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ABSTRACT. We study the contribution of surface strain
gradient elasticity to the anti-plane deformations of an elas-
tically isotropic bimaterial containing a mode III interface
crack. The surface strain gradient elasticity is incorpo-
rated using an enriched version of the continuum-based sur-
face/interface model of Gurtin and Murdoch. We obtain a
complete semi-analytic solution valid everywhere in the solid
(including at the crack tips) by reducing the boundary value
problem to two coupled hyper-singular integro-differential
equations which are solved numerically using Chebyshev
polynomials and a collocation method. Our solution demon-
strates that the presence of surface strain gradient elasticity
on the crack faces leads to bounded stresses at the crack
tips.

1. Introduction. The continuum-based surface/interface model of
Gurtin and Murdoch [4, 5, 6] is based on the idea of a two-dimensional
membrane bonded to the surface of a three-dimensional bulk substrate
[13, 17, 18]. Recently, the Gurtin-Murdoch model was incorporated
into the study of deformations of linearly elastic materials containing a
crack with sharp tips [1, 8, 9, 10, 11, 12, 22, 23, 24, 26, 27]. It was
subsequently observed that the incorporation of the Gurtin-Murdoch
model will reduce the classical square root singularity predicted by
linear elastic fracture mechanics (LEFM) to only a weak logarithmic
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singularity [7, 21]. Most recently, [25] observed the interesting phe-
nomenon that if surface strain gradient elasticity developed within the
framework of Gurtin-Murdoch surface elasticity [4, 5, 6] and strain
gradient elasticity [3, 15, 20] is incorporated into the analysis of an
isotropic and homogeneous solid containing a mode III crack, all stress
components are bounded at the crack tips and the crack opening dis-
placement assumes a cusp shape.

In this paper, we further explore the idea of surface strain gradient
elasticity in [25] and consider the much more significant problem
concerning anti-plane shear deformations of a bimaterial consisting of
two perfectly bonded dissimilar isotropic elastic half-planes containing
a crack along the bimaterial interface. Using the method of Green’s
functions, we reduce the original boundary value problem to a system
of two coupled hyper-singular integro-differential equations which is
solved numerically using a Chebyshev polynomial expansion and a
collocation method [2, 8, 11, 15]. This leads to a complete semi-
analytic solution valid everywhere in the domain of interest including
at the crack tips. The analytical and numerical results obtained here
clearly indicate that the incorporation of surface strain gradient effects
leads to bounded stresses at the interface crack tips and a crack opening
displacement which assumes a cusp-shaped profile at the crack tips.
We note also that the stress component σ31 continues to experience a
discontinuity across the bimaterial interface as previously predicted in
[11] in the case of the classical Gurtin-Murdoch surface model.

2. The coupled bulk-surface elasticity.

2.1. The bulk elasticity. In a fixed rectangular coordinate system
xi, i = 1, 2, 3, let ui, σij and εij be the displacement, stress and strain
components, respectively, in an elastically isotropic bulk material. The
equations of equilibrium, stress-strain laws and strain-displacement
relations are

(2.1) σij,j = 0, σij = 2µεij + λεkkδij , εij =
1

2
(ui,j + uj,i),

where (i, j, k = 1, 2, 3), λ and µ are the Lame constants of the bulk and
δij is the Kronecker delta.

In the case of anti-plane shear deformations, the two shear stress
components σ31 and σ32 and out-of-plane displacement w = u3(x1, x2)
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can be expressed in terms of a single analytic function h(z) of the
complex variable z = x1 + ix2 as

(2.2) σ32 + iσ31 = µh′(z), w = Im {h(z)}.

2.2. The surface strain gradient elasticity. When the inter-
face/surface mechanics of Gurtin and Murdoch is incorporated into
the model of deformation, the equilibrium condition on a crack sur-
face can be described by the following equations (see [4, 5, 6, 16] for
detailed derivations)

(2.3)
[σαjnjeα] + σs

αβ,βeα = 0 tangential direction

[σijninj ] = σs
αβκα,β normal direction,

where α, β = 1, 3; eα are the basis vectors describing the surface, ni

is the unit normal vector to the surface, [∗] denotes the jump of the
corresponding quantity across the surface, σs

αβ are the components of
the surface total stress tensor and κaβ are the components of the surface
curvature tensor. In addition, the surface Cauchy stresses τsαβ , the
surface couple stresses µσ

ωαβ , ω = 1, 3, and the surface total stresses
σs
αβ are related to the deformation-dependent surface energy Γ by

[3, 15, 20, 25]

τ sαβ = σ0δαβ +
∂Γ

∂εsαβ
,(2.4)

µs
ωαβ =

∂Γ

∂εsαβ,ω
,

σs
αβ = τ sαβ − µs

ωαβ,ω,

where εsαβ are the components of the surface strain tensor and σ0 is the
surface tension.

In this paper, the surface energy Γ will take the following form

(2.5) Γ =
1

2
(λs+σ0)(ε

s
αα)

2+(µs−σ0)ε
s
αβε

s
αβ+(µs−σ0)l

2εsαβ,ωε
s
αβ,ω,

where λs and µs are the two surface Lame parameters and l (> 0) is
a characteristic length. As a result, it follows from equations (2.4) and
(2.5) that the surface total stresses can be expressed in terms of surface
strains and surface strain derivatives as (Wang and Zhou [25])

(2.6) σs
αβ = σ0δαβ + 2(µs − σ0)(ε

s
αβ − l2∆sε

s
αβ) + (λs + σ0)ε

s
γγδαβ ,
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where ∆s is the surface Laplacian operator.

 

 

x1 

Upper Crack Face +) ,, ,( 0 lss σµλ  

x2 

Material 1 (λ1, µ1) 

−a 

Lower Crack Face −) ,, ,( 0 lss σµλ  

a 

Material 2 (λ2, µ2) 

Perfect Interface 

Figure 1. Schematic of the problem.

3. A mode III interface crack with strain gradient elasticity.
As shown in Figure 1, we consider the anti-plane shear deformations
of a solid consisting of two bonded dissimilar isotropic half-planes
containing a finite interface crack, the cross section of which occupies
the segment [−a, a] of the real axis. The bimaterial is subjected to a
uniform remote shear stress σ∞

32 . Let the upper half-plane (x2 > 0,
occupied by material “1”) and the lower half-plane (x2 < 0, occupied
by material “2”) be designated the “+” and “−” sides of the crack,
respectively. The bonded part of the bimaterial interface is perfectly
bonded. In what follows, the subscripts 1 and 2 (or the superscripts
(1) and (2)) are used to identify the respective quantities in the upper
and lower half-planes.

From equation (2.3), the boundary conditions on the crack faces can
be written as:

σs
13,1 + (σ23)

+ − (σ23)
− = 0, on the upper crack face,(3.1a)

σs
13,1 + (σ23)

+ − (σ23)
− = 0, on the lower crack face,(3.1b)

where, in the present crack problem, (σ23)
− in equation (3.1a) and

(σ23)
+ in equation (3.1b) are zero.
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Under the assumption of a coherent interface (εsαβ = εαβ and

εsαβ,ω = εαβ,ω), the surface stresses can be expressed as

(3.2) σs
13 = (µs − σ0)(u3,1 − l2u3,111).

Insertion of equation (3.2) into equations (3.1a) and (3.1b) leads to:

(3.3a)

(σ23)
+ = −(µs − σ0)

+(u+
3,11 − l2u+

3,1111), on the upper crack face,

(3.3b)

(σ23)
− = +(µs − σ0)

−(u−
3,11 − l2u−

3,1111), on the lower crack face,

where (µs − σ0)
+ ̸= (µs − σ0)

−. In writing equation (3.3), it has been
assumed that l+ = l− = l. The above is equivalent to

(σ23)
+ + (σ23)

− = −(µs − σ0)
+(u+

3,11 − l2u+
3,1111)(3.4)

+(µs − σ0)
−(u−

3,11 − l2u−
3,1111),

(σ23)
+ − (σ23)

− = −(µs − σ0)
+(u+

3,11 − l2u+
3,1111)(3.5)

−(µs − σ0)
−(u−

3,11 − l2u−
3,1111),

The problem can now be formulated by considering a distribution of
screw dislocations with density b(x1) and line forces with density f(x1)
on the interface crack. Thus, the two analytic functions h1(z) and h2(z)
in the upper and lower half-planes can be written as [19]

h1(z) =
µ2

π(µ1 + µ2)

∫ a

−a

b(ξ) log(z − ξ) dξ(3.6)

− i

π(µ1 + µ2)

∫ a

−a

f(ξ) log(z − ξ) dξ +
σ∞
32

µ1
z,

h2(z) =
µ1

π(µ1 + µ2)

∫ a

−a

b(ξ) log(z − ξ) dξ

− i

π(µ1 + µ2)

∫ a

−a

f(ξ) log(z − ξ) dξ +
σ∞
32

µ2
z,

where b(ξ) and f(ξ) are two unknown density functions which are
assumed to be sufficiently smooth in the interval (−a, a). The following
limiting values can then be obtained

[h′
1(x1)]

+ = − µ2i

µ1 + µ2
b(x1) +

µ2

π(µ1 + µ2)

∫ a

−a

b(ξ)

x1 − ξ
dξ(3.7)
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− f(x1)

µ1 + µ2
− i

π(µ1 + µ2)

∫ a

−a

f(ξ)

x1 − ξ
dξ +

σ∞
32

µ1
,

[h′
2(x1)]

− =
µ1i

µ1 + µ2
b(x1) +

µ1

π(µ1 + µ2)

∫ a

−a

b(ξ)

x1 − ξ
dξ(3.8)

+
f(x1)

µ1 + µ2
− i

π(µ1 + µ2)

∫ a

−a

f(ξ)

x1 − ξ
dξ +

σ∞
32

µ2
,

where −a < x1 < a and the integrals are defined in the sense of Cauchy
principal value. Here, the superscript “+” denotes the limiting value
on approaching the interface crack from the upper half-plane, while
the superscript “−” indicates that the limiting value is obtained by
approaching the interface crack from the lower half-plane.

Using the expressions of h1(z) and h2(z) in equation (3.6), the
satisfaction of the boundary conditions in equations (3.4) and (3.5)
will yield the following hyper-singular integro-differential equations

(3.9) − 2µ1µ2

π

∫ a

−a

b(ξ)

ξ − x1
dξ + (µ2 − µ1)f(x1) + 2s∞32(µ1 + µ2)

= [µ2(µ
s − σ0)

+ + µ1(µ
s − σ0)

−][b′(x1)− l2b′′′(x1)]

− 1

π
[(µ2−σ0)

+−(µs−σ0)
−]

[ ∫ a

−a

f(ξ)

(ξ − x1)2
dξ−6l2

∫ a

−a

f(ξ)

(ξ − x1)4
δξ

]
,

− a < x1 < a,

(3.10) (µ1 + µ2)f(x1) =
1

π
[(µs − σ0)

+ + (µs − σ0)
−]

×
[ ∫ a

−a

f(ξ)

(ξ − x1)2
dξ − 6l2

∫ a

−a

f(ξ)

(ξ − x1)4
dξ

]
− [µ2(µ

s − σ0)
+ − µ1(µ

s − σ0)
−][b′(x1)− l2b′′′(x1)],

− a < x1 < a,

where all integrals exist as Hadamard finite parts with the exception
of the integral on the left-hand side of equation (3.9), which is defined
in the sense of Cauchy principal value.

It is further deduced from equations (3.7) and (3.8) that

∆w = w+ − w− = −
∫ x1

−a

b(ξ) dξ, −a < x1 < a,(3.11)
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σ+
32 − σ−

32 = −f(x1), −a < x1 < a.(3.12)

Thus, the single valuedness of the displacement and the balance of force
for a contour surrounding the crack surface require that

(3.13)

∫ a

−a

b(ξ) dξ = 0,

∫ a

−a

f(ξ) dξ = 0.

Following Paulino et al. [15] and Martin [14], to uniquely define
the unknown density functions b(x1) and f(x1), we further impose the
following smooth closure conditions:

b(a) = b(−a) = 0,(3.14)

f(a) = f(−a) = 0.(3.15)

Here we add that b(x1) and f(x1) are, respectively, odd and even
functions of x1.

4. Solution to the hyper-singular integro-differential equa-
tions. Set x = x1/a and t = ξ/a in equations (3.9), (3.10) and (3.13).
For convenience, we write b(x) = b(ax) = b(x1) and f(x) = f(ax) =
f(x1). As a result, equations (3.9) and (3.10) can be written in the
following normalized form

(4.1) − 1

π

∫ 1

−1

b̂(t)

t− x
dt+Kf̂(x) + 2 = S+

1 [b̂′(x)− l̂2b̂′′′(x)]

− S−
2

π

[ ∫ 1

−1

f̂(t)

(t− x)2
dt− 6l̂2

∫ 1

−1

f̂(t)

(t− x)4
dt

]
,

f̂(x) =
S+
2

π

[∫ 1

−1

f̂(t)

(t− x)2
dt− 6l̂2

∫ 1

−1

f̂(t)

(t− x)4
dt

]
− S−

1 [b̂′(x)− l̂2b̂′′′(x)],

(4.2)

where −1 < x < 1 and

b̂(x) =
2µ1µ2b(x)

(µ1 + µ2)σ∞
32

, f̂(x) =
f(x)

σ∞
32

,(4.3)

K =
µ2 − µ1

µ1 + µ2
, l̂ =

l

a
,
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S+
1 =

µ2(µ
s − σ0)

+ + µ1(µ
s − σ0)

−

2aµ1µ2
,

S−
1 =

µ2(µ
s − σ0)

+ − µ1(µ
s − σ0)

−

2aµ1µ2
,

S+
2 =

(µs − σ0)
+ + (µs − σ0)

−

a(µ1 + µ2)
,

S−
2 =

(µs − σ0)
+ − (µs − σ0)

−

a(µ1 + µ2)
.

We observe from the above expression that the two functions b̂(x) and

f̂(x) and the six parameters K,S+
1 , S−

1 , S+
2 , S−

2 and l̂ are dimensionless.
Further, we deduce from equation (4.2) that the necessary and sufficient

condition for f̂(x) = 0 is S−
1 = 0, or equivalently, µ2(µ

s − σ0)
+ =

µ1(µ
2 − σ0)

−. The discussion in Wang and Zhou [25] for a mode III
crack in a homogeneous material indeed satisfies the condition S−

1 = 0.

For convenience, equations (4.1) and (4.2) are further expressed in
the following equivalent form:

(4.4) − 1

π

∫ 1

−1

b̂(t)

t− x
dt− S+

1 S+
2 − S−

1 S−
2

S+
2

[b̂′(x)− l̂2b̂′′′(x)]

+

(
K +

S−
2

S+
2

)
f̂(x) = −2,

(4.5) − S−
1

πS+
1

∫ 1

−1

b̂(t)

t− x
dt

− S+
1 S+

2 − S−
1 S−

2

πS+
1

[ ∫ 1

−1

f̂(t)

(t− x)2
dt− 6l̂2

∫ 1

−1

f̂(t)

(t− x)4
dt

]
+

(
1 +

KS−
1

S+
1

)
f̂(x) = −2S−

1

S+
1

.

When µ1 = µ2 and (µs − σ0)
+ = (µs − σ0)

−, we have S+
1 = S+

2 =
(µs − σ0)/(aµ) and K = S−

1 = S−
2 = 0. In this case, equation (4.5) is

automatically satisfied, and equation (4.4) reduces to the corresponding
result in Wang and Zhou [25].

The two unknown functions b̂(x) and f̂(x) can be approximated by
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the following weighted polynomials

b̂(x) ≈ b̂N (x) =
√

1− x2

N∑
m=0

AmUm(x),(4.6)

f̂(x) ≈ f̂N (x) =
√
1− x2

N∑
m=0

BmUm(x),

where Um(x) represents the mth Chebyshev polynomial of the second
kind, and Am and Bm are unknown coefficients to be determined using
the collocation method.

It is clear that the smooth closure conditions in equations (3.14)
and (3.15) have been satisfied by using equation (4.6). In addition, the
satisfaction of the two conditions in equation (3.13) yields

(4.7) A0 = 0, B0 = 0.

Thus, b̂(x) and f̂(x) can further be expressed as

b̂(x) ≈ b̂N (x) =
√

1− x2

N∑
m=1

AmUm(x),(4.8)

f̂(x) ≈ f̂N (x) =
√
1− x2

N∑
m=1

BmUm(x).

By substituting equation (4.8) into equations (4.4) and (4.5), and
making use of the following identities [2, 15]

1
π

∫ 1

−1
Um(t)

√
1−t2

t−x dt = −Tm+1(x),(4.9a)

1
π

∫ 1

−1
Um(t)

√
1−t2

(t−x)2 dt = −(m+ 1)Um(x),(4.9b)

1
π

∫ 1

−1
Um(t)

√
1−t2

(t−x)3 dt(4.9c)

=

{
0 m = 0,
m(m+1)Um+1(x)−(m+1)(m+2)Um−1(x)

4(1−x2)
m ≥ 1,

1
π

∫ 1

−1
Um(t)

√
1−t2

(t−x)4 dt(4.9d)

=

{
0 m = 0, 1,[

−(m + 2)(m + 1)(m + 3)Um−2(x)

+2(m2 − 1)(m + 3)Um(x) − m(m2 − 1)Um+2(x)

]
24(1−x2)2

m ≥ 2,
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d

dx
[Um(x)

√
1− x2] = − (m+ 1)Tm+1(x)√

1− x2
,

(4.10)

d2

dx2
[Um(x)

√
1− x2] = −(m+ 1)

d

dx

[
Tm+1(x)√
1− x2

]
=

(m+ 1)[mTm+2(x)− (m+ 2)Tm(x)]

2(1− x2)3/2
,

d3

dx3
[Um(x)

√
1− x2] =

m(m+ 1)(m+ 2)Tm+1(x)

(1− x2)3/2

+
3(m+ 1)x[mTm+2(x)− (m+ 2)Tm(x)]

2(1− x2)5/2
,

with Tm(x) being the mth Chebyshev polynomial of the first kind, we
arrive at the following equations

(4.11) (1− x2)5/2
N∑

m=1

AmTm+1(x) +
S+
1 S+

2 − S−
1 S−

2

S+
2

(1− x2)2

×
N∑

m=1

Am(m+ 1)Tm+1(x) +
l̂2(S+

1 S+
2 − S−

1 S−
2 )

S+
2

×
N∑

m=1

Am(m+ 1)

[
m(m+ 2)(1− x2)Tm+1(x)

+
3x[mTm+2(x)− (m+ 2)Tm(x)]

2

]
+

(
K +

S−
2

S+
2

)
(1− x2)3

N∑
m=1

BmUm(x) = −2(1− x2)5/2,

(4.12)
S−
1

S+
1

(1− x2)2
N∑

m=1

AmTm+1(x) +
S+
1 S+

2 − S−
1 S−

2

S+
1

(1− x2)2

×
N∑

m=1

Bm(m+ 1)Um(x) +
l̂2(S+

1 S+
2 − S−

1 S−
2 )

4S+
1

×
N∑

m=2

Bm

[
−(m+ 1)(m+ 2)(m+ 3)Um−2(x)
+2(m2 − 1)(m+ 3)Um(x)−m(m2 − 1)Um+2(x)

]
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+

(
1 +

KS−
1

S+
1

)
(1− x2)5/2

N∑
m=1

BmUm(x) = −2S−
1

S+
1

(1− x2)2.

Remark 4.1. The authors note an error in the coefficient appearing
in equation (67) in Chan et al. [2].

If we select the collocation points given by x = − cos(iπ/N) for
i = 1, 2, . . . , N , equations (4.11) and (4.12) further reduce to the
following algebraic equations

(4.13)
N∑

m=1

(−1)m+1

[
1−

(
cos

(
iπ

N

))2]5/2
cos

(
(m+ 1)iπ

N

)
Am +

S+
1 S+

2 − S−
1 S−

2

S+
2

×
N∑

m=1

(−1)m+1(m+ 1)

[
1−

(
cos

(
iπ

N

))2]2
cos

(
(m+ 1)iπ

N

)
Am

+
S+
1 S+

2 − S−
1 S−

2

S+
2

l̂2

×
N∑

m=1

(−1)m+1(m+1)

[
m(m+2)

[
1−

(
cos

(
iπ
N

))2]
cos

(
(m+1)iπ

N

)
+ 3

2
cos

(
iπ
N

)[
m cos

(
(m+2)iπ

N

)
−(m+2) cos

(
miπ
N

)]
]
Am

+

(
K +

S−
2

S+
2

) N∑
m=1

(−1)m
[
1−

(
cos

(
iπ

N

))2]3 sin( (m+1)iπ
N

)
sin (iπ/N)

Bm

= −2

[
1−

(
cos

(
iπ

N

))2]5/2
, i = 1, 2, . . . , N − 1,

N∑
m=1

(m+ 1)Am = 0,

(4.14)
S−
1

S+
1

N∑
m=1

(−1)m+1

[
1−

(
cos

(
iπ

N

))2]2
cos

(
(m+ 1)iπ

N

)
Am
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+
S+
1 S+

2 − S−
1 S−

2

S+
1

N∑
m=1

(−1)m(m+ 1)

[
1−

(
cos

(
iπ

N

))2]2

×
sin

(
(m+1)iπ

N

)
sin(iπ/N)

Bm +
l̂2(S+

1 S+
2 − S−

1 S−
2 )

4S+
1

×
N∑

m=1

(−1)m

 −(m + 1)(m + 2)(m + 3)

sin

(
(m−1)iπ

N

)
sin(iπ/N)

+2(m2 − 1)(m + 3)

sin

(
(m+1)iπ

N

)
sin(iπ/N)

− m(m2 − 1)

sin

(
(m+3)iπ

N

)
sin(iπ/N)

Bm

+

(
1 +

KS−
1

S+
1

) N∑
m=1

(−1)m
[
1−

(
cos

(
iπ

N

))2]5/2 sin( (m+1)iπ
N

)
sin(iπ/N)

Bm

= −2S−
1

S+
1

[
1−

(
cos

(
iπ

N

))2]2
,

i = 1, 2, . . . , N − 1.

If we take i = N in equation (4.14), the two sides of this equation will
be identically zero. In carrying out specific calculations, we take N to
be an even number. Due to symmetry, we further impose that Bm ≡ 0
for odd m. As a result, it is sufficient to take i = 1, 2, . . . , N/2 in
equation (4.14). The (N +N/2) unknowns Am (m = 1, 2, . . . , N) and
B2m (m = 1, 2, . . . , N/2) can then be uniquely determined by solving
the (N +N/2) independent equations in (4.13) and (4.14).

5. The stress field. The stress field in the upper half-plane is
determined by
(5.1)

σ
(1)
32 + iσ

(1)
31 =

µ1µ2

π(µ1 + µ2)

∫ a

−1

b(ξ)

z − ξ
dξ− iµ1

i(µ1 + µ2)

∫ a

−a

f(ξ)

z − ξ
dξ+σ∞

32 ,

and the stress field in the lower half-plane is given by
(5.2)

σ
(2)
32 +iσ

(2)
31 =

µ1µ2

π(µ1 + µ2)

∫ a

−a

b(ξ)

z − ξ
dξ− iµ2

π(µ1 + µ2)

∫ a

−a

f(ξ)

z − ξ
dξ+σ∞

32 .

In view of the fact that b(a) = b(−a) = f(a) = f(−a) = 0 in
equations (3.14) and (3.15), the stresses are bounded at the crack tips.
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Figure 2. Variation of b̂(x) for three different values of S = 0.1, 0.2, 1 with
K = −9/11 and L = 1.

In addition, by using the following formula [15]

(5.3)
1

π

∫ 1

−1

√
1− t2Um(t)

t− x
dt = −

(
x− |x|

x

√
x2 − 1

)m+1

, |x| > 1,

the stresses are distributed along the real axis outside the crack as
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σ
(1)
32 = σ

(2)
32 =

σ∞
32

2π

∫ 1

−1

b̂(t)

x− t
dt+ σ∞

32(5.4)

=
σ∞
32

2

N∑
m=1

Am

(
x− |x|

x

√
x2 − 1

)m+1

+ σ∞
32 ,

σ
(1)
31 =

σ∞
32(1−K)

2π

∫ 1

−1

f̂(t)

t− x
dt

=
σ∞
32(K − 1)

2

N∑
m=1

Bm

(
x− |x|

x

√
x2 − 1

)m+1

,

σ
(2)
31 =

σ∞
32(1 +K)

2π

∫ 1

−1

f̂(t)

t− x
dt =

1 +K

1−K
σ
(1)
31 , |x| > 1.

The stresses are distributed on the crack faces as

σ
(1)
32 =

σ∞
32

2

N∑
m=1

AmTm+1(x)+
σ∞
32(K − 1)

2

√
1−x2

N∑
m=1

BmUm(x)+σ∞
32

(5.5)

σ
(1)
31 = −σ∞

32

2

√
1− x2

N∑
m=1

AmUm(x)

+
σ∞
32(K − 1)

2

N∑
m=1

BmTm+1(x),

σ
(2)
32 =

σ∞
32

2

N∑
m=1

AmTm+1(x)+
σ∞
32(1 +K)

2

√
1−x2

N∑
m=1

BmUm(x)+σ∞
32

σ
(2)
31 =

σ∞
32

2

√
1− x2

N∑
m=1

AmUm(x)

− σ∞
32(1 +K)

2

N∑
m=1

BmTm+1(x), −1 < x < 1.

It is observed from equations (5.4) and (5.5) that the stress components

σ
(1)
32 , σ

(2)
32 , σ

(1)
31 and σ

(2)
31 on the bimaterial interface are all continuous
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Figure 3. Variation of f̂(x) for three different values of S = 0.1, 0.2, 1 with
K = −9/11 and L = 1.

across the crack tips. The present model also predicts that the stress
component σ31 is discontinuous across the bimaterial interface, i.e.,

σ
(1)
31 ̸= σ

(2)
31 for |x| > 1, as in Kim et al. [11]. This discontinuity in

stress stems from the fact that f(x) ̸= 0 when S−
1 ̸= 0.
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Figure 4. Variation of ∆ŵ for three different values of S = 0.1, 0.2, 1 with
K = −9/11 and L = 1.

6. Results and discussions. The crack opening displacement can
be evaluated as
(6.1)

∆w=−a

∫ x

−1

b(t)dt=
aσ∞

32(µ1+µ2)

4µ1µ2

N∑
m=1

Am

[
sinmθ

m
− sin(m+2)θ

m+2

]
, cos θ=x.
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Figure 5. Variation of b̂(x) for four different values of L = 0, 0.2, 0.4, 1
with K = −9/11 and S = 1.

In the following calculations, it is assumed that (µs−σ0)
+ = (µs−σ0)

−.
In this case, we have

S+
2 =

2(µs − σ0)

a(µ1 + µ2)
, S+

1 =
S+
2

1−K2
,(6.2)
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S−
1 = KS+

1 =
KS+

2

1−K2
, S−

2 = 0.(6.3)

It is then observed from equations (4.4) and (4.5) that the three

dimensionless functions b̂(x), f̂(x) and∆ŵ = (2µ1µ2∆w)/(aσ∞
32(µ1 +

µ2)) depend only on the three dimensionless parametersK, S = s+2 and

L = l̂. In passing, we note that our numerical results in the case µ1 = µ2

indeed recover the results in [25] for a crack in a homogeneous material.
In the following numerical examples, we take the value N = 300.

Illustrated in Figures 2–4 are the variations of b̂(x), f̂(x) and ∆ŵ
for the three values of S = 0.1, 0.2, 1 with K = −9/11 and L = 1.
K = −9/11 is equivalent to µ1 = 10µ2. The three smooth curves of

b̂(x) in Figure 2 satisfy b̂(1) = b̂(−1) = 0 while the three smooth curves

of f̂(x) in Figure 3 satisfy f̂(1) = f̂(−1) = 0. It is noted that ∆ŵ in
Figure 4 takes a cusp shape at x = ±1, as required for bounded stresses

and strains at the crack tips. The function b̂(x) in Figure 2 is an odd

function of x, whilst f̂(x) and ∆ŵ in Figures 3 and 4, respectively, are
even functions of x. All of these observations are in agreement with our
theoretical predictions. An increase in S will suppress the magnitudes

of b̂(x), f̂(x) and ∆ŵ. In addition, the classical results corresponding

to b̂(x) = (2x)/
√
1− x2 and ∆ŵ = 2

√
1− x2 in LEFM can be obtained

by setting S and L close to zero, which validates our results.

We show in Figures 5–7 the variations of b̂(x), f̂(x) and ∆ŵ for four
different values of L = 0, 0.2, 0.4, 1 with K = −9/11 and S = 1. The
result for the case L = 0 is obtained using a very small yet nonzero value

of L (say, L = 0.00001). The three smooth curves of the function b̂(x)

for L ̸= 0 in Figure 5 satisfy b̂(1) = b̂(1) = 0, whereas that for L = 0

in Figure 5 satisfies b̂(1) = −b̂(−1) = 0.59 ̸= 0; meanwhile, the three

smooth curves of f̂(x) for L ̸= 0 in Figure 6 satisfy f̂(1) = f̂(−1) = 0,
whereas the corresponding graph in the case of L = 0 (Figure 6) is
unbounded at x = ±1. The term ∆ŵ for L ̸= 0 in Figure 7 takes a
cusp shape at x = ±1, the crack opening angle for L = 0 in Figure 7
is strictly positive but less than π/2. An increase in L will again

suppress the magnitudes of b̂(x), f̂(x) and ∆ŵ. The nonzero finite

values of b̂(±1) in Figure 5 and the infinite values of f̂(±1) for L = 0 in
Figure 6 imply that the stresses exhibit both the weak logarithmic and
the strong square root singularities at the crack tips when the strain
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Figure 6. Variation of f̂(x) for four different values of L = 0, 0.2, 0.4, 1
with K = −9/11 and S = 1.

gradient effects of the crack faces are ignored [22].

Figure 8 shows the variation of f̂(x) for different values of the
mismatch parameter K with S = 1 and L = 0.2. Apparently, a nonzero

value of K will induce a nontrivial distribution of f̂(x). We note that
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Figure 7. Variation of ∆ŵ for four different values of L = 0, 0.2, 0.4, 1 with
K = −9/11 and S = 1.

f̂(x) ≡ 0 when K = 0 (i.e., the crack lies in a homogeneous material).

We show in Figure 9 the continuous distributions of the stress
components along the bimaterial interface with K = −9/11, S = 1
and L = 0.2. All the stress components are bounded at the crack tips.
It is further observed from Figure 9 that:
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(i) max{σ(1)
32 /σ

∞
32} = 1.6245 occurs at x = ±0.922 on the upper crack

face very close the crack tips, min{σ(1)
32 /σ

∞
32} = 0.5552 occurs at

the center of the upper crack face;

(ii) max{σ(2)
32 /σ

∞
32} = 1.0893 occurs just at the crack tips x = ±1,

min{σ(2)
32 /σ

∞
32} = 0.909 occurs at the center of the lower crack face;
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Figure 9. Continuous distributions of the stress components σ
(1)
32 , σ

(2)
32 ,

σ
(1)
31 and σ

(2)
31 along the bimaterial interface with K = −9/11, S = 1 and

L = 0.2.

(iii) max{σ(1)
31 /σ

∞
32} = 0.5780 occurs just at the right crack tip x = 1

and at x = −0.76 on the upper crack face, min{σ(1)
31 /σ

∞
32} =

−0.5780 occurs at x = 0.65 on the upper crack face and at the
left crack tip x = −1;
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(iv) max{σ(2)
31 /σ

∞
32} = 0.0959 occurs at x = 0.76 on the lower crack

face, min{σ(2)
31 /σ

∞
32} = −0.0959 occurs at x = 0.76 on the

lower crack face. In this example, the interface crack with
surface strain gradient effects will induce a stress concentration
factor (SCF) of 1.6245. Our numerical results also show that an
increase in S and/or L will suppress the variations of the stress
components along the interface.

Figure 10 illustrates the induced SCF as a function of S and L with
K = −9/11. It is observed from the figure that SCF is a monotonic
decreasing function of both S and L. Our result also shows that SCF
is an increasing function of |K| (−1 < K < 1) for fixed values of S and
L. This fact implies that the material mismatch of the two half-planes
will enlarge the SCF.

Finally, we remark that our numerical solution demonstrates fast
and accurate convergence. Specifically, the results in Figures 2–10 with
N = 300 are extremely close to the corresponding ones obtained by
taking different values of N < 300. This is illustrated in Table 1 where

we list the values of {max b̂(x)}, max{f̂(x)}, min{f̂(x)}, max{∆ŵ} in
the case when K = −9/11, S = 1 and L = 0.2 for various values of N .

Table 1. The values of max{b̂(x)}, max{f̂(x)}, min{f̂(x)}, max{∆ŵ} with
K = −9/11, S = 1 and L = 0.2 for various values of N .

N 10 20 40 60 100 300

max{b̂(x)} 0.2727 0.2657 0.2654 0.2653 0.2652 0.2652

max{f̂(x)} 0.3540 0.3537 0.3538 0.3539 0.3539 0.3539

min{f̂(x)} -0.5770 -0.5777 -0.5780 -0.5781 -0.5781 -0.5781

max{∆ŵ} 0.1676 0.1653 0.1649 0.1648 0.1647 0.1647

7. Conclusions. In this study, we have incorporated the effects
of surface strain gradient elasticity into the mode III interface crack
problem arising in the anti-plane shear deformations of an isotropic
bimaterial. Green’s function method is used to obtain a system of
coupled hyper-singular integro-differential equations which is solved
numerically by means of Chebyshev polynomials and a collocation
method. The complete semi-analytic solution obtained demonstrates
that all the stress components remain finite at the crack tips. In
the absence of the strain gradient effects presented here (i.e., when
only the traditional model of surface elasticity is present), the stresses
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Figure 10. The SCF as a function of S and L with K = −9/11.

again exhibit both the logarithmic and the square root singularities at
the crack tips.
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