JOURNAL OF INTEGRAL EQUATIONS
AND APPLICATIONS
Volume 25, Number 3, Fall 2013

A SINC QUADRATURE METHOD FOR
THE URYSOHN INTEGRAL EQUATION

K. MALEKNEJAD AND K. NEDAIASL

Communicated by Kendall Atkinson

ABSTRACT. In this paper, we study the numerical approx-
imation of the Urysohn integral equation with two methods.
The methods are developed by means of the sinc approxima-
tion with the Single Exponential (SE) and Double Exponen-
tial (DE) transformations. These numerical methods combine
a sinc Nystrom method with the Newton iterative process
that involves solving a nonlinear system of equations. We
provide an error analysis for the methods. These methods
improve conventional results and achieve exponential conver-
gence. Some numerical examples are given to confirm the
accuracy and ease of implementation of the methods.

1. Introduction. In this paper, we consider the sinc Nystrom
method for the numerical solution of the Urysohn integral equations of
Fredholm type

b
(1.1) u(t)—/ k(t, s, u(s)) ds = g(t), ¢ € [a,b)],

where u(t) is an unknown function to be determined and k(t, s, u) and
g(t) are given functions. Equation (1.1) was introduced for the first
time by Pavel Urysohn in [41]. The Urysohn integral equation includes
the Hammerstein equation and many other equations. Equations of
this type appear in many applications. For example, they arise as
a reformulation of two-point boundary value problems with certain
nonlinear boundary conditions [4, 27]. Several authors have written
a number of papers which establish numerical techniques for finding
an approximation of the nonlinear Fredholm integral equations. These
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methods can be categorized into two major types. The first type are
those which lead to solving a system of nonlinear equations, and the
other uses iterative methods to solve the nonlinear equation directly.
We will briefly review these techniques.

In [22, 23], Krasnosel’skii et al. have dealt with the theoretical as-
pect of projection methods, especially the Galerkin method for non-
linear Fredholm integral equations which are involved in the first cat-
egory. Based on these works, Atkinson and his co-authors extended
the projection, iterated projection and discrete projection methods in
a series of papers [3, 4, 6-8] for this kind of integral equation, and
the accelerated projection and iterated projection methods have been
proposed in [12]. Kumar in [24-27] investigated the superconvergence
property of the iterated collocation method for Hammerstein integral
equations, and these works have been extended and completed for the
Galerkin method by Kaneko et al. [24-26]. Furthermore, an asymp-
totic error analysis for the Nystrém method has been considered in
[15]. Hernéndez et al. have investigated the numerical solution of
nonlinear equations, especially nonlinear Fredholm integral equations,
through the modified secant and Newton methods [2, 14, 16]. Re-
cently, the Multilevel Augmentation Method (MAM) was introduced
and improved for Hammerstein integral equation in [11, 13] and ex-
tended to the Urysohn integral equation case in [10].

The aim of this work is to present two numerical schemes for a
Nystrom method based on sinc quadrature formulas. The first method
is given by extending Stenger’s idea [37] to nonlinear Fredholm in-
tegral equations. It is shown that this method has the convergence
rate O(exp(—C+v/N)). The second method is derived by replacing the
smoothing transformation employed in the first method, the standard
tanh transformation, with the so-called double exponential transfor-
mation. Such a replacement improves the order of convergence to
O(exp(—C(N/log N))). For a comprehensive study of single exponen-
tial sinc methods, we refer to [30, 36, 37, 38|, and for double expo-
nential sinc approximation to [32-35, 39, 40, 43].

Equation (1.1) can be expressed in operator form as
(1.2) I -Ku=yg,

where (Ku)(t) = f: k(t,s,u(s))ds. The operator is defined on the
Banach space X = Hol(D) N C(D). In this notation, D C C is
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a simply connected domain which satisfies (a,b) C D and Hol (D)
denotes the family of all functions f that are analytic in the domain
D. Furthermore, assume (1.2) has at least one solution, and note that
the right side of (1.1) is a completely continuous operator [23]. In
Section 4, the sufficient conditions in which (1.1) has such a solution will
be introduced. Let ||u|| = sup{|u(t)| : ¢ € [0,1]}. Additionally, suppose
that the solution u*(¢) to be determined is geometrically isolated [21],
in other words, there is some ball

Bu,r)={ue X :|lu—u’|| <r}

with » > 0, that contains no solution of (1.1) other than u*. It
is assumed that the linear operator K'(u*) does not have 1 as an
eigenvalue. Then there is a geometrically isolated solution for (1.1)
[27].

This paper is organized in five sections. In Section 2 we will review
the basic properties of the sinc quadrature rule which has been used
in our approximation and analysis. Two numerical methods based
on sinc approximation are considered in Section 3. We provide in
Section 4 a complete convergence analysis for the proposed methods.
Finally, in Section 5, we present several numerical experiments. The
numerical results are consistent with the theoretical estimates on orders
of convergence. The numerical performance of the proposed method is
favorable in comparison to that of the multigrid method and the MAM.

2. The quadrature formulae. The sinc function is defined on the
whole real line by

amxﬂ::{?ﬂﬂﬂﬂwﬂ iigf

The sinc numerical methods are based on approximation over the
infinite interval (—oo, 00), written as

N
f)= Y f(Gh)SG.h)(), teR,

j=—N

where the basis function S(j, h)(t) is defined by

0. 1)(0) =sine (1~ ).
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h is a step size appropriately chosen depending on a given positive
integer N, and j is an integer. The sinc approximation and numerical
integration are closely related through the following identity

en [ S JGRSUD - o)) at

j=—N

N oo
—n Y sGh - [ s

j=—N

On the other hand, this is a relation between the approximation error
of the sinc approximation and the one of integration by the trapezoidal
rule [32]. The equation (2.1) can be adapted to approximate on general
intervals with the aid of appropriate variable transformations ¢t = ¢(z)
as the transformation function ¢(x) appropriate single exponential
(SE) and double exponential (DE) transformations are applied. The
single exponential transformation and its inverse can be introduced,
respectively, as below [36]:

b b
psp(r) = CLtanh<gc>+ Ta

2 2 2

¢sp(t) = log (Z:i)

In order to define a convenient function space, the strip domain

Dy={z€C:|lmz| <d},

for some d > 0 is introduced. When incorporated with the SE-
transformation, the conditions should be considered on the translated

domain
ar ﬂ < d
8\b—z '

The following definitions and theorems are considered for further details
of the procedure.

vse(Dq) = {z eC:

Definition 2.1. Let D be a simply connected domain which satisfies
(a,b) C D, and let « and C be positive constants. Then £, (D) denotes
the family of all functions f € Hol (D) which satisfy

If(2)] < ClR(=)I%,
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for all z in D where Q(2) = (z — a)(b — 2).

The following theorem involves bounding the error of (2N + 3)-
point sinc quadrature for f on (a,b). When incorporated with the
SE-transformation, the quadrature rule is designated as the SE-sinc
quadrature.

Theorem 2.2 [36]. Let (fQ) € Lo(pse(Da)) for d with 0 < d < 7.
Let N be a positive integer and h be selected by the formula

d
aN’

Then there exists a constant C, which is independent of N, such that

b N
22) | [ 10at=n Y fleseln)eslin| < Coxp(-Vrdan).

j=—N

The double exponential transformation can be used instead of the
single exponential transformation. The DE-transformation and its
inverse are

tanh (g sinh(x)) + b —g a,

oot =t [ (5 o1+ {1 (55 ]

This transformation maps Dy onto the domain
¢pe(Dad)

- {r oo [Lre ()i (e (22) )| <)

If we use the DE-transformation instead of the SE-transformation, the
DE-sinc quadrature is achieved. The rate of convergence is accelerated
as the next theorem states.

b—a

2

¢YpEe(T) =
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Theorem 2.3 [33]. Let (fQ) € Lo(ppr(Da)) for d with 0 < d <
w/2. Assume that N is a positive integer and h is selected by the
formula

_ log(2dN /a)
= ~ .

Then there exists a constant C, which is independent of N, such that
(2.3)

]/ fd-n S 5 @th))sam(]h)\ <o (i)

j=—N

3. Sinc Nystrom method.

3.1. SE-sinc scheme. In the SE-sinc Nystrom method we approx-
imate the integral operator in (1.1) by the quadrature formula (2.2).
Let v € Hol(psr(Dq)) and k(t,-,u(-))Q(:) € Lalpse(Dq)) for all
t € [a,b] and u € B. Then the integral in (1.1) can be approximated
by Theorem 2.2 and the following discrete SE-operator can be defined:

KRE () (1) = Z B0t ()l (D).
The Nystréom method applied to (1.1) is to find u3¥ such that
(3.1) ~h Z k(t, 157, u(t7) s (k) = 9(b),
j=—N
where the points th are defined by the formula

Solving (3.1) reduces to solving a finite dimensional nonlinear system.
For any solution of (3.1) the values u3”(¢7¥) at the quadrature points

satisfy the nonlinear system

32y N ED) R Z RSE, 157 u(i55)) gl (D) = g(157),

i=-N,...,N.
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JEtPF), i = —N,..., N, of the system

Conversely, given a solution w3/
(3.2), then the function u3¥ defined by

)=h Z k(157 u(t7)) s p(ih) + 9(b),
j=—N

is readily seen to satisfy (3.1).

We rewrite equation (3.1) in operator notation as
(3.3) (I - K3FWF = g.

Atkinson in [3] by using the Leray-Schauder theorem proved that,
under certain differentiability assumptions on K and K3F, (3.3) has
a unique solution in a neighborhood of an isolated solution of (1.1),
and these approximation solutions converge to an isolated solution for
sufficiently large N. We assume that k,(t, s, u) = (9k(t,s,u))/(0u) is
continuous for all ¢, s € [a,b] and v € B. This assumption implies that
K is Fréchet differentiable [3] with

b
K'(u)z(t) :/ ku(t,s,u(s))x(s)ds, t€[a,b], x € X.

Furthermore, the continuity assumption is considered for second
partial derivative of the kernel, k. (t,s,u), leading to the existence
and the boundedness of the second Fréchet derivative with

K" (u /kuutsu Na(s)y(s)ds,
a,b], xz,y€X.

Similar to K3F, (K3F) and (KJF)” can be defined by the SE-sinc
quadrature formula as follows:

(P () (t) = h Z k(6,657 u(t5 )l g (1R)2(85F),

j=—N
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N
b > Kt 55wt E)) Pl p (G (55 )y (155).

3.2. DE-sinc scheme. The DE-sinc Nystrom case is focused on in
this part. In the DE-case we assume that the solution of (1.1) belongs
to Hol (¢pg(Dy4)) and k(t, -, u(-))Q(:) € Lo(¢pr(Dyg)) for all t € [a, b]
and u € B. So with the aid of the DE-sinc quadrature formula, the
discrete DE-sinc operator is defined as:

N
KRE@®) =h Y k(t, 675, u(t?®))ebp(ih).

j=—N

In this case, uY¥(¢) is found from collocating

(3.5) ~h Z k(17 F u(tP ) @b (ih) = g(1),
j=—N
at the DE-sinc quadrature points

Finally, the DE-sinc Nystrom solution
N
ugP() =h Y kP ut??)epp(ih) + 9(b),
j=—N

can be determined by a nonlinear system with the unknown coefficient
uRE(tPE) for i = —N,...,N. Equation (3.5) can be rewritten in
operator form as follows:

(3.6) (I — KREYURE = g.
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Similar to the SE-case, (KRE)(u) and (K{F)”(u) are defined as
follows:

N

(KREY () =h 3kt tPP, u(tPP)) gy ()2 (tPP),
j=—N

and
(KR®)" (u) (2, y)(t)

N
=h > k(62T ut? ) p (Gt P )y F).
j=—N

4. Convergence analysis.

4.1. Sinc Nystrom method. The convergence of the two sinc
Nystrom methods which was introduced in the previous sections is
discussed in the present section. We first consider the SE-case. For
the following lemma, D represents either ¢sg(Dqg) or wpr(D4). In
this lemma, the sufficient conditions to have a completely continuous
operator have been investigated.

Lemma 4.1 [23]. Let the kernel k(t,s,u) be continuous and have
a continuous partial derivative (0k(t,s,w))/(0u) for all t,s € D and
u € B. Then K : X — X is a completely continuous operator and is
differentiable at each point of B.

Our basic assumption is that (1.1) has an analytic solution. The
sufficient conditions to have such a solution have been mentioned in
[23, page 83]. We presume that those conditions are satisfied here.
Our idea for deriving the order of convergence is based on collectively
compact operator theory [1]. For ease of reference, the following
required conditions are mentioned from [3, 42].

Ci. {K3F : N > 1} is a collectively compact family on X.

C2. K3F is pointwise convergent to K on X.
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C3. For N > 1, IC%E possesses continuous first and bounded second
Fréchet derivatives on 8. Moreover,

I(ERP)"|| < a < oo,

where « is a constant.

It is more convenient to rewrite the quadrature rule defined in
Theorem 2.2 in the following notation. Let Q3F : X — R be a discrete
operator defined by

N
(4.1) QS =h ) ft5F)esp(ih),
j=—N

and let @ : X — R be an integral operator defined by Qf =
f; f(t)dt. Kress et al. in [24] have concluded from Steklov’s theorem
that Q3F f — Qf for all f € Cla,b]. Additionally, it is easily proved
by the Banach-Steinhaus theorem that Q3¥ is uniformly bounded [34].
Now, the following theorem is stated to prove that K3F satisfies the
conditions C;-Cs.

Theorem 4.2. Assume that k(t,-,u(-))Q(-) € Lalese(Dq)) for
0 <d <7 and kyyu(t, s,u) is continuous for all t,s € [a,b] and u € B.
Then the conditions C1-Cs are fulfilled.

Proof. From the continuity of the kernel and the above discussion,
the family
S ={K3Fu|N>1, uc B}

is uniformly bounded. Furthermore, note that the function k(¢,s,u)
is uniformly continuous on [a,b] X [a,b] x B, and therefore we can
conclude from the uniform boundedness of Q3F that S is a family
of equicontinuous functions. So C; follows from the Arzela-Ascoli
theorem.

Due to Theorem 2.2 and the relevant discussion to (4.1), the condition
Cs holds. By considering (3.4) on 98 and the continuity of k. (¢, s, u),
C3 is easily concluded. O

Lemma 4.3. Let I — K'(u*) be nonsingular and the assumptions of
Theorem 4.2 fulfilled. Then for sufficiently large N, the linear operators
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I — (K3F) (u*) are nonsingular; furthermore,
17 = (CRP) ()~ < M,

where M is a constant independent of N.

Proof. Condition Cj is satisfied and {K3F(u*) | N > Ny} is equid-
ifferentiable. Therefore, according to [1, Theorem 6.10], {(K3F) (u) |
N > Ni} is a collectively compact family of operators. Moreover,
from conditions C;, C2 and Theorem 6.11 of [1], we can conclude that
(K3F) (u) is pointwise convergent to K'(u) for all u € B. So, the final
result has been obtained from the existence of (I — K'(u*))~! and the
theory of collectively compact operators. O

Now we are ready to formulate the main result.

Theorem 4.4. Suppose that the assumptions of Lemma 4.3 hold.
Then there exists a positive integer N1 such that, for all N > Ny, (3.3)
has a unique solution u%E € X. Furthermore, there exists a constant
C independent of N such that

|u* — u3F|| < Cexp(—VmdaN).

Proof. By subtracting (1.1) from (3.3) and adding the term K'(u*)(u*—
u%E ) on both sides, the following term has been obtained

(42) (I —(KRP) (") (u" —uiF)
= K(u*) = KR (w) = [KRF (urf) = KRF () = (KRF) (w*) (urf —u®)].
By applying || - || on both sides of (4.2) and Lemma 4.3, we achieve the
following relation
lu* = uif || < M{|IK(u") = K3F (u)]
+[ICRP () — KRF (") — (CRF) (u") (R —u)|[}-
The second term on the right-hand side has been bounded by the term

(1/2)alju* — u3F||? by condition Cs, and the finite result has been
obtained from Theorem 2.2. O
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The conditions C1—Cs can be defined for the DE-case by replacing
the SE-transformation ¢gr with DE-transformation ¢pg. Also, the
DE-discrete operator QY can be defined by

N
QR =h Y F(t7P)ebr(ih).
j=—N
We assume 0 < d < (7/2) in Theorem 4.2; then similar conclusions
are achieved for the DE-case. The proof of the similar theorems goes
almost in the same way as in the SE-case. Consequently, we refrain
from going into details and only state the final theorem.

Theorem 4.5. Suppose that the same hypotheses of Lemma 4.3
are satisfied for the DE case. Then there exists a positive integer Ny
such that, for all N > Np, (3.6) has a unique solution uRF € X.
Furthermore, there exists a constant C independent of N such that

—2ndN )

* __ . DE < o anmr
lu” = un™l < Cexp (10g(2dN/a)

4.2. Sinc collocation method. The application of the sinc col-
location method for nonlinear Fredholm integral equations has been
discussed in [31]. That application is actually the discrete sinc collo-
cation method. In this section we are trying to give an error bound to
the mentioned method based on the sinc Nystrom method. In [5, sub-
section 4.3], the iterated discrete collocation has been discussed where
the integration nodes belong to the set of the collocation points, as
it happens in the discrete sinc collocation method. As the following
theorem shows, in this case, the iterated discrete collocation method is
the Nystrom method.

Theorem 4.6 [6]. Suppose that the hypotheses of Lemma 4.3 are
fulfilled.  Furthermore, let u* be an isolated solution of (1.1). Then
the iterated discrete sinc collocation method coincides with the sinc
Nystrém method u — K3Fu = g.

It is more convenient to introduce the notations z3¥ for the discrete
sinc collocation solution and Z3F for the iterated discrete sinc collo-
cation solution. In the following, we mention some theorems related
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to the SE-sinc and DE-sinc collocation methods. Firstly, we state the
following lemma which is used subsequently.

Lemma 4.7 [36]. Let h > 0. Then it holds that:
N+1

sup 318G B (@) < 2(3+ log(N +1).
zGR_N_l ™

Based on Lemma 4.7 it may be seen that |PYF|| < Csglog(N + 1)
and |PRF| < Cpglog(N + 1) where Csg and Cpg are constants
independent of N.

The following theorem gives us an error bound for the sinc interpo-
lation.

Theorem 4.8 [36]. Let f € Lo(pse(D)) for d with 0 < d < 7.
Suppose that N is a positive integer, and h is given by the formula

h = +/(md)/(aN). Then there exists a constant C independent of N,
such that
N

Hf(t)—lz Flosa(h)SG. h><¢SE<t>>Hscmexp(—m).

=—N

A similar theorem for the DE-case can be stated as follows.

Theorem 4.9 [39]. Let f € Lo(epr(Da)) for d with 0 < d < (7/2),
let N be a positive integer and let h be selected by the formula h =
[log(2dN/a)]/N. Then there exists a constant C which is independent
of N, such that

Hf(t) - éij«oDEUh))S(j, h)(asDE(t))H <o (I )

The SE and DE-sinc interpolation operators P3¥ and PLF which are
utilized in [31] are considered. The following relation is easily proved:

(4.3) u* — 28 = [u* — PyEu] + PYE[u* — ZF).
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Now we are ready to state the main result of this section.

Theorem 4.10. Let the hypotheses of Theorem 4.8 for the SE-case
and Theorem 4.9 for the DE-case and Theorem 4.6 be fulfilled. Then
the following error bound holds for the SE-sinc and DE-sinc collocation
methods, respectively,

|u* — 25F| < VNlog(N + 1) exp (—\/wdaN) ,

—mdN )

*— 2PE| <log(N +1 —_—
Ju” = =R < los(N + D exp (s

Proof. By applying || - || on both sides of (4.3), the following relation
has been obtained

lu* = 2RI < flu* = PREw | + PP Nlu* — 237 ;

the first term of the right side and the interpolation operator can
be bounded by Theorem 4.8 and Lemma 4.7, respectively. So, the
final result can be concluded from Theorems 4.4 and 4.6. The second
inequality has been investigated in a similar way. i

5. Numerical experiments. In this section, the theoretical
results of the previous sections are used for some numerical examples.
The numerical experiments are implemented in Mathematica 7. The
programs are executed on a PC with 2.00 GHz Intel Core 2 dual
processor with 2 GB RAM. In order to analyze the error of the method
the following notations are introduced:

€max = Max {|u(tl) —un(t;)] : t; = 1000 =101 )1000}

and emax approximate ||u — un||oo. For the solution of the nonlinear
system which arises in the formulation of the methods, one may use
the steepest descent method, the Newton method or a mathematical
software package. In our experiments we have used Mathematica’s
routine FindRoot. This routine needs an initial guess to solve the
nonlinear systems. If the initial guess is selected badly, this routine
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may fail to converge to the desired solution. In these examples, an
initial point is selected by the steepest descent method [9]. As we
saw in Section 4, the convergence of the two methods depends on two
parameters: « and d. In fact, the parameter d indicates the size of the
holomorphic domain of u, and « is the order of the Holder constant of
kQ [33]. So, due to the smoothness of the kernels, it is assumed that
a = 1 for all examples. The important parameter d values are 3.14
and 1.57 for the SE-sinc and DE-sinc methods, respectively. epax is
reported for N = 10(10) 100. In table form, we present the computing
time TxE and THF measured in seconds when SE-sinc and DE-sinc are
used, respectively. Additionally, SESN and DESN are the abbreviations
for Single Exponential Sinc Nystrom and Double Exponential Sinc
Nystrém methods, respectively. These tables and figures show that,
by increasing N, the error is reduced significantly. As expected, the
results show that the convergence rate of the DE-sinc Nystrom method
is much faster than the SE-sinc scheme.

Example 5.1. The following Urysohn integral equation is considered

(5.1) ult) — / thiju(s)zgu), te o1,

where ¢(t) is chosen so that u*(t) = cos(0.37t) is a solution of (5.1).
This equation has been solved in [29] by three algorithms based on the
multigrid method. Table 1 shows the error results achieved for the SE
and DE-sinc Nystrom methods.

Example 5.2. In this example, we consider solving the equation

1
u(t) — /0 sin(7(t + s))u’(s) ds = sin(wt) — % cos(mt),

t € [0,1].

The equation has an isolated solution u*(t) = sin(nt).
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TABLE 1. Numerical results for Example 5.1.

N  SESN Method T3¥ DESN Method TRF

10 6.83E — 06 23.963 1.91E - 11 23.978
20 1.24E — 08 24.195 2.77E — 16 24.539
30 2.33E-10 24.757 2.77E - 16 24.897
40 1.21E-11 25.351 2.22E - 16 25.069
50 6.71E — 13 25.974 2.77E - 16 24.741
60 431E—-14 26.692 2.22E - 16 25.958
70 3.33E—-15 27.566 2.77E - 16 27.253
80 4.44E — 16 28.502 3.33E - 16 27.097
90 2.22E - 16 29.312 2.77E — 16 28.173
100 2.77E — 16 30.124 2.77TE — 16 29.437

TABLE 2. Numerical results for Example 5.2.

N SESN Method TSP DESN Method T2F
10 243E-02 0951 985E—03  0.920
20 1.05E—03 1124 556E—06  0.701
30 7ITE—05 1373 259E—09  1.373
40  652E-06 1.700 343E—13  1.700
50 723E—07 1.919 222E—15  1.919
60 941E—08 2543 1.81E—15  2.543
70 138E—08 2480 1.66E—15  2.480
80 226E—09 3682 181E—15  3.682
90 403E—10 4550 2.22E—15  4.055
100 7.74E—11 4524 222E—15 4524
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FIGURE 1. The SE and DE-sinc Nystrom results for Example 5.3.
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FIGURE 2. The SE and DE-sinc Nystrom results for Example 5.5.

This equation has been approximated by the Multilevel Augmenta-
tion Method (MAM) based on collocation and Galerkin methods via
the piecewise linear polynomial basis in [11]. By comparing the results
of Table 2 with Tables 6.1 and 6.4 of [11], we can conclude that the SE
and DE-results are better than the MAM results. However, the MAM
is applicable for a larger class of functions.
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Example 5.3. In this example, we apply the methods to the
following nonlinear Fredholm integral equation of the second kind:

u(t) - 11—6 /0 [(1+4) s sinu(s)) + u2(s)] ds

1+1¢ 1
—W(l—cos(l))—%, tE[O,l]

The equation has an isolated solution u*(t) = t2. This example has
been mentioned in [10] where the author tried to extend the MAM for
the Urysohn integral equation. By comparing the results of Table 1 in

[10] and Figure 2, we can claim that the SE and DE-sinc methods have
better results.

=2

Example 5.4. Consider

! ds
u(t) _/o st as) =g(t), tel0,1],

with ¢(t) chosen so that w*(t) = 1/(1+¢). This Urysohn integral
equation was introduced and solved in [8] by projection and iterated
projection methods. Tables 1 and 2 in [8] report the Galerkin and
iterated Galerkin solutions based on a piecewise polynomial space.
Table 3 shows the SE and DE-sinc Nystrom results.

TABLE 3. Numerical results for Example 5.4.

N  SESN Method TSE DESN Method TR

10 167E—05 22791 4.19E—-06  23.556
20  3.0lE—07 24493 20lE—10  24.493
30 8T76E—09 24866 2.02E—14  25.069
40  263E—10 26301  4.44E—16  24.227
50  7.59E—12 25506  4.44E—16  25.427
60 754E—13 25788  444E—16  27.112
70  161E—13 26052 444E—16  27.238
80  246E—14  27.503 6.66E—16  31.574
90  377E—15  28.346  4.44E—16  32.258
100 111E—15 28782 444E—16  37.643
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TABLE 4. Numerical results for Example 5.6.

N SESN Method TSP DESN Method T2F
10 335E—-05 0297 438E—07 0.343
20 18E—07 0389 414E—13 0437
30 334E—09 0578 11IE—16 0453
40 1.08E—10 0.748 1.11E—16  0.500
50 522E—12 0891 1.11IE—16  0.733
60 331E—13 1405 1.11E—16  0.718
70 259E—14  1.419  0.00E—00  1.935
80 244E—15 1.825  0.00E—00  2.901
90 222E-16 2153  0.00E—00  4.352
100 1.11E—16 2558 0.00E—00  5.382

Example 5.5. For the following nonlinear Fredholm integral equa-
tion

U 45+ mwsin(rs) B T
u(t) — t/o Pt 11 ds = —2tlog(3) + sm(§t), t €[0,1].

The exact solution is u*(¢) = sin((w/2)t). The numerical results are
shown in Figure 2.

Example 5.6. We consider the following integral equation

u(t) —l—/o gcos(u(s)) ds=t, te€]0,1],

introduced by Doéring in [13]. Its exact solution is u*(t) = qt, where q
is a solution of the nonlinear equation

2t? — 2t + sin(t) = 0.

In [2] the Chebyshev-Newton Type Method (CNTM) is considered.
This method constructs a family of iterative processes free of deriva-
tives, such as the classic secant method. By comparing Table 4 with
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Table 2 in [2], it is concluded that the presented methods are as efficient
as the CNTM.

Example 5.7. The final example is the following integral equation:
1
u(t) — / sin(s + t) arctan(u(s))ds = g(t), t€[0,1],
0

where ¢(t) is chosen so that the isolated solution is u(t) = exp(t).
Table 5 reports the SE and DE-sinc Nystrom solutions. This nonlinear
equation has been approximated in [18] by the wavelet collocation
method. Table 9 in [18] represents the full and fast collocation solutions
and full and fast multilevel solutions. Comparison of that table and
Table 5 shows that the error of the sinc Nystrom methods is lower.

6. Conclusion. Finding exact solutions for nonlinear Fredholm in-
tegral equations is often not possible. So approximating these solutions
is very important. Many authors have proposed different methods. In
this research, two numerical methods based on sinc quadrature, the
SE-sinc and DE-sinc Nystréom methods have been suggested. It has
been shown theoretically and numerically that both schemes are ex-
tremely accurate and achieve exponential convergence with respect to

TABLE 5. Numerical results for Example 5.7.

N  SESN Method TﬁE DESN Method T]{?E

10 1.64E — 04 17.297 6.74E — 06 17.675
20 1.35E — 06 17.566 1.23E — 10 17.455
30 3.22E — 08 17.847 7.32E — 15 17.894
40 1.36E — 09 17.752 2.55E — 15 17.596
50 8.31E — 11 18.302 2.33E—-15 17.893
60 6.61E — 12 18.142 2.55E — 15 18.471
70 6.44E — 13 18.564 2.44E — 15 20.063
80 7.56E — 14 19.204 2.33E — 15 22.136
90 1.18E — 14 19.484 2.33E — 15 23.259
100 3.7TE—15 20.031 2.33E — 15 25.257
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N. These two methods have some strengths and weaknesses. In com-
parison with each other, as the theorems show, it is understood that
the SE-sinc quadrature formulas are applicable to larger classes of func-
tions than the DE-sinc quadrature formulas, whereas the DE-sinc for-
mula are more efficient for well-behaved functions. In comparison with
other methods, for example, the MAM and CNTM, their advantage is
exponential convergence of approximate solution.

Acknowledgments. We are greatly indebted to Professor Eber-
hard Schock (Technical University of Kaiserslautern) for the helpful
discussions and remarks.
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