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ABSTRACT. This article analyzes the existence and ap-
proximation of solutions to initial value problems for nonlin-
ear fractional differential equations of arbitrary order. Sev-
eral new approaches are furnished in the environment of frac-
tional differential equations, such as the sequential technique
of Cauchy-Peano and the Leray-Schauder topological degree.
In addition, some well-known ideas are optimized in the con-
text of Banach’s fixed-point theorem. A general version of
Gronwall’s inequality is also established. A recurring theme
throughout the work is the incorporation of desirable quali-
ties of the classical Mittag-Leffler function. A YouTube video
presentation by the author designed to complement this work
is available at http://tinyurl.com/Tisdell-JIEA.

1. Introduction. This article explores the existence and approx-
imation of solutions to the following initial value problem (IVP) of
arbitrary order q > 0

Dq
(
x− T�q�−1[x]

)
(t) = f(t, x(t));(1.1)

x(0) = A0, x′(0) = A1, . . . , x(�q�−1)(0) = A�q�−1;(1.2)

where �q� is the integer such that q − 1 < �q� ≤ q; Dq represents the
Riemann-Liouville fractional differentiation operator of arbitrary order
q > 0 (a full definition is given in (2.2) a little later); f : [0, a]×D ⊂
R2 → R; T�q�−1[x] is the Maclaurin polynomial of order �q� − 1 of
x = x(t); a > 0 and the Ai are constants.
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The left-hand side of (1.1) is known as the Caputo derivative of
x of order q > 0 with the notation CDq(x) := Dq(x − T�q�−1[x])
sometimes used. Note that the classical derivatives of the function
x (from order zero to order �q� − 1 each at t = 0) appear in (1.1) and
(1.2). This particular form was suggested by Caputo [3] in response
to a need for improved accuracy in modeling the initial conditions of
phenomena. It seems that equations whose initial conditions feature
derivatives of integer order are more useful for practical purposes than
initial conditions featuring derivatives of fractional order, which may
be unavailable or whose physical meaning may be rather vague.

Early contributions to the qualitative analysis of the solutions to
the nonlinear IVP (1.1), (1.2) appear in [6], where some foundational
results on the existence, uniqueness and approximation of solutions
can be found. In the spirit of [6], several papers such as [20 22]
and the monographs [5] and [18, subsection 3.5, pages 198 212] have
presented additional results for solutions to (1.1) and (1.2). The
methods employed in the above works may be summarized as: the
sequential technique of successive approximations also known as Picard
iterations, and the classical fixed-point approaches of Banach and
Schauder.

In contrast to the works [6, 18, 20 22], the approach herein in-
volves: the sequential techniques of Cauchy-Peano type and the Leray-
Schauder topological degree. Several results herein address remarks
in the recent monograph [5]. In this way, the methods complement
those already in the literature. Consequently, the results in this article
contribute additional foundational knowledge to the field of nonlinear
IVPs for fractional differential equations.

In accord with [6, 18, 20 22] (and partially motivated by them) Ba-
nach’s fixed-point theorem and successive approximations are invoked
in some places herein, but in novel ways. For example, a new met-
ric is defined in the fractional differential equation environment which
greatly simplifies the application of Banach’s theorem for existence and
uniqueness proofs and also gives a nice evaluation for the convergence
of the iterations. In addition, a new example in the fractional differen-
tial equation setting is furnished which illustrates that the continuity of
the right-hand side of (1.1) is insufficient to ensure the convergence of
the successive approximations. Furthermore, the idea of “enveloping”
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of solutions via successive approximations and monotone iterations is
discussed.

A guiding principle in the writing of this paper has been to incorpo-
rate desirable elements of the Mittag-Leffler function into the working
and results, where possible. For example, the Mittag-Leffler function
appears in some Gronwall-Bellman type inequalities and also in the
definition of a new metric. Although the Mittag-Leffler function has
been studied in great detail [11, Chapter 16], [15, 25, 26], [29, Chap-
ter 1] it appears that its rich potential has yet to be fully realized in
the qualitative analysis of solutions to the IVP (1.1), (1.2).

Although fractional differential equations are centuries old, it is sur-
prising to discover that much of the basic qualitative and quantitative
foundational theory is yet to be fully developed. Such ideas of existence
and approximation of solutions would form the bedrock to underpin ad-
vanced studies in the area, especially with respect to applications, and
thus appear to be of significant interest. Indeed, this is one of the aims
of this paper.

2. Preliminaries. To understand the notation used throughout and
to keep the paper somewhat self-contained, this section contains some
preliminary definitions and associated notation.

A solution to the IVP (1.1), (1.2) on an interval I is defined to be a
q-th (fractionally)-differentiable function x : I ⊆ [0, a] → R such that
the points (t, x(t)) lie in I ×D for all t ∈ I and x(t) satisfying (1.1) for
all t ∈ I, and (1.2).

Instead of directly dealing with problem (1.1), (1.2) the analysis will
often involve an equivalent integral equation, as these equations are of
a more tractable nature. The following lemma is fundamental to the
ideas in this work.

Lemma 2.1. If f : [0, a] × D ⊂ R2 → R is continuous, then the
initial value problem (1.1), (1.2) is equivalent to the integral equation

(2.1) x(t) =

�q�−1∑
i=0

Ait
i

i!
+

1

Γ(q)

∫ t

0

(t− s)q−1f(s, x(s)) ds, t ∈ [0, a].
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Proof. This result is well known, but a proof is included for com-
pleteness and so that some basic notation may also be introduced in
an optimal manner. Define the Riemann-Liouville fractional derivative
and integral of order q > 0 of a function y, respectively, by:

(2.2)

Dqy(t) :=
d�q�

dt�q�
1

Γ(�q� − q)

∫ t

0

(t− s)�q�−1−qy(s) ds;

Iqy(t) :=
1

Γ(q)

∫ t

0

(t− s)q−1y(s) ds

with the Caputo derivative defined via

CDqy(t) := Dq
(
y − T�q�−1[y]

)
(t).

If x is a solution to (2.1) on [0, a], then from direct differentiation and
substitution into (2.1) we have

x(0) = A0, . . . , x
(�q�−1)(0) = A�q�−1.

For all t ∈ [0, a], we then have

x(t) =

�q�−1∑
i=0

Ait
i

i!
+

1

Γ(q)

∫ t

0

(t− s)q−1f(s, x(s))) ds

=

�q�−1∑
i=0

xi(0)t
i

i!
+ Iq (f(·, x(·)) (t).

Thus, a rearrangement and application of CDq to both sides yields for
all t ∈ [0, a] we have

CDq(x)(t) := Dq

(
x−

�q�−1∑
i=0

xi(0)t
i

i!

)
(t)

= Dq (Iq(f(·, x(·)))) (t)
= f(t, x(t)),

where we have used the identity Dq[Iq(y(t))] = y(t) from [17, (1.7),
page 153] or, equivalently, CDq[Iq(y(t))] = y(t) from [18, (2.4.38), page
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96]. Thus, every solution to (2.1) on [0, a] is also a solution to (1.1)
and (1.2) on [0, a].

Now let x be a solution to (1.1), (1.2) on [0, a]. By applying Iq to
both sides of (1.1) and using the identity from [18, (2.4.42), page 96],

namely, Iq[CDy(t)] = y(t)−∑�q�−1
i=0 y(i)(0)ti/i!, we obtain (2.1). Thus,

every solution to (1.1), (1.2) on [0, a] is also a solution to (2.1) on
[0, a].

An important theme of this work is to utilize the rich qualities of the
so called Mittag-Leffler function in a way that simplifies methods and
optimizes results. In the fractional calculus the Mittag-Leffler function
plays a similar role to that of the exponential function in classical
calculus. The Mittag-Leffler function of order q > 0 is defined and
denoted by

Eq(z) :=

∞∑
k=0

zk

Γ(qk + 1)
, z ∈ C,

and we shall be interested in the particular function

Eq(βt
q) :=

∞∑
k=0

(βtq)k

Γ(qk + 1)
, t ∈ [0, a] ⊂ R

where q > 0, and β > 0 is a constant.

A very important property in the context of this work is that Eq(βt
q)

is the unique solution to the initial value problem

CDqx(t) := Dq
(
x−T�q�−1[x]

)
(t) = βx(t),

x(0) = 1, x′(0) = 0, . . . , x�q�−1(0) = 0

for t ≥ 0.

3. Some inequalities and estimates. In this section a basic
fractional integral inequality is formulated that ensures a bound on the
function involved. The bound is in terms of the Mittag-Leffler function,
and such an idea might be considered as a fractional integral analogue
of the famous inequality of Gronwall, Bellman and Reid [1, 12], [31,
page 296] involving ordinary derivatives and integrals. The following
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lemma is an extension of [7, Lemma 4.3] (also see [8]) and will be
frequently applied in subsequent sections.

Lemma 3.1. Let A, B and C be non-negative constants, and let
ρ : [0, a] → [0,∞) be continuous. If

(3.1)
ρ(t) ≤ A+

1

Γ(q)

∫ t

0

(t− s)q−1[Bρ(s) + C] ds,

for all t ∈ [0, a],

then for all t ∈ [0, a], we have

(3.2) ρ(t) ≤
{
AEq(Btq) + (C/B) [Eq(Btq)− 1] for B > 0;

A+ (Ctq)/(Γ(q + 1)) for B = 0.

Proof. The proof follows that of [7, Lemma 4.3]. Case B > 0: Let
ε > 0, and define the function
(3.3)

φ(t) := ε+A+
1

Γ(q)

∫ t

0

(t− s)q−1[Bφ(s) + C] ds, for all t ∈ [0, a].

Note that (3.3) has the solution

φ(t) =

(
ε+A+

C

B

)
Eq(Btq)− C

B
, t ∈ [0, a].

From (3.1) we have ρ(0) ≤ A, and from (3.3) we have φ(0) = A + ε
and thus 0 ≤ ρ(0) < φ(0). We claim that ρ < φ on [0, a]. Argue by
contradiction and assume that there is a t0 ∈ [0, a] such that

ρ(t) < φ(t), for all t ∈ [0, t0), and ρ(t0) = φ(t0)

(such a t0 exists by the continuity of the functions involved and the
intermediate value theorem). Thus, ρ ≤ φ on [0, t0] and

ρ(t0) ≤ A+
1

Γ(q)

∫ t0

0

(t0 − s)q−1[Bρ(s) + C] ds

≤ A+
1

Γ(q)

∫ t0

0

(t0 − s)q−1[Bφ(s) + C] ds

< ε+A+
1

Γ(q)

∫ t0

0

(t0 − s)q−1[Bφ(s) + C] ds = φ(t0),

and we have a contradiction to ρ(t0) = φ(t0).
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Thus, for all t ∈ [0, a], we must have

(3.4) ρ(t) < φ(t) =

(
ε+A+

C

B

)
Eq(Btq)− C

B
.

Now since the inequality in (3.4) holds for all ε > 0, we obtain

(3.5) ρ(t) ≤ AEq(Btq) +
C

B
[Eq(Btq)− 1] , for all t ∈ [0, a].

Case B = 0: Inequality (3.1) may be integrated directly to obtain
(3.2).

The following theorem gives some sufficient conditions under which
all possible solutions to the IVP (1.1), (1.2) are bounded uniformly on
[0, a]. The idea is known as an “a priori bound” as the solutions do
not need to be explicitly known in order to formulate this bound. This
idea will be used repeatedly in the sections that follow.

Theorem 3.2. Let K and K1 be non-negative constants. If x :
[0, a] → R has a continuous derivative of order q > 0 and

(3.6)
∣∣Dq

(
x− T�q�−1[x]

)
(t)

∣∣ ≤ K|x(t)|+K1, for all t ∈ [0, a],

then
(3.7)

|x(t)| ≤
⎧⎨
⎩

∑�q�−1
i=0

|x(i)(0)|ai

i! Eq(Ktq) + K1

K [Eq(Ktq)− 1] for K > 0;∑�q�−1
i=0

|x(i)(0)|ai

i! + K1t
q

Γ(q+1) for K = 0.

Proof. The basic idea of the proof is to apply Lemma 3.1.

For all t ∈ [0, a] we have

|x(t)|−∣∣T�q�−1[x](t)
∣∣ ≤|x(t)−T�q�−1[x](t)|=

∣∣Iq [Dq
(
x−T�q�−1[x]

)
(t)

]∣∣
=

∣∣∣∣ 1

Γ(q)

∫ t

0

(t− s)q−1Dq
(
x− T�q�−1[x]

)
(s) ds

∣∣∣∣
≤ 1

Γ(q)

∫ t

0

(t− s)q−1 [K|x(s)|+K1] ds,
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where we have used (3.6). Rearranging the above, we see that

|x(t)| ≤
�q�−1∑
i=0

|x(i)(0)|ai
i!

+
1

Γ(q)

∫ t

0

(t− s)q−1 [K|x(s)|+K1] ds,

for all t ∈ [0, a],

and so (3.1) holds with: ρ(t) = |x(t)|; A =
∑�q�−1

i=0 (|x(i)(0)|ai)/i!;
B = K; and C = K1, which, by Lemma 3.1, yields (3.7).

4. Cauchy-Peano approximate solution approach. The notion
of ε-approximate solution techniques for ordinary differential equations
seems to be attributed to Cauchy and Peano, dating back to the 19th
century. Roughly speaking, the approach first involves illustrating that
a sequence of approximate solutions to the equation under considera-
tion does exist; and secondly showing that there is a subsequence of
these approximate solutions that converges to an actual solution of the
problem.

In this section, the concept of an ε-approximate solution to (1.1),
(1.2) is introduced. The ideas are combined with sequential arguments
to form new existence and approximation results for solutions to (1.1),
(1.2).

A significant advantage of the ε-approximate solution approach over
fixed-point methods is that the arguments do not require a knowledge
of functional analysis. Rather, a milder prerequisite of uniform conver-
gence is all that is necessary.

Definition 4.1. Define a function x : [0, a] → R as an ε-approximate
integral-type solution to (1.1), (1.2) on [0, a] if:

(4.1)

x is continuous on [0, a];

f(s, x(s)) is continuous with respect to s ∈ [0, a];

∣∣∣∣x(t)−
�q�−1∑
i=0

Ait
i

i!
− 1

Γ(q)

∫ t

0

(t− s)q−1f(s, x(s)) ds

∣∣∣∣ ≤ ε,

for all t ∈ [0, a].
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In what follows, define and denote the infinite strip S ⊂ R by

S := {(t, p) : t ∈ [0, a], p ∈ R}.

The following result forms a theoretical basis for the results in this
section. It provides some (rather abstract) conditions under which
(1.1), (1.2) will admit at least one solution on [0, a].

Theorem 4.2. Let f : S → R be continuous, and let {εm}
be a sequence of positive constants such that εm → 0 as m → ∞.
If {xm} = {xm(t)} is a corresponding sequence of εm-approximate
integral-type solutions to (1.1), (1.2) on [0, a] for which there exist non-
negative constants K and K1 such that
(4.2)

|f(t, xm(t))| ≤ K|xm(t)|+K1, for all t ∈ [0, a] and m = 1, 2, . . . ,

then there exists a subsequence {xmk
} = {xmk

(t)} of {xm} (m1 < m2 <
· · · ) that converges uniformly to a solution x = x(t) of (1.1), (1.2) on
[0, a].

Proof. Let {xm} be a corresponding sequence of εm-approximate
integral-type solutions to (1.1), (1.2) on [0, a], and define the sequence
of functions {rm} = {rm(t)} for all t ∈ [0, a] via

(4.3)
xm(t) =

�q�−1∑
i=0

Ait
i

i!
+ rm(t) +

1

Γ(q)

∫ t

0

(t− s)q−1f(s, xm(s)) ds,

for all m = 1, 2, . . . .

Now, as f and each xm are continuous functions, it follows that each
rm is continuous on [0, a]. Furthermore, since each xm is an εm-
approximate integral-type solution, combining (4.1) and (4.3) we have
|rm(t)| ≤ εm for all t ∈ [0, a] and m = 1, 2, . . . .

Now, as εm converges to zero from above, we can choose a constant
γ > 0 such that εm ≤ γ for each m. Thus, for all t ∈ [0, a] and
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m = 1, 2, . . . , from (4.2) and (4.3) we have

|xm(t)| =
∣∣∣∣
�q�−1∑
i=0

Ait
i

i!
+ rm(t) +

1

Γ(q)

∫ t

0

(t− s)q−1f(s, xm(s)) ds

∣∣∣∣

≤
( �q�−1∑

i=0

Aia
i

i!
+ γ

)
+

1

Γ(q)

∫ t

0

(t− s)q−1 [K|xm(s)|+K1] ds.

Thus, for m = 1, 2, . . . , we have (3.1) holding with: ρ(t) = |xm(t)|;
A =

∑�q�−1
i=0 [(Aia

i)/i!] + γ; B = K and C = K1. Lemma 3.1 is
applicable, guaranteeing the existence of a constant v ≥ 0 such that
|xm(t)| ≤ v for all t ∈ [0, a] and m = 1, 2, . . . , where

(4.4) v :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
γ +

∑�q�−1
i=0

|x(i)(0)|ai

i!

)
Eq(Kaq)

+K1

K [Eq(Kaq)− 1] for K > 0;(
γ +

∑�q�−1
i=0

|x(i)(0)|ai

i!

)
+ K1a

q

Γ(q+1) for K = 0;

and thus {xm} is uniformly bounded by v on [0, a].

From (4.2) we now see that

(4.5)
|f(t, xm(t))| ≤ μ := Kv +K1,

for all t ∈ [0, a] and m = 1, 2, . . . .

Define the sequence of functions {zm} = {zm(t)} by

(4.6)
zm(t) :=

�q�−1∑
i=0

Ait
i

i!
+

1

Γ(q)

∫ t

0

(t− s)q−1f(s, xm(s)) ds,

for all t ∈ [0, a], m = 1, 2, . . . .

We thus have z
(i)
m (0) = Ai for m = 1, 2, . . . and each i = 0, . . . , �q�− 1.

Now (4.5) yields

|zm(t)| ≤
�q�−1∑
i=0

|Ai|ai
i!

+μ
aq

Γ(q + 1)
, for all t ∈ [0, a] and m = 1, 2, . . . .

Thus, the sequence zm is uniformly bounded on [0, a].
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We claim that {zm} is equicontinuous. For q ∈ (0, 1] and for
m = 1, 2, . . . and any t1, t2 ∈ [0, a] with t1 ≤ t2, (4.5) yields

|zm(t1)− zm(t2)|

=

∣∣∣∣ 1

Γ(q)

∫ t1

0

(t1 − s)q−1f(s, xm(s)) ds

− 1

Γ(q)

∫ t2

0

(t2 − s)q−1f(s, xm(s)) ds

∣∣∣∣
=

∣∣∣∣ 1

Γ(q)

∫ t1

0

[
(t1 − s)q−1 − (t2 − s)q−1

]
f(s, xm(s)) ds

− 1

Γ(q)

∫ t1

t2

(t2 − s)q−1f(s, xm(s)) ds

∣∣∣∣
≤ [2(t2 − t1)

q + tq1 − tq2]
μ

Γ(q + 1)

≤ 2(t2 − t1)
q μ

Γ(q + 1)
.

If q > 1, then the polynomial
∑�q�−1

i=0 (Ait
i)/i! has a continuous and

uniformly bounded derivative on [0, a] and, as such, there is a constant
L > 0 with

∣∣∣∣
�q�−1∑
i=0

Ait
i
1

i!
−

�q�−1∑
i=0

Ait
i
2

i!

∣∣∣∣ ≤ L|t1 − t2|.

Thus, for q > 1 and for m = 1, 2, . . . and for any t1, t2 ∈ [0, a] with
t1 ≤ t2, (4.5) yields

|zm(t1)− zm(t2)| =
∣∣∣∣
�q�−1∑
i=0

Ait
i
1

i!
−

�q�−1∑
i=0

Ait
i
2

i!

+
1

Γ(q)

∫ t1

0

(t1 − s)q−1f(s, xm(s)) ds

− 1

Γ(q)

∫ t2

0

(t2 − s)q−1f(s, xm(s)) ds

∣∣∣∣
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≤ L(t2 − t1)

+

∣∣∣∣ 1

Γ(q)

∫ t1

0

[
(t1 − s)q−1 − (t2 − s)q−1

]
f(s, xm(s)) ds

− 1

Γ(q)

∫ t1

t2

(t2 − s)q−1f(s, xm(s)) ds

∣∣∣∣
≤ L(t2 − t1) + [2(t2 − t1)

q + tq1 − tq2]
μ

Γ(q + 1)

≤ (t2 − t1)

(
L+ 2

μ

Γ(q + 1)

)
,

where we have assumed t2−t1 ≤ 1 and q > 1, yielding (t2−t1)
q ≤ t2−t1.

Now, given any ε1 > 0 we may choose δ1 = ε1min{1,Γ(q+1)/(LΓ(q+
1) + 2μ)} to ensure |zm(t1)− zm(t2)| < ε1 whenever t2 − t1 < δ1.

Thus, {zm} is uniformly bounded and equicontinuous on [0, a] and
the Arzela-Ascoli selection theorem [13, Selection theorem 2.3, page 4]
ensures that there is a subsequence {zmk

} of {zm} and a continuous
function x = x(t) such that zmk

tends uniformly to x on [0, a].

From (4.3) and (4.6), we see that

|xmk
(t)− zmk

(t)| ≤ |rmk
(t)|, for all t ∈ [0, a],

and since rm converges uniformly to zero on [0, a], it follows that xmk

converges uniformly to x on [0, a]. Now, since xm is uniformly bounded
by v on [0, a] we must have |x(t)| ≤ v for all t ∈ [0, a].

If we define the set Rv by

Rv := {(t, p) : t ∈ [0, a], |p| ≤ v}

then the uniform continuity of f on Rv yields

f(·, xmk
(·)) −→ f(·, x(·))

uniformly on [0, a] and so

lim
k→∞

∫ t

0

(t− s)q−1f(s, xmk
(s)) ds

=

∫ t

0

(t− s)q−1f(s, x(s)) ds, for all t ∈ [0, a].
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We conclude that x = x(t) satisfies

x(t) =

�q�−1∑
i=0

Ait
i

i!
+

1

Γ(q)

∫ t

0

(t− s)q−1f(s, x(s)) ds, for all t ∈ [0, a],

and so our limit function x is a solution to (1.1), (1.2) on [0, a].

Theorem 4.2 assumes the existence of certain ε-approximate solutions
to (1.1), (1.2). This condition, in isolation, may be challenging to verify
in practice. The following result furnishes easily-verifiable conditions
under which the conditions of Theorem 4.2 will hold.

Theorem 4.3. Let f : S → R be continuous. If there exist non-
negative constants K and K1 such that

(4.7) |f(t, p)| ≤ K|p|+K1, for all (t, p) ∈ S,

then for each ε > 0 there is a corresponding ε-approximate integral-
type solution to (1.1), (1.2) on [0, a] and, as such, there is a solution
x = x(t) to (1.1), (1.2) on [0, a].

Proof. For each ε > 0 we construct a corresponding ε-approximate
integral-type solution to (1.1), (1.2) on [0, a]. This ensures that we
can choose any sequence of positive constants {εm} such that εm → 0
as m → ∞ with {xm} = {xm(t)} a corresponding sequence of εm-
approximate integral-type solutions to (1.1), (1.2) on [0, a]. In view of
(4.7), we will see that (4.2) will hold and so, by Theorem 4.2, we will
see that (1.1), (1.2) will have at least one solution on [0, a].

Let δ > 0 be such that 0 < δ < a, and define the function x(t; δ) for
all t ∈ [0, a] as follows:

x(t; δ) :=

⎧⎪⎪⎨
⎪⎪⎩

∑�q�−1
i=0

Ait
i

i! for all t ∈ [0, δ];∑�q�−1
i=0

Ait
i

i!

+ 1
Γ(q)

∫ t−δ

0
(t− s)q−1f(s, x(s; δ)) ds for all t ∈ [δ, a].

Note that the continuity of f ensures that, for each δ > 0 and all
t ∈ [0, a], the function x(t; δ) is well defined and continuous for each
fixed δ > 0 and all t ∈ [0, a].
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We can show, in a similar manner as in the proof of Theorem 4.2, that
x(t; δ) is uniformly bounded on [0, a] by employing (4.7) and Lemma 3.1
to obtain |x(t; δ)| ≤ v for all t ∈ [0, a] with v defined in (4.4). Also,
(4.7) then leads to

|f(t, x(t; δ))| ≤ μ := Kv +K1, for all t ∈ [0, a].

Now if we define a function ζ(t; δ) for all t ∈ [0, a] by

ζ(t; δ) :=

{
0 for all t ∈ [0, δ];

t− δ for all t ∈ [δ, a];

then, for all t ∈ [0, a], we have: 0 ≤ ζ(t) − t ≤ δ; and

∣∣∣∣ 1

Γ(q)

∫ ζ(t)

t

(t− s)q−1f(s, x(s; δ)) ds

∣∣∣∣ ≤ μ
1

Γ(q)

∫ ζ(t)

t

(t− s)q−1 ds

= μ
[ζ(t) − t]q

Γ(q + 1)
≤ μ

δq

Γ(q + 1)
.

Thus, for all t ∈ [0, a], we have

∣∣∣∣x(t; δ)−
�q�−1∑
i=0

Ait
i

i!
− 1

Γ(q)

∫ t

0

(t− s)q−1f(s, x(s; δ)) ds

∣∣∣∣
=

∣∣∣∣ 1

Γ(q)

∫ ζ(t)

t

(t− s)q−1f(s, x(s; δ)) ds

∣∣∣∣ ≤ μ
δq

Γ(q + 1)
.

For any given ε > 0 if we choose δ such that

0 < δ < min

{
a,

[
εΓ(q + 1)

μ

]1/q}
,

then we have

μ
δq

Γ(q + 1)
< ε,

and so our x(t; δ) will be a corresponding ε-approximate integral-type
solution to (1.1), (1.2) on [0, a].
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Theorem 4.3 addresses [5, Remark 6.6]. The following example
illustrates the ideas of Theorem 4.3.

Example 4.4. Consider the IVP

Dq[x− x(0)] = t+ 2x sinx

x(0) = 1

with 0 < q ≤ 1. The IVP has at least one solution on [0, a] for each
a ∈ (0,∞).

Proof. In this example we have a special case of (1.1), (1.2) with:
f(t, p) = t+ p sin p and A = 1. If we choose S to be the strip

S := {(t, p) : t ∈ [0, a], p ∈ R},

then for all (t, p) ∈ S, we have

|f(t, p)| = |t+ 2p sin p|
≤ 2|p|+ a,

and so (4.7) holds with K = 2 and K1 = a. Furthermore, f : S → R
is continuous. Thus, Theorem 4.3 holds and the claim follows.

It would seem that, in general, the choice of a subsequence of the εm-
approximate integral-type solution {xm} in the proofs in the preceding
results is necessary. However, if it is known that there is, at most,
one solution to (1.1), (1.2) on [0, a], then under the conditions of
Theorem 4.3, every sequence of εm-approximate integral-type solutions
{xm} for which εm → 0 must converge uniformly to the solution of
(1.1), (1.2). If this is not the case, then there would be at least one
εm-approximate solution {xm} with εm → 0 which diverges at some
point t ∈ [0, a]. Thus, there are at least two subsequences of {xm}
which converge to distinct limit functions with both of these functions
being a solution to (1.1), (1.2) on [0, a]. However, this would contradict
the assumption of uniqueness.

The following definition is somewhat complementary to that of Defi-
nition 4.1.
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Definition 4.5. Define a function ϕ : [0, a] × D ⊆ R2 → R an
ε-approximate differential-type solution to (1.1) on [0, a] if:

Dq
(
ϕ− T�q�−1[ϕ]

)
is continuous on [0, a];

(t, ϕ(t)) ∈ [0, a]×D, for all t ∈ [0, a];∣∣Dq
(
ϕ− T�q�−1[ϕ]

)
(t)− f(t, ϕ(t))

∣∣ ≤ ε, for all t ∈ [0, a].

Remark 4.6. The definition of an ε-approximate differential-type
solution can be relaxed. For example, Dq(ϕ − T�q�−1[ϕ]) could have
simple discontinuities at a finite number of points W in [0, a], and
the final line of Definition 4.5 would then be relaxed to hold for all
t ∈ [0, a] − W . However, the simpler definition will suffice for our
requirements.

The following result gives an estimate on the difference of two ε-
approximate differential-type solutions to (1.1).

Theorem 4.7. Let f : [0, a]×D ⊆ R2 → R be continuous, and let
L > 0 be a constant such that

(4.8) |f(t, u)− f(t, v)| ≤ L|u− v|, for all (t, u), (t, v) ∈ [0, a]×D.

Let ϕ1 and ϕ2 be, respectively, ε1- and ε2-approximate differential-type
solutions to (1.1) on [0, a]. If δ ≥ 0 is a constant such that

∣∣∣∣
�q�−1∑
k=0

(
ϕ
(k)
1 (0)− ϕ

(k)
2 (0)

) tk

k!

∣∣∣∣ ≤ δ, for all t ∈ [0, a],

then ϕ1 and ϕ2 satisfy

(4.9) |ϕ1(t)− ϕ2(t)| ≤ δEq(Lt
q) +

ε1 + ε2
L

[Eq(Lt
q)− 1] ,

for all t ∈ [0, a].

Proof. Since each ϕi is, respectively, an εi-approximate differential-
type solution to (1.1), we have

(4.10) |Dq
(
ϕi − T�q�−1[ϕ]

)
(t)− f(t, ϕi(t))| ≤ εi, for all t ∈ [0, a]
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for i = 1, 2. Thus, applying Iq to both sides of (4.10) for i = 1, 2, we
obtain

(4.11)
∣∣∣ϕi(t)−

�q�−1∑
k=0

ϕ
(k)
i (0)tk

k!
− 1

Γ(q)

∫ t

0

(t− s)q−1f(s, ϕi(s)) ds
∣∣∣

≤ εit
q

Γ(q + 1)
, for all t ∈ [0, a].

Adding together the two inequalities contained in (4.11) and using the
inequality |α− β| ≤ |α|+ |β|, we obtain

(4.12)

∣∣∣∣(ϕ1(t)− ϕ2(t)) −
( �q�−1∑

k=0

ϕ
(k)
1 (0)tk

k!
−

�q�−1∑
k=0

ϕ
(k)
2 (0)tk

k!

)

− 1

Γ(q)

∫ t

0

(t− s)q−1 [f(s, ϕ1(s))− f(s, ϕ2(s))] ds

∣∣∣∣
≤ (ε1 + ε2)t

q

Γ(q + 1)
, for all t ∈ [0, a].

Now let
ρ(t) := |ϕ1(t)− ϕ2(t)|, for all t ∈ [0, a].

Substitution of ρ into (4.12) coupled with a rearrangement and use of
the inequality |α| − |β| ≤ |α− β| then gives for all t ∈ [0, a]

ρ(t) ≤
∣∣∣∣
�q�−1∑
k=0

ϕ
(k)
1 (0)tk

k!
−

�q�−1∑
k=0

ϕ
(k)
2 (0)tk

k!

∣∣∣∣
+

1

Γ(q)

∫ t

0

(t− s)q−1|f(s, ϕ1(s))− f(s, ϕ2(s))| ds + (ε1 + ε2)t
q

Γ(q + 1)

≤ δ +
1

Γ(q)

∫ t

0

(t− s)q−1Lρ(s) ds+
(ε1 + ε2)t

q

Γ(q + 1)

= δ +
1

Γ(q)

∫ t

0

(t− s)q−1 [Lρ(s) + (ε1 + ε2)] ds,

where we have used (4.8). An application of Lemma 3.1 then yields the
bound (4.9).
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Remark 4.8. Theorem 4.7 is the best possible in the sense that equal-
ity can be attained in (4.9) for nontrivial functions ϕ1, ϕ2. Consider,
for 0 < q ≤ 1, the differential equation

Dq (x− x(0)) = Lx, L > 0,

and let ϕ1, ϕ2, respectively, satisfy

Dq (ϕ1 − ϕ1(0)) = Lϕ1 − ε1, ϕ1(0) = b1;

Dq (ϕ2 − ϕ2(0)) = Lϕ2 + ε2, ϕ2(0) = b2;

with b1 ≤ b2. The above linear equations have solutions

ϕ1(t) =
ε1
L

+

(
b1 − ε1

L

)
Eq(Lt

q)

ϕ2(t) = −ε2
L

+

(
b2 +

ε2
L

)
Eq(Lt

q)

which satisfy

|ϕ1(t)− ϕ2(t)| = ε1 + ε2
L

[Eq(Lt
q)− 1] + (b2 − b1)Eq(Lt

q),

for all t ∈ [0, a] and so we have equality in (4.9).

Remark 4.9. If ϕ1 is an actual solution to (1.1), then ε1 = 0 in (4.9).
Thus, under the conditions of Theorem 4.7, it follows that ϕ2 → ϕ1 as
ε2 → 0 and δ → 0.

Let D ⊆ R, and let f, g : [0, a]×D → R. Consider the two IVPs

Dq
(
x− T�q�−1[x]

)
(t) = f(t, x(t)), x(i)(0) = αi;(4.13)

Dq
(
x− T�q�−1[x]

)
(t) = g(t, x(t)), x(i)(0) = βi,(4.14)

i = 0, . . . , �q� − 1, where αi and βi are constants such that each αi,
βi ∈ D. The following result (related to [6, Theorems 3.2, 3.3]) relates
the solutions of (4.13) and (4.14) in the sense that: if f is close to g,
and if each αi is close to each corresponding βi, then the solutions to
the two problems are also close together.
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Theorem 4.10. Let f , g : [0, a] × D → R, and that assume there
exist constants L > 0, ε ≥ 0 and δ ≥ 0 such that

|f(t, p)− f(t, q)| ≤ L|p− q|, for all (t, p), (t, q) ∈ [0, a]×D;

|f(t, p)− g(t, p)| ≤ ε, for all (t, p) ∈ [0, a]×D;
∣∣∣∣
�q�−1∑
i=0

(αi − βi)
ti

i!

∣∣∣∣ ≤ δ, for all t ∈ [0, a].

If x1 and x2 are, respectively, solutions to (4.13) and (4.14) such that
each (t, xi(t)) ∈ [0, a]×D for all t ∈ [0, a], then

(4.15) |x1(t)−x2(t)| ≤ δEq(Lt
q)+

ε

L
[Eq(Lt

q)− 1] , for all t ∈ [0, a].

Proof. For each t ∈ [0, a], consider

ρ(t) := |x1(t)− x2(t)|

=

∣∣∣∣
�q�−1∑
i=0

(αi − βi)
ti

i!

+
1

Γ(q)

∫ t

0

(t− s)q−1[f(s, x1(s))− g(s, x2(s))] ds

∣∣∣∣
≤ δ +

∣∣∣∣ 1

Γ(q)

∫ t

0

(t− s)q−1[f(s, x1(s)) − f(s, x2(s))

+ f(s, x2(s))− g(s, x2(s))] ds

∣∣∣∣
≤ δ +

1

Γ(q)

∫ t

0

(t− s)q−1|f(s, x1(s))− f(s, x2(s))| ds

+
1

Γ(q)

∫ t

0

(t− s)q−1|f(s, x2(s))− g(s, x2(s))| ds

≤ δ +
1

Γ(q)

∫ t

0

(t− s)q−1Lρ(s) ds+
εtq

Γ(q + 1)
.

We can now apply Lemma 3.1 above to obtain (4.15).

Now consider (1.1), (1.2) together with the sequence of problems for
i = 0, . . . , �q� − 1
(4.16)

Dq
(
x− T�q�−1[x]

)
(t) = gk(t, x(t)), x(i)(0) = Ai,k, k = 1, 2, . . .
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where gk and Ai,k are sequences (in k) with each gk being continuous
on [0, a]×D and each A0,k ∈ D . As a corollary to Theorem 4.10, the
following result assures solutions to (4.16) will converge to solutions to
(1.1), (1.2).

Corollary 4.11. Let f and each gk be continuous on [0, a] × D.
Furthermore, let f and each gk satisfy

|f(t, p)− f(t, q)| ≤ L|p− q| for all (t, p), (t, q) ∈ [0, a]×D;
(4.17)

|f(t, p)− gk(t, p)| ≤ εk for all (t, p) ∈ [0, a]×D;
(4.18)

∣∣∣∣
�q�−1∑
i=0

(Ai −Ai,k)
ti

i!

∣∣∣∣ ≤ δk, k = 0, 1 . . .

(4.19)

where L > 0 is a constant and both εk and δk converge to zero. If xk

is a solution of (4.16) and x is a solution to (1.1), (1.2) on [0, a] such
that each (t, x(t)), (t, xk(t)) ∈ [0, a] ×D for all t ∈ [0, a], then xk → x
on [0, a].

Proof. For each k, the conditions of Theorem 4.10 hold with the result
following from an application of (4.15).

As an illustration of Corollary 4.11, the following example is pre-
sented.

Example 4.12. Let 0 < q < 1, and consider the sequence of IVPs

Dq[x− x(0)] = x+

k∑
i=0

ti

i!
cosx

x(0) = 1 +
1

k + 1
, k = 0, 1, . . . .

The IVP has at least one solution xk on [0, a] such that xk converges
uniformly on [0, a] to a solution of the IVP

Dq[x− x(0)] = x+ et cosx

x(0) = 1.
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Proof. In this example we have a special case of (4.16) with:

gk(t, p) = p+

k∑
i=0

ti

i!
cos p; A0,k = 1− 1

k + 1
;

f(t, p) = p+ et cos p and A0 = 1.

Let D = R, and see that f and each gk are continuous on [0, a]×R.
Now, as ∂f/∂p is uniformly bounded and continuous on [0, a] × R,
it follows that there is a constant L > 0 such that (4.17) holds. In
addition, for each k and all (t, p) ∈ [0, a]×R, we have

|f(t, p)− gk(t, p)| =
∣∣∣∣
[
et −

k∑
i=0

ti

i!

]
cos p

∣∣∣∣ ≤
∣∣∣∣et −

k∑
i=0

ti

i!

∣∣∣∣

=

∣∣∣∣
∞∑
i=0

ti

i!
−

k∑
i=0

ti

i!

∣∣∣∣ =
∣∣∣∣

∞∑
i=k+1

ti

i!

∣∣∣∣ ≤
∞∑

i=k+1

ai

i!

≤ ak+1

(k + 1)!

∞∑
i=0

ai

i!
=

ak+1

(k + 1)!
ea.

Thus, (4.18) holds with εk = ak+1/(k + 1)!ea. Finally, we see that
(4.19) holds with δk = 1/(k + 1).

Thus, Corollary 4.11 holds and the claim follows.

5. Successive approximations. The method of successive approx-
imations is a sequential technique that involves recursion and, as such,
is different from the sequential approach of Section 4. The idea is to
solve an equation of type

(5.1) y = F (y), F is continuous;

by defining a starting “point” y0 and then introducing a sequence ym
in a recursive fashion defined via

ym+1 := F (ym), m = 1, 2, . . . .

If ym converges to some y∗, then y∗ will be a solution to (5.1).
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The method of successive approximations for ordinary differential
equations is credited to Liouville [24, page 444] and Picard [28].
For the fractional order case of (1.1), (1.2) the method of successive
approximations has successfully been introduced in [6] and further
developed in [21, 22]. Therein, the sequence of functions {φm} =
{φm(t)} was defined in the following way:

φ0(t) :=

�q�−1∑
i=0

Ait
i

i!
,

(5.2)

φm+1(t) :=

�q�−1∑
i=0

Ait
i

i!
+

1

Γ(q)

∫ t

0

(t−s)q−1f(s, φm(s)) ds, m = 1, 2, . . . .

(5.3)

Some of the main results in [6, 21, 22] for (1.1), (1.2) involve contin-
uous functions f : R → R, where R is the set

(5.4) R := {(t, p) ∈ R2 : t ∈ [0, a], |p−A| ≤ b}, b > 0.

Under additional assumptions on f , such as: a Lipschitz condition (see
(6.5)); or weak monotonicity in the second variable; [6, 21, 22] showed
that the sequence φm converged uniformly on some subinterval of [0, a]
to a solution of (1.1), (1.2).

The assumptions of [6, 21, 22] naturally lead to the question: is
continuity of f alone enough to guarantee the convergence of the
sequence (or subsequence) of the successive approximations (5.2), (5.3)
to a solution to (1.1), (1.2)? An example is now presented that answers
this question in the negative.

Example 5.1. Let q > 0 and θ : [0, 1] → [0,∞) be a q-differentiable
function that satisfies: θ(0) = 0; θ(t) > 0 for all t ∈ (0, 1]; θ is strictly
increasing on [0, 1] and Dqθ is continuous on [0, 1].

Consider the IVP

Dq
(
x− T�q�−1[x]

)
(t) = f(t, x(t));(5.5)

x(0) = 0, . . . , x(�q�−1)(0) = 0;(5.6)
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with f defined by

f(t, p) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 for all t = 0, −∞ < p < ∞;

Dqθ(t) for all t ∈ (0, 1], p ≤ 0;

Dqθ(t)− Dqθ(t)
θ(t) p for all t ∈ (0, 1], 0 < p ≤ θ(t);

0 for all t ∈ (0, 1], p > θ(t).

Although f is continuous on [0, 1] × R, this property alone is insuf-
ficient to guarantee the convergence of the associated sequence (or a
subsequence) of successive approximations to a solution of (5.5), (5.6)
on any subinterval of [0, 1].

Proof. Define the sequence of successive approximations associated
with (5.5), (5.6) via

φ0(t) := 0,
(5.7)

φm+1(t) :=
1

Γ(q)

∫ t

0

(t− s)q−1f(s, φm(s)) ds, m = 1, 2, . . . .

(5.8)

Thus, we have

φ1(t) =
1

Γ(q)

∫ t

0

(t− s)q−1f(s, φ0(s)) ds =
1

Γ(q)

∫ t

0

(t− s)q−1f(s, 0) ds

=
1

Γ(q)

∫ t

0

(t− s)q−1Dqθ(s) ds = Iq
[
CDqθ(t)

]
= θ(t)

for all t ∈ [0, 1]. The second iteration is

φ2(t) =
1

Γ(q)

∫ t

0

(t− s)q−1f(s, φ1(s)) ds

=
1

Γ(q)

∫ t

0

(t− s)q−1f(s, θ(s)) ds

=
1

Γ(q)

∫ t

0

(t− s)q−1

[
Dqθ(s)− Dqθ(s)

θ(s)
θ(s)

]
ds = 0

for all t ∈ [0, 1].
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Similarly, φ3(t) = θ(t) and φ4(t) = 0 for all t ∈ [0, 1]. For each integer
m ≥ 0, we obtain

φ2m(t) = 0 and φ2m+1(t) = θ(t), for all t ∈ [0, 1].

Thus, φ2m → 0 and φ2m+1 → θ uniformly on [0, 1] and so φm

cannot converge to a limit on [0, 1] because the limit of subsequences is
distinct. Furthermore, neither of the limits of the above subsequences
are actually solutions to (5.5), (5.6) because

f(t, 0) �= 0, f(t, θ(t)) �= Dq
(
θ − T�q�−1[θ]

)
(t), for all t ∈ (0, 1].

It can be verified that a solution to (5.5), (5.6) is x(t) = θ(t)/2 for all
t ∈ [0, 1]. This particular solution cannot be obtained by the above
scheme of successive approximations.

The above example is an adaptation of a celebrated example formed
for the case of ordinary differential equations (q = 1) by Müller [27]
and Reid [32, pages 50 51].

The following result is known as “enveloping” of solutions [14, page
865], where the sign of the error between the successive approximations
and the true solution alternates.

Define and denote the non-negative half-plane P by

P := {(t, p) : t ≥ 0, p ∈ R}.

Theorem 5.2. Let f : P → R be continuous and satisfy

(5.9) f(t, v) ≤ f(t, w), for all v ≤ w.

Let x = x(t) be a solution to

Dq
(
x− T�q�−1[x]

)
(t) = −f(t, x(t))

on [0,∞) with x(t) ≤ ∑�q�−1
i=0 x(i)(0)ti/i! for all t ≥ 0, and consider the

sequence of successive approximations {φm} = {φm(t)} defined by

φ0(t) :=

�q�−1∑
i=0

Aiti
i!

,

φm+1(t) := φ0(t)− 1

Γ(q)

∫ t

0

(t− s)q−1f(s, φm(s)) ds, m = 1, 2, . . . .
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If zm = zm(t) denotes the “error”

zm(t) := φm(t)− x(t), for all t ≥ 0 and m = 0, 1, 2, . . . ,

then

(5.10) (−1)mzm(t) ≥ 0, for all t ≥ 0 and m = 0, 1, 2 . . . .

Proof. It can be shown directly that (5.10) holds for m = 0, 1, 2.

Assume that (5.10) holds for some even number m = k ≥ 2, so that
zk = φk − x ≥ 0 on [0,∞). Thus, for all t ∈ [0,∞), we have

(−1)k+1zk+1(t) = − [φk+1(t)− x(t)]

=
1

Γ(q)

∫ t

0

(t− s)q−1 [f(s, φk(s))− f(s, x(s))] ds

≥ 0

where we have invoked (5.9).

A similar result follows by assuming that (5.10) holds for some odd
number m = k ≥ 3. Combining the above cases we see that (5.10)
holds by induction.

Example 5.3. As an illustration of Theorem 5.2, consider the simple
equation with 0 < q < 1

Dq[x− 1] = −x,

which has the solution x(t) = Eq(−tq) for t ∈ [0,∞). The successive
approximations defined in Theorem 5.2 then become the m-th partial
sum of Eq(−tq), namely,

φm(t) =

m∑
k=0

(−tq)
k

Γ(qk + 1)
, t ∈ [0,∞), m = 0, 1, . . . .

It has been shown in [30, pages 1115 1116] that Eq(−tq) ≤ 1 for all
t ≥ 0. All of the conditions of Theorem 5.2 hold, and thus (5.10) holds.
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6. Fixed-point approach. This section is concerned with an
optimal application of Banach’s fixed point theorem [9, page 10] to
an operator associated with (1.1), (1.2). Banach’s theorem is simple,
elegant and quite wide-ranging. It applies to “contractive” mappings
between complete metric spaces, yielding the existence of a unique
fixed-point to the operator involved.

Theorem 6.1 [9]. Let (X, d) be a complete metric space and let
F : X → X. If F is contractive in the sense that there exists a positive
constant σ < 1 with

(6.1) d(Fx, Fy) ≤ σd(x, y), for all x, y ∈ X,

then F has a unique fixed point u, that is, Fu = u for a unique
u ∈ X. In addition, Fmy → u for each y ∈ X, where F 0y := y
and Fm+1y := F (Fmy).

The contraction condition (6.1) is sensitive to the metric d in the sense
that a mapping may be contractive on a set X under one particular
metric but not contractive on X under a different metric [9, pages
24 25]. Motivated to optimize this dependency, a new metric is defined
shortly that involves the Mittag-Leffler function. This particular metric
will be optimal in the sense that it forces the operator involved to be
contractive on the whole of X = C([0, a]) (the space of continuous
functions on [0, a]), rather than on a smaller set. In this way, Banach’s
classical theorem will directly apply and there is no need to firstly
obtain existence of a fixed point on a set of type C([0, h]), h < a, and
secondly to extend this solution to (1.1), (1.2) from [0, h] to the whole
of [0, a] as in [18], nor is there any need to appeal to more abstract
versions of Banach’s classical theorem as in [6].

Remark 6.2. It is well known [9, page 10] that, by beginning at an
arbitrary y ∈ X , Banach’s theorem provides the following estimate
on the “error” between the mth iteration Fmy and the fixed point u,
namely,

(6.2) d(Fmy, u) ≤ σm

1− σ
d(y, Fy).
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Let β > 0 be a constant and q > 0. Consider the space of continuous
functions C([0, a]) coupled with a suitable metric, either

dβ(x, y) := max
t∈[0,a]

|x(t) − y(t)|
Eq(βtq)

or

(6.3) d0(x, y) := max
t∈[0,a]

|x(t)− y(t)|, the well known max-metric.

The above definition of dβ is a new generalization of Bielecki’s metric
[2], [9, pages 25 26], [10, pages 153 155], [33, page 44].

Some important properties of dβ are now listed.

Lemma 6.3. If β > 0 is a constant and q > 0, then:

(i) dβ is a metric;

(ii) dβ is equivalent to the max-metric d0;

(iii) (C([0, a]), dβ) is a complete metric space.

Proofs. (i) If β > 0 is a constant, then we have Eq(βt
q) > 0 for

all t ∈ [0, a] and Eq is continuous on [0, a]. The three properties of a
metric [4, page 21] are now easily verified.

(ii) Now, since Eq is continuous and strictly increasing on [0, a], we
have

1

Eq(βaq)
≤ 1

Eq(βtq)
≤ 1, for all t ∈ [0, a],

and so

(6.4)
1

Eq(βaq)
d0(x, y) ≤ dβ(x, y) ≤ d0(x, y), for all x, y ∈ C([0, a]).

Thus, (6.4) ensures that our metrics are equivalent.

(iii) The completeness of (C([0, a]), dβ) now follows from the com-
pleteness of (C([0, a]), d0) and (ii). If {xn} is a Cauchy sequence in
(C([0, a]), d0), then (ii) ensures that {xn} is a Cauchy sequence in
(C([0, a]), dβ) as

lim
m,n→∞ d0(xn, xm) = 0 implies lim

m,n→∞ dβ(xn, xm) = 0.
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Furthermore, it can show shown [16, Example 3, page 32] that there
is a continuous function x on [0, a] such that limn→∞ d0(xn, x) = 0.
As a result of (ii), we then have limn→∞ dβ(xn, x) = 0. Hence, our
Cauchy sequence xn in (C([0, a]), dβ) is convergent and the limit is a
continuous function on [0, a]. Thus, (C([0, a]), dβ) is a complete metric
space.

Define and denote the strip S by

S := {(t, p) : t ∈ [0, a], p ∈ R}.

The main result of this section now follows.

Theorem 6.4. Let f : S → R be continuous. If there is a positive
constant L such that

(6.5) |f(t, u)− f(t, v)| ≤ L|u− v|, for all (t, u), (t, v) ∈ S,

then the IVP (1.1), (1.2) has a unique solution on [0, a]. In addition,
if a sequence of functions {xi} is defined inductively by choosing any
x0 ∈ C([0, a]) and setting

(6.6)
xi+1(t) =

�q�−1∑
k=0

Akt
k

k!
+

1

Γ(q)

∫ t

0

(t− s)q−1f(s, xi(s)) ds,

t ∈ [0, a], i = 1, 2, . . . ,

then the sequence {xi} converges uniformly on [0, a] to the unique
solution x of (1.1), (1.2).

Proof. Since f is a continuous function on S, (6.6) is well defined.
Let L > 0 be the constant defined in (6.5), and let β := Lγ where
γ > 1 is an arbitrary constant. Consider the complete metric space
(C([0, a]), dβ), and let F be defined by
(6.7)

[Fx](t) :=

�q�−1∑
k=0

Akt
k

k!
+

1

Γ(q)

∫ t

0

(t− s)q−1f(s, x(s)) ds, t ∈ [0, a].

By Lemma 2.1, showing the existence of fixed-points of F is equivalent
to showing the existence of solutions to the IVP (1.1), (1.2). Thus, we
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want to prove that there exists a unique x such that Fx = x. To do
this, we show that F : C([0, a]) → C([0, a]) is a contractive map with
contraction constant σ = 1/γ < 1 under the dβ metric and Banach’s
fixed-point theorem will then apply.

We now show that F is contractive with respect to dβ . For any x,
y ∈ C([0, a]), consider

dβ(Fx, Fy) := max
t∈[0,a]

|[Fx](t)− [Fy](t)|
Eq(βtq))

≤ max
t∈[0,a]

[
1

Eq(βtq)

1

Γ(q)

∫ t

0

(t− s)q−1|f(s, x(s))

− f(s, y(s))| ds
]

≤ max
t∈[0,a]

[
1

Eq(βtq)

1

Γ(q)

∫ t

0

(t− s)q−1L|x(s)− y(s)| ds
]

= L max
t∈[0,a]

[
1

Eq(βtq)

1

Γ(q)

×
∫ t

0

(t− s)q−1Eq(βs
q)
|x(s)− y(s)|
Eq(βsq)

ds

]

≤ Ldβ(x, y) max
t∈[0,a]

[
1

Eq(βtq)

1

Γ(q)

∫ t

0

(t− s)q−1Eq(βs
q) ds

]

= Ldβ(x, y) max
t∈[0,a]

[
1

Eq(βtq)
Iq
(

CDq

(
Eq(βt

q)

β

))]

= Ldβ(x, y) max
t∈[0,a]

[
1

Eq(βtq)

(
Eq(βt

q))− 1

β

)]

=
dβ(x, y)

γ
max
t∈[0,a]

[
1− 1

Eq(βtq)

]

=
dβ(x, y)

γ

[
1− 1

Eq(βaq)

]

≤ dβ(x, y)

γ

where we have used (6.5) and β = Lγ above. As γ > 1, we see that F
is a contractive map with contraction constant σ = 1/γ and Banach’s
fixed-point theorem applies, yielding the existence of a unique fixed-
point x of F . In addition, from Banach’s theorem, the sequence {xi}
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defined in (6.6) converges uniformly in the norm ‖ · ‖β, and thus the
sequence {xi} converges uniformly in the max-norm ‖ ·‖0 to that fixed-
point x. This completes the proof.

The statement of Theorem 6.4 is not new, but the application of the
metric dβ is novel and optimizes the proof. For example, if the max-
metric d0 was used in the proof (as in [17]), then Banach’s theorem
would only be contractive on C([0, h]) with h < a and then a solution
to (1.1), (1.2) on [0, h] would need to be systematically extended to
the whole interval [0, a]. The proof of Theorem 6.4 illustrates that
the approach of [17] of existence-extension is unnecessary. In addition,
the proof of Theorem 6.4 demonstrates that, invoking more abstract
versions of Banach’s theorem is unnecessary: the basic theorem of
Banach will suffice. Theorem 6.4 addresses [5, Remark 6.10].

In view of Remark 6.2, the approach in the proof of Theorem 6.4
can be used to evaluate the rate of convergence of iterates. If x,
x0 ∈ C([0, a]) and β := Lγ with γ > 1, then (6.2) yields

dβ(F
mx0, x) ≤ γ−m

1− γ−1
dβ(x0, Fx0), m = 1, 2, . . . ,

and so

(6.8) ‖Fmx0 − x‖0 ≤ E(Lγtq)
γ−m

1− γ−1
‖x0 − Fx0‖0, m = 1, 2, . . . ,

where ‖ · ‖0 is the norm induced by the max-metric (6.3). The choice
γ := m/La yields a nice evaluation of the rate of convergence in (6.8),
namely,

‖Fmx0 − x‖0 ≤ Eq

(
maq−1

)(La

m

)m
m

m− La
‖x0 − Fx0‖0,

m = 1, 2, . . . .

The following result illustrates the dependency of solutions to the
IVP (1.1), (1.2) with respect to initial values.

Theorem 6.5. The solution supplied under the conditions of Theo-
rem 6.4 is Lipschitz continuous in A, uniformly in t. In addition, for
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any two sets of initial conditions Ai, Bi ∈ R,

|x(t;A0, . . . , A�q�−1)− x(t;B0, . . . , B�q�−1)|

≤ Eq(Lt
q)

�q�−1∑
i=0

|Ai −Bi|a
i

i!
, for all t ∈ [0, a].

Proof. Using (6.5) in a standard fashion, we obtain the estimate

|x(t;A0, . . . , A�q�−1)− x(t;B0, . . . , B�q�−1)|

≤ 1

Γ(q)

∫ t

0

(t− s)q−1L|x(s;A0, . . . , A�q�−1)− x(s;B0, . . . , B�q�−1)| ds

+

�q�−1∑
i=0

|Ai −Bi|a
i

i!
,

for all t ∈ [0, a]. An application of Lemma 3.1 yields the desired
result.

7. Degree theory approach. In this section a more modern
approach is taken to the existence of solutions to (1.1), (1.2) than
in previous sections. The aim is to generate sufficient conditions, in
as much generality as possible, that guarantee at least one solution to
(1.1), (1.2) exists on [0, a]. The method of the Leray-Schauder degree
[23, Chapter 4, pages 54 71] is used to do this.

Theorem 7.1. Let f : S → R be continuous, let h : [0, a] → R
be continuous, and let g : [0,∞) → [0,∞) be continuous and non-
decreasing. If

(7.1) |f(t, p)| ≤ h(t)g

(∣∣∣∣p−
�q�−1∑
i=0

Ait
i

i!

∣∣∣∣
)
, for all (t, p) ∈ S,

and there exists a constant b > 0 such that

(7.2)
b

g(b)
> max

t∈[0,a]

1

Γ(q)

∫ t

0

(t− s)q−1h(s) ds
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then (1.1), (1.2) has at least one solution x on [0, a] such that |x(t)| < b
for all t ∈ [0, a].

Proof. We apply basic Leray-Schauder degree theory.

Consider the normed space (C([0, a]), ‖ · ‖0) and define the closed
subset Ω ⊂ C([0, a]) by

Ω :=

{
x ∈ C([0, a]) : max

t∈[0,a]

∣∣∣∣x(t)−
�q�−1∑
i=0

Ait
i

i!

∣∣∣∣ ≤ b

}
.

Let F be defined as in (6.7), and note that F is well-defined on Ω. We
claim that F : Ω → C([0, a]) is a compact operator in the sense that:
F is continuous; F (Ω) is a compact set.

We show that F is continuous on Ω. Our approach follows that of [6,
page 235]. Function f is continuous on the compact set R defined in
(5.4) and so f is uniformly continuous on R. This means that, given
any ε > 0, we can choose a δ = δ(ε) > 0 such that

|f(t, u)− f(t, v)| < ε

aq
Γ(q + 1) whenever |u− v| < δ.

Thus, for x, y ∈ Ω, consider

|[Fx](t)− [Fy](t)| =
∣∣∣∣ 1

Γ(q)

∫ t

0

(t− s)q−1[f(s, x(s))− f(s, y(s))] ds

∣∣∣∣
<

εΓ(q + 1)

aq

∣∣∣∣ 1

Γ(q)

∫ t

0

(t− s)q−1 ds

∣∣∣∣ = εtq

aq
≤ ε.

Thus, for any given ε > 0,

‖Fx− Fy‖0 < ε whenever ‖x− y‖0 < δ

with δ chosen above.

To show that F (Ω) is a compact set, we show that F (Ω) is equicon-
tinuous and uniformly bounded. The Arzela-Ascoli theorem [19, page
104] ensures F (Ω) will then be a compact set.

Since f is continuous on the compact rectangle R, there exists a
constant M > 0 such that

|f(t, p)| ≤ M, for all (t, p) ∈ R.
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Let x ∈ Ω, and consider

∥∥∥∥Fx−
�q�−1∑
i=0

Ait
i

i!

∥∥∥∥
0

= max
t∈[0,a]

∣∣∣∣ 1

Γ(q)

∫ t

0

(t−s)q−1f(s, x(s)) ds

∣∣∣∣ ≤ Maq

Γ(q + 1)
.

Thus, F (Ω) is uniformly bounded.

Furthermore, for any 0 ≤ t1 ≤ t2 ≤ a, we have that, for any
given ε > 0, we can choose a δ such that, if |t2 − t1| < δ, then
|[Fx](t1)− [Fx](t2)| < ε. The proof of this step is virtually identical to
an analogous step in the proof of Theorem 4.2 and so is omitted.

Now consider the family of mappings

H(x, λ) := I(x) − λF (x), for all (λ, x) ∈ [0, 1]× Ω

where I is the identity map. We claim that H �= 0 on [0, 1] × ∂Ω,
ensuring that the Leray-Schauder topological degree of H on Ω relative
to 0 is well defined.

Suppose H(λ, x) = 0 for some fixed λ ∈ [0, 1] and some x ∈ ∂Ω.
Thus, we have

b = max
t∈[0,a]

∣∣∣∣H(x(t), λ) −
�q�−1∑
i=0

Ait
i

i!

∣∣∣∣
= max

t∈[0,a]

∣∣∣∣ λ

Γ(q)

∫ t

0

(t− s)q−1f(s, x(s)) ds

∣∣∣∣
≤ max

t∈[0,a]

1

Γ(q)

∫ t

0

(t− s)q−1h(s)g

(∣∣∣∣x(s) −
�q�−1∑
i=0

Ais
i

i!

∣∣∣∣
)
ds

≤ max
t∈[0,a]

1

Γ(q)

∫ t

0

(t− s)q−1h(s)g

(
max
s∈[0,a]

∣∣∣∣x(s) −
�q�−1∑
i=0

Ais
i

i!

∣∣∣∣
)
ds

≤ g(b) max
t∈0,a]

1

Γ(q)

∫ t

0

(t− s)q−1h(s) ds < b,

where we have used (7.2) and the assumption that g is nondecreasing.
We have reached a contradiction.
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Thus, the following degree calculations are well defined, and the
invariance of the homotopy property of the Leray-Schauder degree [23,
page 70] may be applied

degLS(H(·, λ),Ω, 0) = degLS(H(·, 1),Ω, 0) = degLS(H(·, 0),Ω, 0)

= degLS

(
I −

�q�−1∑
i=0

Ait
i

i!
,Ω, 0

)
= 1,

with the value of 1 obtained since
∑�q�−1

i=0 Ait
i/i ∈ Ω. The above

calculations show that, for each λ ∈ [0, 1], there is an x ∈ Ω such that
H(x, λ) = 0. Thus, H(x, 1) = 0 has at least one solution x ∈ Ω, with
this problem being equivalent to finding fixed points of F . Thus, our
solution to (1.1), (1.2) exists as claimed.

Remark 7.2. Condition (7.2) will hold, for example, if

(7.3)
b

g(b)
>

aq

Γ(q + 1)
max
t∈[0,a]

h(t).

The following example illustrates Theorem 7.1.

Example 7.3. Consider the IVP

D1/2[x− x(0)] = tex

x(0) = 0.

The IVP has at least one solution on [0, 1/4].

Proof. In this example we have a special case of (1.1), (1.2) with:
f(t, p) = tep; A0 = 0 and q = 1/2. Choose the strip

S1/4 := {(t, p) : t ∈ [0, 1/4], p ∈ R}.

Note that, for all (t, p) ∈ S1/4, we have

|f(t, p)| = |tep| ≤ te|p|
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and so (7.1) will hold with: h(t) = t and g(|p|) = e|p|. Now choose
b = 1/2 and, in view of (7.3) and its context, we see that

aq

Γ(q + 1)
max
t∈[0,a]

h(t) =
(1/4)1/2

Γ(3/2)
max

t∈[0,1/4]
t

=
(1/4)3/2

Γ(3/2)

=
1

4
√
2π

≈ 0.1.

Also,
b

g(b)
=

1/2

e1/2
≈ 0.3.

Thus, (7.3) holds and Theorem 7.1 may be applied.

In a similar style to Theorem 7.1 the following result ensures the
existence of at least one “local” solution to (1.1), (1.2).

Theorem 7.4. Let f : S → R be continuous, h : [0, a] → R
continuous and g : [0,∞) → [0,∞) continuous and non-decreasing.
If (7.1) holds, then there is a δ ≤ a such that (1.1), (1.2) has at least
one solution x on [0, δ].

Proof. The proof is very similar to that of Theorem 7.1 and so is only
outlined. Given g and h, choose a b > 0 and δ ≤ a sufficiently small so
that

b

g(b)
> max

t∈[0,δ]

1

Γ(q)

∫ t

0

(t− s)q−1h(s) ds,

and then apply similar principles as in the proof of Theorem 7.1 in the
normed space (C([0, δ]), ‖ · ‖0) and to the operator F on Ω, but with
t ∈ [0, a] replaced by t ∈ [0, δ].

Acknowledgments. Inequality (3.2) in Lemma 3.1 was sharpened
with helpful comments from the anonymous referee. This and other
insightful remarks enabled sharper and wider results to be established
throughout the entire paper. I am very grateful to the referee for these
suggestions.
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