the use of time differentiated test
functions is not a novelty in the framework of FEM (see [16] and, e.g.,
[21]), it has been successfully applied for the first time in [2], in the
context of BEM.

The energetic approach applied to 1D multilayered media has re-
vealed robust with respect to the variation of both PDE and discretiza-
tion parameters, and the approximate solutions have been proved to
be stable and convergent in the appropriate functional spaces. The
interested reader is referred to [6] for theoretical details based on en-
ergy arguments. Here, taking into account a bounded domain, the aim
of the present contribution is to compare, from a numerical point of
view, the above mentioned energetic approach as originally introduced
for the coupling in [4, 6] and considered here separately for BEM and
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FEM, with classical finite difference schemes, both explicit and implicit
in time.

The paper is structured as follows. In Section 2, the model problem
and its energetic boundary and domain weak formulations are pre-
sented. Section 3 is devoted to subsequent BEM and FEM discretiza-
tions. In Section 4, we recall classical difference schemes applied to the
model problem. In Section 5, several numerical results are presented
and discussed. Conclusions are summarized in the last section.

2. Model problem and energetic approach. Let Ω = (0, L) ⊂ R
be an open, bounded 1D domain, modeling a 3D rod with a dimension
the length along the x-direction, much greater than the remaining ones,
with boundary

ΓN := {x : x = 0} and ΓD := {x : x = L}.

Having denoted by u(x, t) the problem unknown, which depends on
space and time, and with

p(x, t) :=
∂u

∂nx
(x, t),

which depends on a unitary outward normal vector nx with respect to
the transversal section of the rod, we want to solve the following wave
propagation model problem: for all x ∈ Ω, for all t ∈ [0, T ],

(2.1)

(
∂2u

∂x2
− 1

c2
ü− 2D

c2
u̇− P

c2
u

)
(x, t) = f(x, t),

(2.2) u(x, 0) = u̇(x, 0) = 0,

(2.3) p(0, t) = p(t), u(L, t) = u(t),

where overhead dots indicate derivatives with respect to time, c is the
propagation velocity of a perturbation inside the rod, D > 0 and P > 0
represent viscous and material damping coefficients, respectively, p(t)
and u(t) are given functions, and f(x, t) is the assigned PDE right-
hand side. The unknown u(x, t) is understood in a weak sense, i.e.,
u ∈ H1([0, T ];H1(Ω)) with enforced Dirichlet boundary condition, i.e.,
u|ΓD = u.
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In order to approximate u(x, t) using a BEM technique, we have to
obtain a boundary integral reformulation of problem (2.1)–(2.3). For
this purpose, using classical arguments [11], let us consider the space-
time integral representation formula:
(2.4)

u(x, t) =
∑

ξ=0,L

(G(x, ξ; ·) ∗ p(ξ, ·))(t)−
∑

ξ=0,L

(
∂G(x, ξ; ·)

∂nξ
∗ u(ξ, ·)

)
(t)

−
∫
Ω

(G(x, ξ; ·) ∗ f(ξ, ·))(t) dξ, x ∈ Ω, t ∈ [0, T ],

where ∗ denotes the time convolution product and G(x, ξ; t− τ) is the
forward fundamental solution of the damped wave equation (2.1) on
the real line, which is given by

(2.5) G(x, ξ; t− τ) =
c

2
e−D(t−τ)Ĩ0 [x, ξ; t, τ ]H[c(t− τ)− |x− ξ|]

with H[·] the Heaviside distribution and

(2.6) Ĩ0[x, ξ; t, τ ] = I0

(√
D2 − P

c

√
c2(t− τ)2 − (x− ξ)2

)
with I0(·) the modified Bessel function of order 0. Further, let us
consider the normal derivative of the representation formula (2.4):
(2.7)

p(x, t) =
∑

ξ=0,L

(
∂G(x, ξ; ·)

∂nx
∗ p(ξ, ·)

)
(t)−

∑
ξ=0,L

(
∂2G(x, ξ; ·)
∂nx∂nξ

∗ u(ξ, ·)
)
(t)

−
∫
Ω

(
∂G(x, ξ; ·)

∂nx
∗ f(ξ, ·)

)
(t) dξ, x ∈ Ω, t ∈ [0, T ].

Of course, derivatives in equations (2.4) and (2.7) must be understood
in a distributional sense.

At this stage, we must take the limit as x → L− in equation (2.4)
and x→ 0+ in equation (2.7), rewriting the kernels

∂G

∂nx
,
∂G

∂nξ
,

∂2G

∂nx∂nξ
,

by means of the relations

∂Ĩ0[x, ξ; t, τ ]

∂x
= −∂Ĩ0[x, ξ; t, τ ]

∂ξ
=
∂Ĩ0[x, ξ; t, τ ]

∂τ

x− ξ

c2(t− τ)
,(2.8)
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∂H̃[x, ξ; t, τ ]

∂x
= −∂H̃[x, ξ; t, τ ]

∂ξ
=
∂H̃[x, ξ; t, τ ]

∂τ

x− ξ

c|x− ξ|
,(2.9)

where we have set H̃[x, ξ; t, τ ] := H[c(t − τ) − |x − ξ|]. After some
analytic computations, see also [4, 6], problem (2.1)–(2.3) can be
rewritten as a system of two BIEs in the boundary unknowns p(L, t)
and u(0, t):

(2.10)

{
Vp(L, t) +K0u(0, t) = fu(t),

KLp(L, t) +Wu(0, t) = fp(t),
t ∈ [0, T ],

where

(Vp)(L, t) = c

∫ t

0

e−D(t−τ)Ĩ0[L,L; t, τ ]p(L, τ) dτ

(K0u)(0, t) = L
√
D2 − P

∫ t−L/c

0

e−D(t−τ) Ĩ1[L, 0; t, τ ]

s(L; t, τ)
u(0, τ) dτ

+ u

(
0, t− L

c

)
e−DL/c

(KLp)(L, t) = −L
√
D2 − P

∫ t−L/c

0

e−D(t−τ) Ĩ1[0, L; t, τ ]

s(L; t, τ)
p(L, τ) dτ

− e−D(L/c)p

(
L, t− L

c

)
(Wu)(0, t) = −

√
D2 − P

c

∫ t

0

e−D(t−τ) Ĩ1[0, 0; t, τ ]

t− τ
dτ

+
1

c

(
Du(0, t) + u̇(0, t)

)
and

fu(t) = u(L, t)− c

∫ t−L/c

0

e−D(t−τ)Ĩ0[L, 0; t, τ ]p(0, τ) dτ

+ c

∫
Ω

∫ t−(|L−ξ|/c)

0

e−D(t−τ)Ĩ0[L, ξ; t, τ ]f(ξ, τ) dτdξ

fp(t) = p(0, t)−
√
D2 − P

∫ t−L/c

0

e−D(t−τ) Ĩ1[0, L; t, τ ]

s(L; t, τ)
u(L, τ) dτ

+
L2

c2
(D2 − P )3/2

∫ t−L/c

0

e−D(t−τ)

s(L; t, τ)

[
I1(ν)

ν

]′
ν=(

√
D2−P/c)s(L;t,τ)
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× u(L, τ) dτ

+ e−D(L/c)

[
L
D2 − P

2c2
+
D

c

]
u

(
L, t− L

c

)
+

1

c
e−D(L/c)u̇

(
L, t− L

c

)
−

√
D2 − P

∫
Ω

ξ

∫ t−ξ/c

0

e−D(t−τ) Ĩ1[0, ξ; t, τ ]

s(ξ; t, τ)
f(ξ, τ) dτ dξ

− c

∫
Ω

Ĩ0

[
0, ξ; t, t− ξ

c

]
f

(
ξ, t− ξ

c

)
dξ,

with

Ĩ1(x, ξ; t, τ) = I1

(√
D2 − P

c

√
c2(t− τ)2 − (x− ξ)2

)
,

I1(·) the modified Bessel function of order 1, and

s(ξ; t, τ) :=
√
c2(t− τ)2 − ξ2.

Following [2, 5, 6], the energetic weak formulation of system (2.10)
reads:

find p(L, t) ∈ L2([0, T ]) and u(0, t) ∈ H1([0, T ]) such that

(2.11)

{⟨ ˙(Vp), q
⟩
+
⟨ ˙(K0u), q

⟩
=

⟨
ḟu, q

⟩⟨
KLp, v̇

⟩
+

⟨
Wu, v̇

⟩
=

⟨
fp, v̇

⟩
,

where ⟨·, ·⟩ is the classical L2([0, T ]) inner product and q(t), v(t) are
test functions belonging to the same functional space of p(L, t) and
u(0, t), respectively. In particular, the first equation in (2.10) has been
differentiated with respect to time and projected with the L2([0, T ])
scalar product by means of functions belonging to L2([0, T ]), while the
second equation in (2.10) has been projected with the L2([0, T ]) scalar
product by means of functions belonging to H1([0, T ]) derived with
respect to time.

For the energetic weak formulation of the differential problem (2.1)–
(2.3), let us multiply the PDE (2.1) for the time derivative of the test
function

w(x, t) ∈ H1([0, T ];H1
ΓD

(Ω)),
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where
H1

ΓD
(Ω) := {w ∈ H1(Ω) : w|ΓD

= 0}

and integrate by parts in space, obtaining:

(2.12) −A(u,w) + ⟨ẇ(L, ·), p(L, ·)⟩ = F(w)− ⟨ẇ(0, ·), p⟩,

where

A(u,w) :=

∫ T

0

∫
Ω

(
∂ẇ

∂x

∂u

∂x
+

1

c2
ẇü+

2D

c2
v̇u̇+

P

c2
ẇu

)
(x, t) dx dt,

(2.13)

F(w) :=

∫ T

0

∫
Ω

ẇ(x, t)f(x, t) dx dt.

(2.14)

Let us remark that the weak problems (2.11) and (2.12) have been
deduced in strict relation to the energy of the solution, defined at time
instant t, as:
(2.15)

EΩ(u, t) :=
1

2 c2

∫
Ω

[(
c
∂u(x, t)

∂x

)2

+u̇2(x, t)+P u2(x, t)+4D

∫ t

0

u̇2(x, s) ds

]
dx.

3. Discretization. For time discretization, we introduce a uniform
decomposition of the time interval [0, T ] with time steps ∆t = T/N∆t,
N∆t ∈ N+, generated by the N∆t + 1 time instants:

tk = k∆t, k = 0, . . . , N∆t

and, for both BEM and FEM, we choose piecewise constant shape
functions for the time approximation of p and piecewise linear shape
functions for the time approximation of u, although higher degree shape
functions can be used. In particular, for k = 0, . . . , N∆t−1, time shape
functions for the approximation of p and u will be defined, respectively,
as:

(3.1)
ψk(t) = H[t− tk]−H[t− tk+1],

ψ̂k(t) = R(t− tk)−R(t− tk+1),

where

R(t− tk) =
t− tk
∆t

H[t− tk]
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is the ramp function. Further, for the space discretization in energetic
FEM, we consider the bounded domain Ω, decomposed by means of a
uniform mesh constituted by N∆x straight elements having length ∆x.

The functional background involved in the weak formulation (2.12)
mandates the choice of shape functions belonging to C0(Ω) for the
spatial approximation of u in Ω. Hence, we will choose piecewise linear
continuous basis functions φ̂j(x), j = 0, . . . , N∆x, related to the space
mesh introduced above.

Hence, approximate solutions of the weak problems at hand will be
expressed as:

(3.2)

u(0, t) ≈ ũ(0, t) =

N∆t−1∑
k=0

αkψ̂k(t),

p(L, t) ≈ p̃(L, t) =

N∆t−1∑
k=0

βkψk(t),

concerning the energetic BEM and

(3.3) u(x, t) ≈ ũ(x, t) =

N∆t−1∑
k=0

ψ̂k(t)

N∆x−1∑
j=0

γkj φ̂j(x) + u(t)φ̂N∆x(x),

concerning the energetic FEM.

Let us note that both these discretizations produce their related final
linear system:

(3.4) Mx = y,

where matrix M has a block lower triangular Toeplitz structure with
blocks dependent on the difference th − tk, so that they vanish if
th < tk, as frequently pointed out in previous papers, see [1, 3, 5].
Finally, we remark that, in energetic BEM, at every time step the only
discrete unknowns reduce to αk and βk coefficients since we need only
approximate u(0, t) and p(L, t).

Concerning stability and convergence of both BEM and FEM en-
ergetic approaches, these properties can be derived from theoretical
results obtained in [6] for their coupling. In that paper, a slightly dis-
sipative character of the energetic discretization was pointed out. In
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particular, having set

∥ · ∥ = ∥ · ∥L2(Ω), ũ(·, th) = uh,

and having introduced the discrete energy in Ω at the time instant th
as
(3.5)

Eh
Ω :=

1

2c2

[
c2∥(uh)′∥2+

∥∥∥∥uh − uh−1

∆ t

∥∥∥∥2

+P∥uh∥2+4D∆ t
h∑

k=0

∥∥∥∥uk − uk−1

∆ t

∥∥∥∥2]
,

it turns out that Eh+1
Ω = Eh

Ω +O((∆ t)2), and this is also valid for the
pure wave equation without damping terms, simply forcing P = D = 0
in the definition of both continuous (2.15) and discrete (3.5) energy.

4. Classical difference schemes. In numerical examples below,
we will compare the energetic approach with the following finite differ-
ence schemes:

• a second order centered finite differences (CFD) scheme in time
and in space, approximating ukj := u(xj , tk) by ũ

k
j . Assuming adequate

regularity of the solution u(x, t), from equation (2.1), we derive
(4.1)

ukj+1 − 2ukj + ukj−1

∆x2
−
uk+1
j − 2ukj + uk−1

j

c2∆t2
− D

c2
uk+1
j − uk−1

j

∆t
− P

c2
ukj

+O(∆x2) +O(∆t2) = f(xj , tk).

Defining λ := c(∆t/∆x), the next algorithm has been developed to
evaluate ũkj , for j = 0, . . . , N∆x − 1 and k = 1, . . . , N∆t:

− at the first time step t1 = ∆t,

ũ1j = −c2∆t2f(xj , 0), for j = 1, . . . , N∆x − 1,

obtained by relations

ũ1j = u0j +∆t u̇0j +
∆t2

2
¨̃u
0

j

¨̃u
0

j = c2
u0j+1 − 2u0j + u0j−1

∆x2
− 2Du̇0j − Pu0j − c2f(xj , 0)

and exploiting the initial conditions which imply u0j = u̇0j = 0;
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− then, for k = 1, . . . , N∆t − 1,

ũk+1
N∆x

= u(tk+1)

ũk+1
j =

1

1 +D∆t

{
λ2ũkj+1 + λ2ũkj−1 + (2− 2λ2 − P∆t2)ũkj

+ (D∆t− 1)ũk−1
j − c2∆t2f(xj , tk)

}
,

for j = 1, . . . , N∆x − 1,

ũk+1
0 =

1

1+D∆t

{
λ2ũk1 + (2− 2λ2 − P∆t2)ũk0

+λ2(ũk1+2∆xp(tk))+(D∆t−1)ũk−1
0 −c2∆t2f(0, tk)

}
where, for j = 0, we introduce the ghost point x−1 := x0 −∆x and the
second order approximation using the Neumann boundary condition:

ũk−1 = ũk1 + 2∆x p(tk).

This scheme is stable under the well-known CFL condition λ ≤ 1.

• an implicit finite differences (IFD) second order scheme obtained

by replacing ukj with the mean value (uk+1
j + uk−1

j )/2 in the terms of

equation (4.1) where no time derivatives are involved.

The first time step is developed as in CFD; then this method results
in solving the following linear systems, for k = 1, . . . , N∆t − 1:

Muk+1 = −c2∆t2F k + 2uk + M̃uk−1 + F̃ k,

where

M =


α −λ2 0 · · · 0

−λ2/2 α −λ2/2 · · · 0
0 −λ2/2 α · · · 0
...

...
. . .

. . .
...

0 0 · · · −λ2/2 α

 ,

with α = 1 + D∆t + P∆t2/2 + λ2, is a strictly diagonally dominant
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matrix and therefore invertible, M̃ = −M+ 2D∆t I and

uk =


ũk0
ũk1
...

ũkN∆x−2

ũkN∆x−1

 ,

Fk =


f(0, tk)
f(x1, tk)

...
f(xN∆x−2, tk)
f(xN∆x−1, tk)

 ,

F̃
k
=
λ2

2


2∆x(p(tk+1) + p(tk−1))

0
...
0

u(tk+1) + u(tk−1)

 .

This method is expected to be unconditionally stable.

5. Numerical results. In the first two examples we compare the
above numerical methods by applying them to some benchmarks cho-
sen in such a way that the related reference solutions reproduce the
same challenging features which cause trouble in elliptic 1D advection-
diffusion-reaction problems, see [20]. The last example is dedicated to
the analysis of long-time behavior of the energetic approaches, showing
their stability and convergence.

Example 5.1. Let us set L = 1, T = 1 and propagation velocity
c = 1. At first, let us consider the case P = 0 and the differential
problem (2.1)–(2.3) with exact solution

(5.1) u(x, t) =
e−2Dc2t2 − 1

e−2D − 1
(1− x)3, 0 ≤ x ≤ 1; t ∈ [0, 1].

For all x ∈ [0, 1], the following occurs:

• if D ≪ 1, then u(x, t) ≈ c2t2(1−x)3 as, for example, is observable
in Figure 2;
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Figure 1. Analytical solution and relative error obtained by energetic BEM
with c = 1, P = 0, D = 100 and ∆t = 0.00625.

• if D ≫ 1, it is verified that u(x, t) ≈ (1 − x)3 over the time
interval (0, 1] but it must collate to 0 at t = 0 as, for example, is
observable in Figure 4. In order to avoid oscillations in time due to
the high gradient, it may occur that one must choose the discretization
parameter ∆t < D−1, as it is usual in standard FEM for the numerical
solution of 1D advection-diffusion equation in order to keep the Péclet
number PeD := ∆tD < 1.

Taking energetic BEM into consideration, from Table 1 we observe
that the numerical solution at x = 0 converges to the analytical solution
u(0, t). The relative errors written in Table 1 are defined as

(5.2) Es :=
∥ũ(0, ·)− u(0, ·)∥L2([0,1])

∥u(0, ·)∥L2([0,1])
,

where the numerical solutions ũ(0, ·) are computed by discretization
parameters ∆t = 0.1 × 2−s, s = 0, . . . , 4. Errors increase with an
increasing magnitude of D because of the introduction of a region with
a higher and higher gradient, see Figure 1, but the rate of convergence
is substantially equal to 2 independently from the choice of value D.
In any case, even when ∆t > D−1 no instabilities appear.

Now considering ũ(0, ·) obtained by energetic FEM, see Table 2, the
accuracy, as is well known, is lower and the rate of convergence tends
to order 1 as estimated in [6]. Analyzing the behavior of the solution
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Table 1. L2 relative errors Es of BEM solution with respect to the
analytical solution (5.1) at x = 0 and Es = log2(Es−1/Es).

BEM

∆t = 0.1× 2−s

D = 10−1 D = 1 D = 10 D = 100
s Es Es Es Es Es Es Es Es
0 1.9·10−4 9.4·10−4 7.1·10−3 1.5·10−2

1 4.8·10−5 2.0 2.3·10−4 2.0 1.6·10−3 2.1 1.5·10−2 0.01
2 1.2·10−5 2.0 5.9·10−5 2.0 4.0·10−4 2.0 3.1·10−3 2.2
3 3.0·10−6 2.0 1.5·10−5 2.0 1.0·10−4 2.0 7.2·10−4 2.1
4 7.6·10−7 2.0 3.7·10−6 2.0 2.5·10−5 2.0 1.8·10−4 2.0

Table 2. L2 relative errors Es of FEM solution with respect to the
analytical solution (5.1) at x = 0 and Es = log2(Es−1/Es).

FEM

∆t = ∆x = 0.1× 2−s

D = 10−1 D = 1 D = 10 D = 100
s Es Es Es Es Es Es Es Es
0 3.4·10−2 2.6·10−2 2.1·10−2 8.4·10−3

1 1.9·10−2 0.85 1.4·10−2 0.90 1.2·10−2 0.86 6.3·10−3 0.42
2 9.8·10−3 0.93 7.2·10−3 0.95 6.3·10−3 0.90 3.8·10−3 0.74
3 5.0·10−3 0.97 3.7·10−3 0.97 3.3·10−3 0.94 2.0·10−3 0.90
4 2.5·10−3 0.98 1.8·10−3 0.99 1.7·10−3 0.97 1.1·10−3 0.94

over the whole domain Ω × [0, 1] (Figures 3, 5), we still note that the
maximum relative error, defined as

Err :=
maxΩ×[0,1] |ũ(x, t)− u(x, t)|

maxΩ×[0,1] |u(x, t)|
,

is higher in regions with a higher gradient. However, with energetic
formulation, FEM keeps its stability even for ∆t > D−1 and without
respect to any CFL condition (Figure 5) even when (refer to Table 3)
D is large and we need to refine the time grid more than the space grid
in order to improve accuracy due to the jump in gradient near t = 0.
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Figure 2. Exact solution (5.1) with c = 1 and D = 0.1.

Figure 3. Relative error with respect to the solution in Figure 2 obtained
by energetic FEM with ∆t = ∆x = 0.00625.

Considering either CFD or IFD, we obtain that the accuracy is of
order 2 (see Tables 4 and 6, respectively, where a discrete L2 norm has
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Table 3. Maximum relative errors of FEM solution with respect to the
analytical solution (5.1) over the entire grid, for D = 100.

HHHHH∆t
∆x

0.1 0.05 0.025 0.0125 0.00625

0.1 2.05·10−2 1.79·10−2 1.75·10−2 1.75·10−2 1.74·10−2

0.05 2.12·10−2 1.81·10−2 1.79·10−2 1.77·10−2 1.77·10−2

0.025 1.63·10−2 1.65·10−2 1.63·10−2 1.64·10−2 1.64·10−2

0.0125 9.48·10−3 8.81·10−3 8.80·10−3 8.76·10−3 8.79·10−3

0.00625 6.88·10−3 4.89·10−3 4.91·10−3 4.89·10−3 4.88·10−3

Table 4. L2 relative errors Es of CFD solution with respect to the analy-
tical solution (5.1) at x = 0 and Es := log2(Es−1/Es).

CFD

∆t = ∆x = 0.1× 2−s

D = 10−1 D = 1 D = 10 D = 100
s Es Es Es Es Es Es Es Es
0 2.4·10−3 2.8·10−3 5.2·10−2 5.1·10−1

1 6.0·10−4 2.0 6.8·10−4 2.1 1.3·10−2 2.0 1.5·10−1 1.7
2 1.5·10−4 2.0 1.7·10−4 2.0 3.2·10−3 2.0 3.8·10−2 2.0
3 3.7·10−5 2.0 4.2·10−5 2.0 8.0·10−4 2.0 9.5·10−3 2.0
4 9.3·10−6 2.0 1.1·10−5 2.0 2.0·10−4 2.0 2.4·10−3 2.0

Table 5. Maximum relative errors of CFD solution with respect to the
analytical solution (5.1) over the whole grid, for D = 100.

HHHHH∆t
∆x

0.1 0.05 0.025 0.0125 0.00625

0.1 9.11·10−1

0.05 3.05·10−1 3.08·10−1

0.025 5.83·10−2 5.80·10−2 5.75·10−2

0.0125 1.49·10−2 1.47·10−2 1.46·10−2 1.44·10−2

0.00625 3.70·10−3 3.66·10−3 3.62·10−3 3.59·10−3 3.58·10−3

been considered). As expected, the solution obtained with CFD is
affected by huge instabilities when the CFL condition is not verified,
and therefore, the upper triangular part of Table 5 is empty. On the
contrary, these instabilities do not appear with the IFD method; how-
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ever, looking at the upper triangular part of Table 7, we observe that
no significative improvements are achieved refining in space.

Analyzing the behavior of the numerical solution over the entire
domain Ω × [0, 1] (Figures 7 and 8), we still note that the maximum
relative error is higher in regions with higher gradient, and moreover,
a significant contribution is due to the approximation of the normal
derivative at x = 0. If PeD > 1, it seems that (refer to Figure 9)
at t = 0 some instabilities appear, but the dissipative nature of the
problem smooths instead of amplifying them as happens in classical
advection-diffusion boundary value problems.

Example 5.2. Let us again fix L = 1, T = 1, c = 1. Consider here the
case D = 0 and the differential problem (2.1)–(2.3) with exact solution

(5.3) u(x, t) =
sin(

√
Pc2t2)

sin(
√
P )

(1− x)3, 0 ≤ x ≤ 1 ; t ∈ [0, 1].

Figure 4. Exact solution (5.1) with c = 1 and D = 100.
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Figure 5. Relative error with respect to the solution in Figure 4 obtained
by energetic FEM with ∆t = ∆x = 0.00625.

Table 6. L2 relative errors Es of IFD solution with respect to the analytical
solution (5.1) at x = 0 and Es := log2(Es−1/Es).

IFD

∆t = ∆x = 0.1× 2−s

D = 10−1 D = 1 D = 10 D = 100
s Es Es Es Es Es Es Es Es
0 1.6·10−2 1.2·10−2 5.3·10−2 5.1·10−1

1 4.2·10−3 1.9 3.3·10−3 1.9 1.3·10−2 2.0 1.5·10−1 1.8
2 1.1·10−3 1.9 8.7·10−4 1.9 3.3·10−3 2.0 3.8·10−2 2.0
3 2.8·10−4 2.0 2.2·10−4 2.0 8.2·10−4 2.0 9.5·10−3 2.0
4 7.0·10−5 2.0 5.6·10−5 2.0 2.1·10−4 2.0 2.4·10−3 2.0
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Figure 6. Relative error with respect to the solution in Figure 4 obtained
by energetic FEM with ∆t = 0.1, ∆x = 0.05.

Table 7. Maximum relative errors of IFD solution with respect to the
analytical solution (5.1) over the whole grid, for D = 100.

HHHHH∆t
∆x

0.1 0.05 0.025 0.0125 0.00625

0.1 9.11·10−1 1.02 1.08 1.11 1.12
0.05 3.03·10−1 3.04·10−1 3.02·10−1 3.01·10−1 3.00·10−1

0.025 5.83·10−2 5.81·10−2 5.79·10−2 5.76·10−2 5.74·10−2

0.0125 1.49·10−2 1.48·10−2 1.46·10−2 1.45·10−2 1.44·10−2

0.00625 3.70·10−3 3.67·10−3 3.62·10−3 3.59·10−3 3.59·10−3

Also, in this example, it happens that, for all x ∈ [0, 1]:

• if P ≪ 1, then u(x, t) ≈ c2t2(1−x)3 as, for example, is observable
in Figure 12;

• if P ≫ 1, u(x, t) has a (1 − x)3-like decay behavior over the time
interval (0, 1], but it must collate to 0 at t = 0. It is very oscillating in
time when x = 0 as, for example, is observable in Figure 14. This case
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Figure 7. Relative error with respect to the exact solution (represented in
Figure 2) obtained by CFD (above) and by IFD (below) with ∆t = ∆x =
0.00625.

has different difficulties with respect to the 1D reaction-diffusion equa-
tion but still dependent on the magnitude P .

Taking energetic BEM into consideration, from Table 8 we observe
that the numerical solution at x = 0 converges to the analytical solution
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Figure 8. Relative error with respect to the exact solution (represented in
Figure 4) obtained by CFD (the relative error obtained by IFD is analogous)
with ∆t = ∆x = 0.00625.
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Figure 9. Relative error with respect to the exact solution (represented in
Figure 4) obtained by CFD (the relative error obtained by IFD is analogous)
with ∆t = ∆x = 0.1.
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Figure 10. Analytical solution and relative error obtained by energetic
BEM with c = 1, P = 1000, D = 0 and ∆t = 0.00625.

u(0, t). The relative errors Es defined in equation (5.2) increase with
increasing order of magnitude of P because of the introduction of a
region with severe changes in gradient, see Figure 10, but the rate of
convergence is substantially equal to 2 independently from the choice
of value P . In this case, the computation of integrals involving the
fundamental solution becomes more and more challenging because of
the alternating signs in the Bessel function addends, see equation (2.6).

If the Péclet number

PeP := P∆t2/6 > 1,

as in Figure 11, no instabilities appear, but the time step is not suitable
for catching all oscillations of the exact solution.

Now considering ũ(0, ·) obtained by energetic FEM (see Table 9),
the accuracy is lower as also expected in this case, and the rate of
convergence tends to order 1 as estimated in [6]. Analyzing the be-
havior of the numerical solution over the entire domain Ω× [0, 1] (Fig-
ures 13, 15), we note that the maximum relative error is higher in
regions with higher gradient. However, with energetic formulation,
FEM keeps its stability as well for large P and without respect to any
CFL condition, Figure 16, even if (refer to Table 10) when P is large
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Figure 11. Approximate solution and relative error obtained by energetic
BEM with c = 1, P = 1000, D = 0 and ∆t = 0.1.

Table 8. L2 relative errors Es of BEM solution with respect to the
analytical solution (5.3) at x = 0 and Es := log2(Es−1/Es).

BEM

∆t = 0.1× 2−s

P = 10−1 P = 1 P = 10 P = 100
s Es Es Es Es Es Es Es Es
0 4.1·10−5 4.0·10−4 3.1·10−3 7.2·10−2

1 1.0·10−5 2.0 9.9·10−5 2.0 7.8·10−4 2.0 2.0·10−2 1.9
2 2.6·10−6 2.0 2.5·10−5 2.0 1.9·10−4 2.0 5.1·10−3 2.0
3 6.5·10−7 2.0 6.2·10−6 2.0 4.8·10−5 2.0 1.3·10−3 2.0
4 1.6·10−7 2.0 1.6·10−6 2.0 1.3·10−5 1.9 3.2·10−4 2.0

we need to refine the time grid more than the space grid in order to
improve accuracy and to capture all the oscillations of the exact solu-
tion. Considering either CFD or IFD, accuracy of order 2 remains (see
Tables 11 and 13, respectively). As expected, the solution obtained
with CFD is affected by huge instabilities when the CFL condition
is not verified; therefore, the upper triangular portion of Table 12 is
empty. On the contrary, these instabilities do not appear with the IFD
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Figure 12. Exact solution (5.3) with c = 1 and P = 0.1.

Figure 13. Relative error with respect to the solution in Figure 12 obtained
by energetic FEM with ∆t = ∆x = 0.00625.
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Figure 14. Exact solution (5.3) with c = 1 and P = 1000.

Table 9. L2 relative errors Es of FEM solution with respect to the
analytical solution (5.3) at x = 0 and Es := log2(Es−1/Es).

FEM

∆t = ∆x = 0.1× 2−s

P = 10−1 P = 1 P = 10 P = 100
s Es Es Es Es Es Es Es Es
0 3.8·10−2 3.1·10−2 1.5·10−1 6.2·10−1

1 2.1·10−2 0.86 1.7·10−2 0.87 8.5·10−2 0.84 4.4·10−1 0.48
2 1.1·10−2 0.94 8.9·10−3 0.93 4.5·10−2 0.93 2.7·10−1 0.74
3 5.6·10−3 0.97 4.5·10−3 0.97 2.3·10−2 0.96 1.5·10−1 0.87
4 2.8·10−3 0.98 2.3·10−3 0.98 1.2·10−2 0.98 7.6·10−2 0.94

method; however, looking at the upper triangular part of Table 7, we
observe that no significant improvements are achieved by refining in
space.
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Figure 15. Relative error with respect to the solution in Figure 14 obtained
by energetic FEM with ∆t = ∆x = 0.00625.

0

0.5

1

0

0.5

1
−5

0

5

t

FEM numerical solution

x

Figure 16. Approximate solution in Figure 14 obtained by energetic FEM
with ∆t = 0.1, ∆x = 0.05.
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Table 10. Maximum relative errors of FEM solution with respect to the
analytical solution (5.3) over the entire grid, for P = 100.

HHHHH∆t
∆x

0.1 0.05 0.025 0.0125 0.00625

0.1 1.06 1.04 1.04 1.04 1.04
0.05 7.71·10−1 7.67·10−1 7.67·10−1 7.68·10−1 7.68·10−1

0.025 4.72·10−1 4.69·10−1 4.69·10−1 4.69·10−1 4.69·10−1

0.0125 2.60·10−1 2.59·10−1 2.58·10−1 2.58·10−1 2.58·10−1

0.00625 1.37·10−1 1.36·10−1 1.35·10−1 1.35·10−1 1.35·10−1

Table 11. L2 relative errors Es of CFD solution with respect to the
analytical solution (5.3) at x = 0 and Es := log2(Es−1/Es).

CFD

∆t = ∆x = 0.1× 2−s

P = 10−1 P = 1 P = 10 P = 100
s Es Es Es Es Es Es Es Es
0 2.6·10−3 1.1·10−3 1.1·10−2 3.8·10−1

1 6.6·10−4 2.0 2.8·10−4 1.9 2.4·10−3 2.2 6.7·10−2 2.5
2 1.6·10−4 2.0 7.1·10−5 2.0 5.8·10−4 2.0 1.6·10−2 2.1
3 4.1·10−5 2.0 1.8·10−5 2.0 1.4·10−4 2.0 3.8·10−3 2.0
4 1.0·10−5 2.0 4.5·10−6 2.0 3.6·10−5 2.0 9.5·10−4 2.0

Table 12. Maximum relative errors of CFD solution with respect to the
analytical solution (5.3) over the whole grid, for P = 100.

HHHHH∆t
∆x

0.1 0.05 0.025 0.0125 0.00625

0.1 7.32·10−1

0.05 1.31·10−1 1.24·10−1

0.025 3.20·10−2 2.82·10−2 2.77·10−2

0.0125 9.22·10−3 7.22·10−3 6.83·10−3 6.7·10−3

0.00625 3.63·10−3 2.07·10−3 1.77·10−3 1.70·10−3 1.69·10−3

Analyzing the behavior of the numerical solution over the entire
domain Ω× [0, 1] (Figures 17–19), one can observe how the magnitude
of P significantly influences the choice of discretization parameters.
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Table 13. L2 relative errors Es of IFD solution with respect to the
analytical solution (5.3) at x = 0 and Es := log2(Es−1/Es).

IFD

∆t = ∆x = 0.1× 2−s

P = 10−1 P = 1 P = 10 P = 100
s Es Es Es Es Es Es Es Es
0 1.6·10−2 1.5·10−2 1.0·10−2 4.4·10−1

1 4.4·10−3 1.9 3.9·10−3 1.9 2.5·10−3 2.0 1.3·10−1 1.7
2 1.1·10−3 2.0 1.0·10−3 2.0 6.4·10−4 2.0 3.6·10−2 1.9
3 2.9·10−4 2.0 2.6·10−4 2.0 1.6·10−4 2.0 9.1·10−3 2.0
4 7.3·10−5 2.0 6.5·10−5 2.0 4.0·10−5 2.0 2.3·10−3 2.0

Table 14. Maximum relative errors of IFD solution with respect to the
analytical solution (5.3) over the whole grid, for P = 100.

HHHHH∆t
∆x

0.1 0.05 0.025 0.0125 0.00625

0.1 5.67·10−1 5.45·10−1 5.42·10−1 5.42·10−1 5.42·10−1

0.05 2.10·10−1 2.05·10−1 2.04·10−1 2.04·10−1 2.04·10−1

0.025 5.62·10−2 5.56·10−2 5.56·10−2 5.56·10−2 5.56·10−2

0.0125 1.32·10−2 1.38·10−2 1.40·10−2 1.41·10−2 1.41·10−2

0.00625 2.45·10−3 3.24·10−3 3.46·10−3 3.52·10−3 3.53·10−3

Example 5.3. In the following, we present several simulations related
to long-time behavior of the energetic approach. This analysis can
be carried out by either increasing the propagation velocity c, keeping
T = 1, or fixing c = 1 and extending the time interval of observation.

• For a problem analogous to that of Example 5.1, where we have set
c = 5 andD = 100 in equation (5.1), the shape of the analytical solution
u(0, t) displayed on the left in Figure 1 is expected to be reconstructed
in this case within the time interval [0, 1/c] = [0, 0.2] (Figure 20). This
solution is recovered by BEM using ∆t = 0.00625/c = 0.00125 with
the relative errors displayed in Figure 21 on the left, and it is obtained
by FEM using ∆t = ∆x = 0.00125 with relative error displayed in
Figure 21 on the right.
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Figure 17. Relative error with respect to the exact solution (represented
in Figure 12) obtained by CFD (above) and by IFD (below) with ∆t = ∆x =
0.00625.

• In order to check the long-time behavior of the energetic approach,
the problem of Example 5.2 is taken into account here, extending the
observation time interval to [0, 5] and fixing P = 1.
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Figure 18. Approximate solution when c = 1, P = 1000, D = 0 obtained
by CFD (above) and by IFD (below) with ∆t = ∆x = 0.1.

The BEM approximate solution at x = 0 obtained using ∆t =
0.00625 recovers the exact solution (5.3) displayed in Figure 22 with
the relative error displayed in Figure 23 on the left. The solution
u(0, t) is approximated by FEM using ∆t = ∆x = 0.00625 with relative
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Figure 19. Approximate solution when c = 1, P = 1000, D = 0 obtained
by IFD with ∆t = ∆x = 0.00625 (the analogous CFD approximated solution
is obtained with ∆t = ∆x = 0.1/27).
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Figure 20. Analytical solution (5.1) with c = 5 and D = 100.
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Figure 21. Relative errors with respect to the solution represented in
Figure 20 obtained by energetic BEM (on the left) and by energetic FEM
(on the right).
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Figure 22. Analytical solution (5.3) with c = 1 and P = 1.

error displayed in Figure 23 on the right. This numerical example is
particularly challenging because of the increasing oscillations in time
which would require a grid refinement dependent on time marching;
however, the energetic BEM and FEM formulations confirm their
robustness despite a time growth of the error.
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Figure 23. Relative errors with respect to solution (5.3) represented in
Figure 22 obtained by energetic BEM (on the left) and by energetic FEM
(on the right).
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Figure 24. Approximate solution, for c = 1, D = 0, with P = 10.

Remark 5.4. In both of the above simulations, energetic BEM main-
tains its superiority with respect to energetic FEM, concerning accu-
racy, as already shown in Examples 5.1 and 5.2.

• Here, fixing L = 1, c = 1 and T = 20, we analyze the long-
time behavior of the energetic BEM, considering an example found in
literature which is equipped by irregular data. In particular, in [24],
problem (2.1)–(2.3) is related to a rod fixed at the right end-point x = L
(i.e., the Dirichlet condition is u(t) = 0), subjected to a traction p(t)
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applied at the left end-point x = 0, while the right-end side of the PDE
is trivial, i.e., f(x, t) = 0. For this kind of configuration, the analytical
solution, useful for comparison with numerical results, is known for all
x ∈ Ω and for all t ∈ [0, T ],

(5.4) u(x, t) =
+∞∑
n=1

(−1)n−1

×
∫ +∞

0

2
[
G
(
x,−2(n− 1)L; t− τ

)
−G

(
x, 2nL; t− τ

)]
p(τ)dτ,

where G(x, ξ; t− τ) is defined as in equation (2.5).

In order to investigate the effect of material damping in structures,
a single pulse traction

p(t) = H[t]−H[t− 1/4],

as in [24], is applied.

Table 15. Table of errors in L2-norm in time, with respect to the analytical
solution (5.4) at x = 0.

∆t P = 10
0.2 3.07 · 10−1

0.1 1.14 · 10−1

0.05 3.11 · 10−2

0.025 8.47 · 10−3

In Figure 24, u(0, t) has been computed by energetic BEM, using
∆t = 0.01, assuming D = 0 and P = 10: the approximation overlaps
the analytical solution. Furthermore, Table 15 shows the convergence
towards the analytical solution (5.4), using L2([0, 1])-norm in time and
refining the discretization parameter ∆t. We note that no instabilities
appear, and the approximate solution is in agreement with the exact
one while considering a much longer (quintuple) time interval than that
investigated in [24].

• Finally, we consider, fixing L = 1, c = 1, D = 10, P = 0, a
set of data for which the analytical solution of problem (2.1)–(2.3) is
u(x, t) = c2t2(1 − x)3, in the time interval [0, 20]. The approximate
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Figure 25. Approximate solution, for c = 1, D = 10, P = 0.

Table 16. Table of errors in L2-norm in time, with respect to the analytical
solution at x = 0.

∆t = ∆x D = 10
0.2 8.47 · 10+0

0.1 2.12 · 10+0

0.05 5.30 · 10−1

0.025 1.30 · 10−1

solution obtained using ∆t = ∆x = 0.01 in Figure 25 overlaps the
analytical one. In Table 16, we can observe the energetic FEM
convergence refining the discretization parameters over a large time
interval, even with a higher rate than expected, due to the polynomial
nature of the data and the solution.

6. Conclusions. In this paper, we have analyzed, from a numerical
point of view, the energetic BEM and FEM separately, applied to
the solution of 1D damped wave propagation problems in bounded
domains, and we have compared these methods with classical finite
differences schemes, both implicit and explicit.

Summarizing the results obtained, we can state the superiority of
the energetic approaches concerning stability even under large values of
damping parameters and without respect to any CFL condition, which
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instead affects explicit domain methods. Furthermore, the simulations
related to the long-time behavior of energetic BEM and FEMs have
revealed that they are stable and convergent even on large time intervals
of analysis.

Due to their optimal performances, we are currently studying an
extension for the numerical solution of damped wave propagation
problems in 2D space dimension.
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