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ABSTRACT. Fast singularity preserving multiscale Galerkin
methods are developed in this paper for solving weakly sin-
gular Fredholm integral equations of the second kind with
non-smooth solutions. A truncation strategy for the coeffi-
cient matrix obtained by using singularity preserving multi-
scale Galerkin methods is proposed. The multilevel augmenta-
tion method is developed for solving the discrete system with
the truncated matrix. We prove that the methods preserve
the singularities of the solutions and possess optimal order of
convergence and linear computational complexity (up to a log-
arithmic factor). Finally, numerical experiments are presented
to confirm theoretical results and demonstrate the efficiency
and accuracy of the methods.

1. Introduction. Fast wavelet and multiscale methods for numeri-
cal solutions of weakly singular integral equations have attracted much
attention recently. The methods are based on the fact that the repre-
sentation of integral operators by appropriate wavelet and multiscale
bases produces numerically sparse matrices. Matrix truncation (com-
pression) techniques are then designed, which lead to fast algorithms for
solving the integral equations (see, for example, [1, 6, 7, 14, 15, 22,
23] and the references cited therein). Moreover, multilevel augmenta-
tion methods are proposed as fast solvers for solving the discrete linear
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systems derived from wavelet and multiscale methods [7 10]. These
methods were proved to possess nearly linear computational complex-
ity and optimal order of convergence. However, all of these results
are based on the regularity assumption of the solutions. It has been
shown that solutions of the weakly singular Fredholm integral equations
usually have singularities in their derivatives, which reflect the singu-
larities of the kernels (see, for example, [17, 24 26]). Some numerical
methods are developed based on this fact. The adaptive method is
one of the best methods to solve this problem ([11, 12] and the ref-
erences cited therein). The singularity preserving method is a simple
and direct method. It allows the approximate spaces to contain some
known singular functions that carry the singularities of the exact solu-
tion. Another part of the solution is considered as a smooth function.
Since singularities of the solution usually reflect important features of
practical physical problems, numerical methods preserving singulari-
ties of the solution are preferable. Singularity preserving Galerkin and
Petrov-Galerkin methods for weakly singular Fredholm integral equa-
tions and Hammerstein integral equations were developed respectively
(see [2, 18, 27]). The computational complexities of these methods
are all O(N2), where N is the dimension of the approximate subspace
of the solution. The paper [21] combines the ideas of singularity pre-
serving Galerkin methods and wavelet numerical methods for weakly
singular integral equations such that the approximate solution can be
obtained by solving a linear system of equation determined by a sparse
matrix with O(N logN) nonzero entries.

The purpose of this paper is to develop fast singularity preserving
Galerkin methods for solving weakly singular Fredholm integral equa-
tions of the second kind by using multiscale bases. The solutions
of these equations have certain singularities. Singularity preserving
Galerkin methods allow us to approximate non-smooth solutions more
efficiently. We will develop the corresponding matrix compression tech-
nique and multilevel augmentation algorithm to obtain fast solvers of
the equations, which possess linear computational complexity (up to a
logarithmic factor) and optimal order of convergence.

We organize this paper as follows. In Section 2, we will describe
the multiscale (wavelet) bases and present singularity preserving mul-
tiscale Galerkin methods for solving weakly singular Fredholm integral
equations of the second kind. Section 3 is devoted to proposing a corre-
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sponding matrix compression for the coefficient matrix of the discrete
system and analyzing the computational complexity of the algorithm
and the convergence order of the approximate solutions. In Section 4
we will present a multilevel augmentation algorithm to solve the dis-
crete system derived from the singularity preserving multiscale Galerkin
method with a matrix compression scheme. A complete analysis for
computational complexity and convergence order is also proposed. Fi-
nally, in Section 5, we will give numerical experiments to confirm our
theoretical results and illustrate the efficiency of the methods.

2. Singularity preserving multiscale Galerkin methods. In
this section we present singularity preserving multiscale Galerkin meth-
ods for solving weakly singular Fredholm integral equations of the sec-
ond kind with non-smooth solutions.

Let X := L2(E), with the norm ‖ · ‖ and inner product 〈·, ·〉, where
E ⊂ Rd(d ∈ N := {1, 2, 3, . . .}) is a compact domain. Assume that
K : X → X is a compact linear operator defined by

(Kx)(s) :=

∫
E

K(s, t)x(t) dt, s ∈ E,

where the functionK : E×E → R is a weakly singular kernel satisfying
condition (g) mentioned in Section 3. For f ∈ X, we consider the
weakly singular Fredholm integral equation of the second kind

(2.1) x−Kx = f.

We assume that 1 is not an eigenvalue of K, so that equation (2.1) has
a unique solution in X.

As in [2, 17, 24, 27], we assume that the solution of equation (2.1)
has the singularity decomposition

(2.2) x = v + u, v ∈ V, u ∈ U,

where V ⊂ X is a finite dimensional subspace including known singular
functions and U ⊆ Hk(E) is a subspace of X consisting of smooth
functions.

We denote N0 := {0, 1, 2, . . .}, Zn := {0, 1, 2, . . . , n − 1}, and let
{Un : n ∈ N0} be a sequence of finite dimensional subspaces of X
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satisfyingV∩Un = {0} and ∪n∈N0Un ⊇ U. The singularity preserving
Galerkin method is to find xn ∈ Xn := V ⊕Un such that

(2.3) 〈xn −Kxn, y〉 = 〈f, y〉, for all y ∈ Xn,

where the notation A ⊕B stands for the direct sum of two subspaces
A and B.

It has been proved (see, for example, [2]) that equation (2.3) has a
unique solution xn when n is sufficiently large and, if x is the solution
of (2.1), x = v + u with v ∈ V, u ∈ Hk(E), and

inf
w∈Un

‖u− w‖ ≤ chk‖u‖Hk ,

then

(2.4) ‖xn − x‖ ≤ chk‖u‖Hk ,

where h is the maximal distance of the quasi-uniform mesh.

In order to present multiscale schemes, we assume that there is a
family of multiscale partitions {Ei : i ∈ N0} such that, for each scale
i ∈ N0, Ei consists of a family of star-shaped subsets Ei,j , j ∈ Ze(i),
satisfying that⋃

j∈Ze(i)

Ei,j = E, meas (Ei,j ∩ Ei,j′ ) = 0, j, j′ ∈ Ze(i), j �= j′,

and
meas (Ei,j) ∼ ddi , j ∈ Ze(i),

where e(i) denotes the cardinality of set Ei, di := max{d(Ei,j) : j ∈
Ze(i)}, d(A) denotes the diameter of set A, and the notation ai ∼ bi
means that there are positive constants c1 and c2 independent of i such
that c1ai ≤ bi ≤ c2ai for all i ∈ N0.

We next assume that {Un : n ∈ N0} are nested, that is, Un−1 ⊂ Un,
n ∈ N. Thus, a subspace Wn ⊂ Un can be defined such that Un

becomes an orthogonal direct sum of Un−1 and Wn. This leads to a
multiscale space decomposition

Un = W0 ⊕⊥ W1 ⊕⊥ · · · ⊕⊥ Wn,
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where we denote W0 := U0. We will use denotations w(i) := dimWi,
i ∈ N0 and s(n) := dimUn =

∑
i∈Zn+1

w(i), n ∈ N0.

We associate with the partitions and the subspaces a family of basis
functions {wi,j : (i, j) ∈ J} ⊂ X such that

Wn = span {wn,j : j ∈ Zw(n)}, n ∈ N0,

and
Un = span {wi,j : (i, j) ∈ Jn},

where J := {(i, j) : j ∈ Zw(i), i ∈ N0} and Jn := {(i, j) : j ∈ Zw(i), i ∈
Zn+1}. We require that the following properties hold for the partitions,
space decomposition and basis functions.

(a) There is a positive integer μ > 1 such that, for i ∈ N0,

(2.5) di ∼ μ−i/d, w(i) ∼ μi, and s(i) ∼ μi.

Therefore, when using the multiscale scheme, the maximal distance h
presented in formula (2.4) has the equivalence property h ∼ (s(n))−d.

(b) There exist positive integers ρ and r such that, for every i > r
and j ∈ Zw(i) written in the form j = νρ+ s where s ∈ Zρ and ν ∈ N0,

wi,j(t) = 0, t /∈ Ei−r,ν .

This means that the support of wi,j is contained in Si,j := Ei−r,ν .

(c) Vanishing moment conditions hold such that, for any (i, j) ∈ J
with i > 0, and polynomial p of total degree less than k,

〈wi,j , p〉 = 0.

(d) There is a positive constant θ0 such that, for any (i, j) ∈ J ,

‖wi,j‖ = 1, and ‖wi,j‖∞ ≤ θ0μ
i/2,

where ‖ · ‖∞ denotes the norm in L∞(E).

(e) There is a positive constant θ1 such that, for all n ∈ N0,
v =

∑
(i,j)∈Jn

vi,jwi,j ,

‖v‖2 ≤ θ1‖v‖,
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where v := [vi,j : (i, j) ∈ Jn]
T . We remark that, throughout this paper,

the notation ‖x‖p(1 ≤ p ≤ ∞) for a vector x := [xj : j ∈ Zn]
T denotes

the �p-norm defined by

‖x‖p :=

{
(
∑

j∈Zn
|xj |p)1/p 1 ≤ p < ∞,

max{|xj | : j ∈ Zn} p = ∞.

(f) If Pn is the orthogonal projection of X onto Un, then there exists
a positive constant c such that, for any u ∈ Hk(E),

(2.6) ‖u− Pnu‖ ≤ cdkn‖u‖Hk .

The construction of multiscale bases having all properties (a) ∼ (f)
can be found in much literature (see, for example, [3, 5, 6, 20]).
Especially, if we choose Un, n ∈ N0, to be spaces of piecewise
polynomials of total degree ≤ k − 1 with respect to partition En, and
if we choose {wi,j : (i, j) ∈ Jn} to be a sequence of orthonormal bases
for Un, then property (e) holds with ‖v‖2 = ‖v‖, and the vanishing
moment property (c) and approximation property (f) hold naturally.

Assume that W−1 := V = span {w−1,j : j ∈ Zl}, where l := w(−1) =
dimW−1. Then we have

Xn = span {wi,j : (i, j) ∈ J ′
n},

where J ′
n := {(i, j) : j ∈ Zw(i), i ∈ Z ′

n+1} with Z ′
n+1 := {−1, 0, 1, . . . , n}.

With the multiscale bases described above, the singularity preserving
multiscale Galerkin scheme for solving equation (2.1) is to find

xn =
∑

(i,j)∈J′
n

xi,jwi,j ∈ Xn,

such that

(2.7) 〈wi′,j′ , xn −Kxn〉 = 〈wi′,j′ , f〉, for all (i′, j′) ∈ J ′
n.

Let P−1 and Pn be orthogonal projections of X onto W−1 and Un

defined by

〈P−1x, y〉 = 〈x, y〉, for all y ∈ W−1,
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and

〈Pnx, y〉 = 〈x, y〉, for all y ∈ Un,

respectively. Equation (2.7) can be formulated as

(2.8)

{P−1(I − K)xn = P−1f,

Pn(I − K)xn = Pnf.

As in [5], we identify the vector [v, u]T in V ×Un with the sum v + u
in V ⊕Un. We then introduce the operator Kn : Xn → Xn by

(2.9) Kn :=

[
P−1K|V P−1K|Un

PnK|V PnK|Un

]
,

write xn ∈ Xn as xn = [vn, un]
T with vn ∈ V, un ∈ Un, and define

fn := [P−1f,Pnf ]
T . Equation (2.8) is now written in the form[

vn
un

]
−
[
P−1K|V P−1K|Un

PnK|V PnK|Un

] [
vn
un

]
=

[
P−1f
Pnf

]
,

or the operator equation

(2.10) (I − Kn)xn = fn.

We remark that definition (2.9) of the operator Kn will help us to
build a theoretical framework for the analysis of singularity preserving
multiscale Galerkin methods.

Denote

En := [〈wi′,j′ , wi,j〉 : (i, j), (i′, j′) ∈ J ′
n]s′(n)×s′(n) ,

Kn := [〈wi′,j′ ,Kwi,j〉 : (i, j), (i′, j′) ∈ J ′
n]s′(n)×s′(n),

fn := [〈wi′,j′ , f〉 : (i′, j′) ∈ J ′
n]

T ,

and

xn := [xi′,j′ : (i
′, j′) ∈ J ′

n]
T ,
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where s′(n) := l + s(n). Equation (2.7) can be written in the matrix
form

(2.11) (En −Kn)xn = fn.

3. Matrix compression algorithm. In this section we de-
velop a matrix truncation strategy for singularity preserving multiscale
Galerkin methods described in the last section, which will result in
matrix compression and lead us to a fast algorithm for approximately
solving equation (2.1).

Throughout this paper, we suppose that the following weak singular-
ity conditions on kernel K hold:

(g) For s, t ∈ E, s �= t, K has a continuous partial derivative

Dα
s D

β
t K(s, t) for |α| ≤ k, |β| ≤ k. Moreover, there exist constants

σ ∈ [0, d) and c > 0 such that, for |α| = |β| = k,

|Dα
s D

β
t K(s, t)| ≤ c

|s− t|σ+2k
.

We denote entries of the matrix Kn by Ki′,j′;i,j := 〈wi′,j′ ,Kwi,j〉,
(i, j), (i′, j′) ∈ J ′

n. Note that the entries of the coefficient matrix
obtained by the singularity preserving multiscale Galerkin method are
the same as that by the corresponding multiscale (wavelet) Galerkin
method except for the entries with i = −1 or i′ = −1. It has been
proved for multiscale Galerkin methods that most of these entries are so
small that they can be neglected without affecting the overall accuracy
of the approximation scheme. To present and analyze the truncation
strategy for the singularity preserving method, we quote the estimate
of these entries in the following lemma (cf. [3, 22]).

Lemma 3.1. If conditions (a) (d), (g) hold and there is a constant
r > 1 such that

dist (Si,j , Si′,j′) ≥ max{rdi, rdi′},
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then there exists a positive constant c independent of i, j, i′ and j′ such
that, for i, i′ > 0,

|Ki′,j′;i,j | ≤ c(didi′)
k−d/2 min

{
ddi′ max

s∈Si′,j′

∫
Si,j

dt

|s− t|2k+σ
,

ddi max
t∈Si,j

∫
Si′,j′

ds

|s− t|2k+σ

}
.

We now partition matrixKn into a block matrixKn = [Ki′,i]i′,i∈Z′
n+1

with Ki′,i = [Ki′,j′;i,j ]j′∈Zw(i′),j∈Zw(i)
and choose truncation parame-

ters δni′,i, which will be specified later, to obtain a truncation matrix

K̃n =
[
K̃i′,i

]
i′,i∈Z′

n+1

,

where
K̃i′,i := K(δni′,i)i′,i =

[
K̃i′,j′;i,j

]
j′∈Zw(i′), j∈Zw(i)

,

with

K̃i′,j′;i,j :=

⎧⎨⎩
Ki′,j′;i,j dist (Si′,j′ , Si,j) ≤ δni′,i,

or i = −1, or i′ = −1,

0 otherwise.

We remark that if we write Kn as the block matrix

Kn =

[
K−1,−1 K0

−1,n

K0
n,−1 K0

n

]
,

where K0
−1,n := [K−1,0, . . . ,K−1,n], K0

n,−1 := [K0,−1, . . . ,Kn,−1]
T ,

and K0
n := [Ki′,i]i′,i∈Zn+1 , then we have

K̃n =

[
K−1,−1 K0

−1,n

K0
n,−1 K̃0

n

]
,

in which the block K̃0
n is obtained from K0

n by using the truncation
strategy as was done in fast multiscale Galerkin methods (cf. [3, 22]).

Our approximate algorithm is to find x̃n := [x̃i,j : (i, j) ∈ J ′
n]

T ∈
Rs′(n) such that

(3.12) (En − K̃n)x̃n = fn.
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Let K̃n : Xn → Xn be the linear operator defined by

(3.13) K̃n :=

[
P−1K|V P−1K|Un

PnK|V K̃0
n

]
,

where K̃0
n is the operator from Un into itself relative to the basis

{wi,j , (i, j) ∈ Jn} corresponding to matrix K̃0
n. Then, the approximate

algorithm of equation (3.12) in operator form is to find

x̃n =
∑

(i,j)∈J′
n

x̃i,jwi,j ∈ Xn,

such that

(3.14) (I − K̃n)x̃n = fn.

For any matrix K, we denote by N(K) the number of nonzero entries

in K. Now we estimate the number of nonzero entries of matrix K̃n,
which will show that the truncation strategy leads to a fast numerical
algorithm for solving equation (2.1).

Theorem 3.2. Assume that conditions (a) and (b) hold. Choose the
truncation parameters δni′,i such that, for some positive constants a and
r with r > 1,

δni′,i ≤ max{aμ[−n+α(n−i)+α′(n−i′)]/d, rdi, rdi′}, i, i′ ∈ Zn+1,

where α and α′ are any numbers in (−∞, 1]. Then

N(K̃n) = O(s(n) logτ s(n)),

where τ = 1 except for α = α′ = 1 in which case τ = 2.

Proof. It is obvious that

N(K̃n) = l2 + 2ls(n) +N(K̃0
n).

According to Theorem 3.3 in [22],
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N(K̃0
n) =

{
O(s(n) log2 s(n)) α = α′ = 1,

O(s(n) log s(n)) otherwise.

This completes the proof.

This theorem shows that the singularity preserving multiscale Galerkin
method enjoys the same nearly linear computational complexity as gen-
eral multiscale and wavelet methods. In some literature, this leads to
linear computational complexity through the second compression ([13]
and the references cited therein). Here we will not discuss the second
compression.

In order to show the order of convergence of the truncated scheme and
stability of the operator equation, we introduce a special projection.

Assume that W is the complement of V in X, that is, X := V ⊕W
with Un ⊆ W . For n ∈ N0 we define the linear operator P ′

n : X → Xn

by
P ′
n := [P−1|V,Pn|W ]T .

Lemma 3.3. {P ′
n : n ∈ N} is a sequence of uniformly bounded

projections. Moreover, for any x = v + u ∈ X with v ∈ V and u ∈ W,

‖P ′
nx− x‖ = ‖Pnu− u‖.

Proof. Letting x = v + w ∈ X with v ∈ V and w ∈ W , then

P ′
n
2
x = P ′

n(P−1v + Pnw) = P−1
2v + Pn

2w = P ′
nx,

which means that P ′
n
2
= P ′

n; thus, P ′
n is a linear projection from X

onto Xn. On the other hand, for any x ∈ X,

P ′
nx = v + Pnw −→ v + w = x, as n → ∞.

This means that {P ′
n} converges point wisely to the identity operator

I on X. We conclude by using the uniform boundedness theorem
that P ′

n, n ∈ N, are uniformly bounded. Finally, we have that
P ′
nx− x = v+Pnw− (v+w) = Pnw−w. This completes the proof.
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With the help of the projection P ′
n, we give a useful lemma. To

describe it, we assume η := 2k− d+ σ > 0, and for real numbers a and
b, set

μ[a, b;n] :=
∑

i∈Zn+1

μai/d
∑

i′∈Zn+1

μbi′/d.

Lemma 3.4. Assume that conditions (a) (d), (g) hold. Choose the
truncation parameter δni′,i, i, i′ ∈ Zn+1 such that, for some positive
constant a and r with r > 1,

δni′,i ≥ max{aμ[−n+α(n−i)+α′(n−i′)]/d, rdi, rdi′}, i, i′ ∈ Zn+1,

where α and α′ are any real numbers. Then, for any x = v + u ∈ X
with v ∈ V and u ∈ Hm(E), 0 ≤ m ≤ k,

‖(Kn − K̃n)P ′
nx‖ ≤ cμ[k +m− αη, k − α′η;n]μ−(m+d−σ)n/d‖u‖Hm ,

where c is a constant independent of n.

Proof. It follows from (2.9) and (3.13) that our truncation strategy
leads to

(Kn − K̃n)v = 0, for all v ∈ V.

Therefore,

(Kn − K̃n)P ′
nx = (Kn − K̃n)P ′

nu = (K0
n − K̃0

n)Pnu,

where K0
n := PnK|Un . It has been proved (see, for example, [3, 22])

that there exists a constant c independent of n such that

‖(K0
n − K̃0

n)Pnu‖ ≤ cμ[k +m− αη, k − α′η;n]μ−(m+d−σ)n/d‖u‖Hm .

Thus, the proof of this lemma is completed.

Recall that, for the standard Galerkin scheme, there is a positive
constant c0 such that, when n is sufficiently large,

(3.15) ‖(I − Kn)x‖ ≥ c0‖x‖, for all x ∈ Xn.

We get the stability of the approximate operator equation (3.14) in the
following theorem.
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Theorem 3.5. Assume that conditions (a) (e) and (g) hold, and
δni′,i are chosen as in Lemma 3.4 with

α >
1

2
− d− σ

2η
, α′ >

1

2
− d− σ

2η
, α+ α′ > 1.

Then there exist a positive constant c and a positive integer N such
that, when n ≥ N and x ∈ Xn,

‖(I − K̃n)x‖ ≥ c‖x‖.

Proof. It follows from the estimate in Lemma 3.4 with m = 0, x ∈ Xn

and u = x ∈ X = H0(E) that

‖(Kn − K̃n)x‖ ≤ cμ[k − αη, k − α′η;n]μ−(d−σ)n/d‖x‖.

Note that, for any real numbers a, b and e, limn→∞ μ−en/d = 0 when
e > max{0, a, b, a+ b}. With a := k − αη, b := k − α′η and e := d− σ,
thus the choice of δni′,i ensures that there exists a positive integer N
such that, when n ≥ N ,

cμ[k − αη, k − α′η;n]μ−(d−σ)n/d ≤ c0/2.

This along with (3.15) leads to

‖(I − K̃n)x‖ ≥ ‖(I − Kn)x‖ − ‖(Kn − K̃n)x‖ ≥ c0
2
‖x‖,

for any x ∈ Xn, and the proof is completed.

The next theorem shows that the convergence order of the matrix
compression algorithm is optimal (up to a logarithmic factor).

Theorem 3.6. Let x and x̃n be solutions of equations (2.1) and
(3.14), respectively, with a decomposition x = v + u, v ∈ V and u ∈
Hk(E). Assume that conditions (a) (g) hold, and δni′,i are chosen as in
Lemma 3.4 with α and α′ satisfying one of the following conditions:
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(i) α ≥ 1, α′ > (1/2)− [(d− σ)/2η], α+ α′ > 1 + (k/2η), or α > 1,
α′ ≥ [(d− σ)/2η], α + α′ > 1 + (k/2η), or α > 1, α′ > [(d− σ)/2η],
α+ α′ ≥ 1 + (k/2η).

(ii) α = 1, α′ = (k/η), or α = (2k/η), α′ = (1/2)− [(d− σ)/2η].

Then there exist a positive constant c and a positive integer N such
that, when n ≥ N ,

‖x− x̃n‖ ≤ cs(n)−k/d(log s(n))τ‖u‖Hk ,

where τ = 0 in case (i), and τ = 1 in case (ii).

Proof. It follows from Theorem 3.5 that there exists a positive
constant c independent of n such that

‖P ′
nx− x̃n‖ ≤ c‖(I − K̃n)(P ′

nx− x̃n)‖.

From equations (2.10) and (3.14) we see that

(I − K̃n)x̃n = (I − Kn)xn.

This leads to

(I − K̃n)(P ′
nx− x̃n) = (I − K̃n)P ′

nx− (I − Kn)xn

= (I − Kn)(P ′
nx− xn) + (Kn − K̃n)P ′

nx.

It can easily be verified that ‖Kn‖ ≤ 2‖K‖. Therefore, there exists a
positive constant c′ such that
(3.16)
‖x− x̃n‖ ≤ ‖x− P ′

nx‖+ ‖P ′
nx− x̃n‖

≤ ‖x− P ′
nx‖+ c‖(I − Kn)(P ′

nx− xn) + (Kn − K̃n)P ′
nx‖

≤ c′
(
‖x− P ′

nx‖ + ‖xn − x‖ + ‖(Kn − K̃n)P ′
nx‖

)
.

It follows from Lemma 3.3, properties (a), (f) and (2.4) that

(3.17) ‖x− P ′
nx‖ = ‖u− Pnu‖ ≤ cs(n)−k/d‖u‖Hk ,

and

(3.18) ‖xn − x‖ ≤ cs(n)−k/d‖u‖Hk .
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From Lemma 3.4, we see that

‖(Kn − K̃n)P ′
nx‖ ≤ cμ[2k − αη, k − α′η;n]μ−(d−σ)n/dμ−kn/d‖u‖Hk .

Observe that

μ[a, b;n]μ−en/d =

⎧⎪⎪⎨⎪⎪⎩
O(1) if e ≥ a, e > b, e > a+ b

or e > a, e ≥ b, e > a+ b

or e > a, e > b, e ≥ a+ b,

O(n) if e = a, b = 0 or e = b, a = 0,

as n → ∞. From this, with a := 2k−αη, b := k− α′η, and e := d− σ,
we obtain that

μ[2k − αη, k − α′η;n]μ−(d−σ)n/d =

{O(1) in case (i),

O(n) in case (ii).

Since s(n) ∼ μn, then

(3.19) ‖(Kn − K̃n)P ′
nx‖ ≤ cs(n)−k/d(log s(n))τ‖u‖Hk .

Substituting (3.17) (3.19) into (3.16) yields the result of this theo-
rem.

4. Singularity preserving multilevel augmentation methods.
In this section, we will develop a fast solver, named the multilevel
augmentation method, to solve the discrete systems obtained by using
the singularity preserving multiscale Galerkin method with the matrix
compression scheme described in the last section.

Our multilevel augmentation method is based on the multiscale space
decomposition, that is, for a fixed � ∈ N0 and any m ∈ N0,

(4.20) X�+m = V ⊕U� ⊕⊥ W�+1 ⊕⊥ · · · ⊕⊥ W�+m.

We are aiming at approximately solving equation (3.14) with n = �+m,
i.e.,

(4.21) (I − K̃�+m)x̃�+m = f�+m.
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To this end, we first denote Qn+1 = Pn+1 −Pn, n ∈ N0, and write the

operator K̃�+m : X�+m → X�+m as the matrix form
(4.22)

K̃�+m=

⎡⎢⎢⎢⎢⎢⎣
P−1K̃|V P−1K̃|U�

P−1K̃|W�+1
· · · P−1K̃|W�+m

P�K̃|V P�K̃|U�
P�K̃|W�+1

· · · P�K̃|W�+m

Q�+1K̃|V Q�+1K̃|U�
Q�+1K̃|W�+1

· · · Q�+1K̃|W�+m

...
...

...
. . .

...
Q�+mK̃|V Q�+mK̃|U�

Q�+mK̃|W�+1
· · · Q�+mK̃|W�+m

⎤⎥⎥⎥⎥⎥⎦,

in which we use K̃ to denote K̃�+m for simplicity. Similarly, the identity
operator I�+m : X�+m → X�+m can be written in the following form
(4.23)

I�+m =

⎡⎢⎢⎢⎢⎢⎣
P−1I|V P−1I|U�

P−1I|W�+1
· · · P−1I|W�+m

P�I|V P�I|U�
0 · · · 0

Q�+1I|V 0 Q�+1I|W�+1
· · · 0

...
...

...
. . .

...
Q�+mI|V 0 0 · · · Q�+mI|W�+m

⎤⎥⎥⎥⎥⎥⎦ ,

where we have used the equations

P�I|W�+j
= 0, Q�+jI|U�

= 0, for j > 0,

and
Q�+iI|W�+j

= 0, for i, j > 0, i �= j,

which can easily be verified by using the relation described by (4.20).

We next split the operators K̃�+m and I�+m as the sums of two
operators respectively, that is,

K̃�+m = K̃L
�,m + K̃H

�,m

with

K̃L
�,m :=

⎡⎢⎢⎢⎢⎢⎣
P−1K̃|V P−1K̃|U�

P−1K̃|W�+1
· · · P−1K̃|W�+m

P�K̃|V P�K̃|U�
P�K̃|W�+1

· · · P�K̃|W�+m

0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

⎤⎥⎥⎥⎥⎥⎦ ,
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and
I�+m = IM

�,m + IS
�,m

with

IM
�,m :=

⎡⎢⎢⎢⎢⎢⎣
P−1I|V P−1I|U�

P−1I|W�+1
· · · P−1I|W�+m

P�I|V P�I|U�
0 · · · 0

0 0 Q�+1I|W�+1
· · · 0

...
...

...
. . .

...
0 0 0 · · · Q�+mI|W�+m

⎤⎥⎥⎥⎥⎥⎦ ,

where K̃L
�,m and K̃H

�,m correspond to lower and higher frequencies of the

operator K̃�+m, respectively, and IM
�,m and IS

�,m correspond to main
and subordinate parts of operator I�+m, respectively. Set

B�,m := IM
�,m − K̃L

�,m,

and

C�,m := IS
�,m − K̃H

�,m.

Operator equation (4.21) is written as

B�,mx̃�+m = f�+m − C�,mx̃�+m.

According to the idea of the multilevel augmentation method (cf.
[7]), we first solve equation (4.21) at an initial coarse level � and then
augment the equation from a coarse level to a finer level one by one.
At each level we solve the equation

B�,mx̃�,m = f�+m − C�,mx̃�,m−1

to update the solution from the coarse level solution x̃�,m−1 to the
finer level solution x̃�,m, where the notations x̃�,i, i = 1, . . . ,m, denote
the solutions obtained by the augmentation method. The process is
repeated until a satisfactory solution is obtained. Since the matrix
representation of the operator B�,m has a very simple form, we will
show later (the matrix B�,m) that the algorithm is fast and efficient.
We now describe the method exactly as follows.
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Algorithm 4.1 (Operator form of singularity preserving multilevel
augmentation methods). Let � > 0 be a fixed integer.

Step 1. Solve equation (4.21) with m := 0 for x̃� ∈ X� exactly.

Step 2. Set x̃�,0 := x̃� and compute B�,0 and C�,0.
Step 3. For m ∈ N, suppose that x̃�,m−1 ∈ X�+m−1 has been

obtained and do the following:

• Augment B�,m−1 and C�,m−1 to form B�,m and C�,m, respectively.

• Augment x̃�,m−1 by setting x�,m :=
[
x̃�,m−1

0

]
∈ X�+m.

• Solve x̃�,m ∈ X�+m from equation

(4.24) B�,mx̃�,m = f�+m − C�,mx�,m.

To implement Algorithm 4.1 we need to present its matrix form.
Corresponding to the form (4.22) of the operator K̃�+m, we write
its matrix representation relative to the singular and multiscale bases
{wi,j : (i, j) ∈ J ′

�+m} as:

K̃�+m =

⎡⎢⎢⎢⎢⎢⎢⎣
K̃�

−1,−1 K̃�
−1,0 K̃�

−1,1 · · · K̃�
−1,m

K̃�
0,−1 K̃�

0,0 K̃�
0,1 · · · K̃�

0,m

K̃�
1,−1 K̃�

1,0 K̃�
1,1 · · · K̃�

1,m

...
...

...
. . .

...
K̃�

m,−1 K̃�
m,0 K̃�

m,1 · · · K̃�
m,m

⎤⎥⎥⎥⎥⎥⎥⎦ .

The matrix representations of operators I�+m, K̃L
�,m, K̃H

�,m, IM
�,m, IS

�,m,
B�,m and C�,m can be given similarly. Especially when we choose {wi,j :
(i, j) ∈ J�+m} to be orthonormal bases, the matrix representations of
operators B�,m and C�,m have the following forms

B�,m

:=

⎡⎢⎢⎢⎢⎣
E�

−1,−1−K̃�
−1,−1 E�

−1,0−K̃�
−1,0 E�

−1,1−K̃�
−1,1 · · · E�

−1,m−K̃�
−1,m

E�
0,−1−K̃�

0,−1 I−K̃�
0,0 −K̃�

0,1 · · · −K̃�
0,m

0 0 I · · · 0
...

...
...

. . .
...

0 0 0 · · · I

⎤⎥⎥⎥⎥⎦
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and

Ck,m :=

⎡⎢⎢⎢⎢⎢⎣
0 0 0 · · · 0
0 0 0 · · · 0

E�
1,−1 − K̃�

1,−1 −K̃�
1,0 −K̃�

1,1 · · · −K̃�
1,m

...
...

...
. . .

...
E�

m,−1 − K̃�
m,−1 −K̃�

m,0 −K̃�
m,1 · · · −K̃�

m,m

⎤⎥⎥⎥⎥⎥⎦ ,

respectively.

Using these notations, the matrix form of Algorithm 4.1 can be
described as follows.

Algorithm 4.2 (Matrix form of singularity preserving multilevel
augmentation methods). Let � > 0 be a fixed integer.

Step 1. Solve x̃� ∈ Rs′(�) from the equation (E� − K̃�)x̃� = f�.

Step 2. Set x̃�,0 := x̃�, and compute the matrices K̃L
�,0, K̃

H
�,0, E

M
�,0,

and ES
�,0.

Step 3. For m ∈ N, suppose that x̃�,m−1 ∈ Rs′(�+m−1) has been
obtained and do the following:

• Augment the matrices K̃L
�,m−1, K̃

H
�,m−1, E

M
�,m−1 and ES

�,m−1 to form

K̃L
�,m, K̃H

�,m, EM
�,m and ES

�,m, respectively.

• Augment x̃�,m−1 by setting x�,m :=
[
x̃�,m−1

0

]
∈ Rs′(�+m).

• Solve x̃�,m ∈ Rs′(�+m) from the linear system

(4.25) B�,mx̃�,m = f�+m −C�,mx�,m.

To derive the detailed computation form and analyze the complexity
of Algorithm 4.2, we partition the vectors x̃�,m and f�+m as

x̃�,m = [x̃�,m
i : i ∈ Z ′

m+1]
T , and f�+m = [f �i : i ∈ Z ′

m+1]
T

respectively, which correspond to the multiscale space decomposition
(4.20). With the help of these notations, equation (4.25) can be written
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as follows: First, compute

(4.26) x̃�,m
i := f �i − (E�

i,−1 − K̃�
i,−1)x̃

�,m−1
−1 +

m−1∑
j=0

K̃�
i,j x̃

�,m−1
j ,

to obtain x̃�,m
i ∈ Rw(�+i), i = m,m− 1, . . . , 1. Next, solve x̃�,m

−1 ∈ Rl

and x̃�,m
0 ∈ Rs(�) from the equation

(4.27)

[
E�

−1,−1 − K̃�
−1,−1 E�

−1,0 − K̃�
−1,0

E�
0,−1 − K̃�

0,−1 I− K̃�
0,0

] [
x̃�,m
−1

x̃�,m
0

]
=

[
f �−1 −

∑m
j=1(E

�
−1,j − K̃�

−1,j)x̃
�,m
j

f �0 +
∑m

j=1 K̃
�
0,jx̃

�,m
j

]
.

It can be seen that, at each level m, the higher frequency part of
the solution x̃�,m is obtained by direct computation, and the lower
frequency part is obtained by solving a system with the same coefficient
matrix

B�,0 =

[
E�

−1,−1 − K̃�
−1,−1 E�

−1,0 − K̃�
−1,0

E�
0,−1 − K̃�

0,−1 I− K̃�
0,0

]
.

Noting that the order of the matrix B�,0 is only s′(�), the algorithm
reduces the computation cost greatly. In the remainder of this section
we will prove that the singularity preserving multilevel augmentation
method enjoys the optimal convergence order and linear computational
complexity (up to logarithmic factor).

Theorem 4.3. Let x be the solution of equation (2.1) with a decom-
position x = v + u, v ∈ V and u ∈ Hk(E). Assume that conditions
(a) (g) hold, and x̃�,m is obtained by using Algorithm 4.1 with matrix
compression described in Section 3 and truncation parameters described
in Theorem 3.6. Then, there exist a positive integer N and a positive
constant c such that, for all � ≥ N and m ∈ N0,

‖x− x̃�,m‖ ≤ c(s(�+m))−k/d(log s(�+m))τ‖u‖Hk ,

where τ is the integer described in Theorem 3.6.
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Proof. It follows from Theorem 3.5 that the operators (I − K̃n)
−1 :

Xn → Xn exist and are uniformly bounded. Moreover, from Theo-
rem 3.6 we see that there exist a positive constant c and a positive
integer N such that, when n ≥ N ,

‖x− x̃n‖ ≤ γn := c(s(n))−k/d(log s(n))τ‖u‖Hk .

Since s(n) ∼ μn as n → ∞, γn+1/γn ∼ ξ := μ−k/d > 0. Therefore,
according to Theorem 2.2 in [8], the result of this theorem is valid
provided the following holds:

(4.28) lim
�→∞

‖C�,m‖ = 0, uniformly for m ∈ N.

To prove (4.28), we observe that

C�,m = IS
�,m − K̃H

�,m,(4.29)

IS
�,m = I�+m − IM

�,m = (P�+m − P�)P ′
−1|X�+m

,

and

K̃H
�,m = K̃�+m − K̃L

�,m = (P�+m − P�)K̃�+m|X�+m

= (P�+m − P�)K|X�+m
+ (P�+m − P�)(K̃�+m −K�+m)|X�+m

,

where P ′−1 : X → X is a linear operator defined by

P ′
−1x = v, for x = v + w with v ∈ V and w ∈ W .

Since the operator P ′
−1 has finite dimensional range, it is compact.

Noting that the orthogonal projection Pn pointwisely converges to the
identity operator, we conclude that ‖PnP ′

−1 − P ′
−1‖ → 0 as n → ∞.

This yields

(4.30) lim
�→∞

‖IS
�,m‖ = 0, uniformly for m ∈ N.

Likewise, the compactness of operator K leads to

(4.31) lim
�→∞

‖(P�+m − P�)K|X�+m
‖ = 0, uniformly for m ∈ N.
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On the other hand, it follows from Lemma 3.4 that, for any x ∈ Xn,

‖(K̃n −Kn)P ′
nx‖ ≤ cμ[k − αη, k − α′η;n]μ−(d−σ)n/d‖u‖,

which means that, for our choice of the parameters,

‖(K̃n −Kn)|Xn‖ −→ 0, as n → ∞.

This with (4.31) leads to
(4.32)

‖K̃H
�,m‖ ≤ ‖(P�+m − P�)K|X�+m

‖+ 2‖(K̃�+m −K�+m)|X�+m
‖ −→ 0,

as � → ∞,

uniformly for m ∈ N.

Combining (4.29), (4.30) and (4.32) yields (4.28), and completes the
proof of this theorem.

We now estimate the computational cost (the total number of multi-
plications) for obtaining the solution x̃k,m. To this end, we require an
additional condition.

(h) Computing the integrals (entries) that appear in En, K̃n and fn
requires a constant computational cost per integral.

Lemma 4.4. The total number of multiplications required for ob-
taining x̃�,m from x̃� is bounded by

(m+ 1)M(�) +

m∑
i=1

[N (E�+i) +N (K̃�+i)],

where M(�) denotes the number of multiplications required for solving
equation (4.27) with a known right hand side.

Proof. For fixed �, m ∈ N, we needN (C�,m) multiplications to obtain

the right hand side of (4.25). Since C�,m = ES
�,m−K̃H

�,m, the number of

multiplications to obtain x̃�,m
i , i = 1, 2, . . . ,m, from (4.26) is less than

or equal to N (ES
�,m) +N (K̃H

�,m). On the other hand, the computation
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of the right hand side of (4.27) requires N (EM
�,m) +N (K̃L

�,m) numbers
of multiplications. Since we have assumed, that solving x̃� from (4.27)
with a known right hand side needs M(�) multiplications, the total
number of multiplications for computing x̃�,m from x̃�,m−1 is less than
or equal to

(4.33) N�,m := M(�) +N (E�+m) +N (K̃�+m).

Recall that, to obtain x̃�,m, we first compute x̃� and then use
(4.26) (4.27) to compute x̃�,i, i = 1, 2, . . . ,m, successively. The total
number of multiplications required to obtain x̃�,m is bounded by

M(�) +

m∑
i=1

N�,i = (m+ 1)M(�) +

m∑
i=1

[N (E�+i) +N (K̃�+i)].

The proof is complete.

Theorem 4.5. Let �, m ∈ N. Assume that conditions (a), (b)
and (h) hold, and x̃�,m is obtained by using Algorithm 3.2 with matrix
compression described in the last section and truncation parameters
described in Theorem 3.2. Then, the total number of multiplications
required for computing x̃�,m is

O(s(� +m) logτ (s(� +m))), as m → ∞,

where τ is the constant appearing in Theorem 3.2.

Proof. According to Lemma 4.4, the total number of multiplications
required for computing x̃�,m from x̃� is bounded by

(m+ 1)M(�) +

m∑
i=1

[N (E�+i) +N (K̃�+i)].

Noting that E�+i is the matrix representation of I�+i, it follows from
(4.23), Theorem 3.2 and condition (h) that

N (E�+i) = O(s(� + i)),
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and
N (K̃�+i) = O(s(� + i) logτ s(� + i)).

Since m ∼ log(s(�+m)) as m → ∞, we conclude

m∑
i=1

[N (E�+i) +N (K̃�+i)] = O(s(� +m) logτ (s(� +m))), as m → ∞.

This with the fact that M(�) is a finite number for any fixed integer �
yields the estimate of this theorem.

5. Numerical experiments. In this section we present the
numerical experiments to demonstrate the efficiency and accuracy of
the proposed fast singularity preserving methods.

Consider the integral equation

(5.34) x(s) −
∫ 1

0

K(s, t)x(t) dt = f(s), 0 ≤ s ≤ 1,

where K(s, t) := log(|s − t|)m(s, t) is a weakly singular kernel with
a smooth function m(s, t) := exp(2st) and f(s) is chosen so that
x(s) = s log s + (1 − s) log(1 − s) + s2 is the solution of the equation.
That is,

f(s) := s log s+ (1− s) log(1− s) + s2

−
∫ 1

0

log(|s− t|) exp(2st)[t log t+ (1− t) log(1− t) + t2] dt.

The solution x of (5.34) has singularities at s = 0 and s = 1.

We set V := span {w−1,0, w−1,1}, where (cf. [2])

w−1,0(s) := s log s, and w−1,1(s) := (1− s) log(1− s).

We choose Un as the space of piecewise linear polynomials with the
knots at j/2n, j = 1, 2, . . . , 2n − 1. The basis functions of W0 and W1

are given by

w00(s) := 1, w01(s) :=
√
3(2s− 1),
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and

w10(s) :=

{
1− 6s s ∈ [0, 1/2],

5− 6s s ∈ (1/2, 1],

w11(s) :=

{√
3(1− 4s) s ∈ [0, 1/2],

√
3(4s− 3) s ∈ (1/2, 1],

respectively. The basis functions wi,j , (i, j) ∈ Jn, are generated
recursively by

wi,j := Tεwi−1,l, j = ε+ 2l, i = 2, 3, . . . n,

where Tε is the isometry defined by u ∈ X,

Tεu :=

{√
2u(2t− ε) t ∈ [ε/2, (ε+ 1)/2],

0 t /∈ [ε/2, (ε+ 1)/2],
ε ∈ {0, 1}.

The weakly singular integrals appearing in the numerical solution
of the example are computed by employing Gauss-type quadrature
formulas with a change of variables for the integral and a graded mesh
for the integral interval introduced in [16, 19]. We denote by N(n) the
dimension of the approximate subspace of the solution. The notations
C.R. and C.O. stand for the compression rate and convergence order
defined, respectively, by

C.R. :=
N (K̃n)

N (Kn)
, and C.O. := log2

‖x− x̃n−1‖
‖x− x̃n‖

.

The symbol C.T. denotes the computing time for solving the truncated
linear system measured in seconds running on the PC with 1.83G
CPU and 2G RAM. The results by using the Gauss-Seidel iteration
method to solve the truncated discrete equation (3.12) are included
in Table 1, where I.N. denotes the iteration number, while Table 2
lists the results of using the multilevel augmentation method described
in Section 4 (initial level � = 5) to solve (3.12). The L2 error is

computed by (
∫ 1

0
(x(s)− x̃n(s))

2ds)1/2. Figure 1 illustrates the error by
the iteration method and the multilevel augmentation method to solve
the discrete system. For the piecewise linear scheme, the convergence
order of the approximation should be 2, and from the numerical results
above we can see that the multilevel augmentation method doesn’t ruin
the convergence order. Therefore, the numerical experiments confirm
the theoretical analysis and illustrate the efficiency of the methods
presented in this paper.
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FIGURE 1. (a) errors by the iteration method; (b) errors by MAM.

TABLE 1. Numerical performance of the Gauss-Seidel iteration.

n N(n) C.R. C.T |x− x̃n|L2 C.O. I.N.

5 34 0.834 < 0.01 2.8475e-004 1.999 10

6 66 0.651 < 0.01 7.1120e-005 2.001 11

7 130 0.449 < 0.01 1.7890e-005 1.991 13

8 258 0.300 0.019 4.5665e-006 1.970 14

9 514 0.189 0.038 1.1397e-006 2.002 14

10 1026 0.117 0.115 2.8687e-007 1.990 16

11 2050 7.205e-002 0.289 7.2118e-008 1.992 17

12 4098 4.314e-002 0.684 1.8406e-008 1.970 18

13 8194 2.569e-002 1.687 4.6449e-009 1.986 19

14 16386 1.530e-002 4.136 1.3313e-009 1.803 19

TABLE 2. Numerical performance of the MAM.

n N(n) C.R. C.T |x− x̃n|L2 C.O.

6 66 0.651 < 0.01 7.1150e-005

7 130 0.449 < 0.01 1.9440e-005 1.872

8 258 0.300 < 0.01 4.9542e-006 1.972

9 514 0.189 0.013 1.2622e-006 1.973

10 1026 0.117 0.031 3.1792e-007 1.989

11 2050 7.205e-002 0.063 7.9947e-008 1.992

12 4098 4.314e-002 0.132 1.9995e-008 1.999

13 8194 2.569e-002 0.252 5.0481e-009 1.986

14 16386 1.530e-002 0.605 1.4451e-009 1.805
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