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ABSTRACT. In this paper additional order of convergence
is studied in the qualocation method for elliptic periodic
pseudodifferential operators. Splines with multiple knots are
used as trial and test spaces. Results are proved for both
constant and variable coefficients.

1. Introduction. In this paper we study the qualocation method
for pseudodifferential operators of the form

(1.1) L=Lo+L,
where
(1.2) Lov(z) := Z oo(z,n)o(n)e*™* for x € T.

Here T := R\Z is the one-dimensional torus of length 1 and
v(n) = / v(x)e 2™ dx  for n € Z
T

are the complex Fourier coefficients of a 1-periodic distribution v : T —
R so that

(n)e®™*  for z € T.
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The symbol o has the form

w o0(a,€) = a* (@)l +a” (x)sign (©)[€l°
forreTand 0 ££ € R

with coefficients a™ and a~ in C°°(T), where 3 € R is the order of

Ly. We assume o9 to be normalized by oo(z,0) =1 for x € T. L is

assumed to be elliptic, i.e., og(z,£) # 0 for z € T and |¢] = 1, and to

have index x = 0, where

1 + “(2)1"
him o arga (z) +a (z)

T at(x) —a=(x)],

is the winding number of the closed curve (a™ +a~)/(a™ — a™) in the
complex plane. It is known that then Ly : H® — H* ? is a Fredholm
operator with index 0 for all s € R, where H* = H*(T) is the usual
Sobolev space of periodic distributions v equipped with the norm

o= (3 a<n>|2)1/2,

(1.4) n=Tee

1 ifn=0,
where (n) := {

[n| if n #O0.

It is at least assumed that L; maps H® — H5=P*% for some § > 0 and
all s € R, and hence L is also Fredholm with index 0.

We consider the discretization of (1.1) by qualocation using splines
with multiple knots on equidistant meshes as test and trial spaces. Let
r,M,N with 1 < M < r be positive integers. We define the set of
knots

7y = {x; =jh,j=0,...,N—-1}, heMH:={1/N,N e N},

and denote by S;’M the space of 1-periodic splines of order r with
M-fold breakpoints in 7p,. SZ’M is a subspace of C""M~1 of dimen-
sion M N, where C¥ = C*(T) is the space of 1-periodic k times contin-
uously differentiable functions (with C~! meaning piecewise continuity

with jumps only at the knots in 7). By H1 we denote a final section of
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the null-sequence of stepsizes H, not necessarily the same at different
occurences.

Qualocation is based on a composite quadrature rule

N-1 J

(1.5) Qnf=hY Y wif(wry), @, =k +hé;,

k=0 j=1

derived from the basic quadrature formula

7
(1.6) Qf =) wif(&),

j=1
where the quadrature points {£;} and weights {w;} satisfy

J
(17) 0<&<b<--<&<l, J>M Y wi=1,w>0.

j=1
Associated with the quadrature rule we define an inner product
(1.8) (Vh, wh)h = QN (vAWh)

on the linear space W}, of ‘grid’ functions v, and wp, which are functions
defined on the grid

(1.9) m, = {zk;, k=0,... , N—-1, 5=1,...,J}

The inner product in (1.8) can be thought of as an approximation to
1
(1.10) (v,w) := / v(z)w(z)dz for v,w € L*(T).
0

In [5] we derived conditions that (-,-) is an inner product on S’;’M
that are recalled in Section 2.

We choose now splines of order r as trial space and splines of a
possibly different order 7’ as a test space. The qualocation method
for solving the equation Lu = f approximately is to find up € S}’
such that

(1.11) (Lup, zp)n = (f,zn)n  for all zj, € S;’,M-
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This method can be viewed as a discrete version of the Petrov-Galerkin
method. Conditions to make (1.11) well-defined can be found in
Section 5.

Based on approximation properties of periodic multiple knot splines
obtained in [5], which are partly reviewed in Section 5, the authors
proved basic convergence results for the qualocation method (1.11)
in [6]. The main convergence result obtained there is reproduced as
Theorem A.12.

It was first noted in [2] that, by specifically designed quadrature rules,
it is possible to obtain higher convergence order than the standard one
from (A.18). This feature was further developed in [9, 10] for more
general pseudodifferential operators, also with variable coefficients,
using smoothest splines. The aim of the present paper is to prove
additional convergence order for the qualocation method using multiple
knot splines. For operators with constant principal part which are
discretized by collocation, such results can be found in [7]. Collocation
is a special case of qualocation, obtained for J = M.

The principal results in this paper are for the constant coefficient
case Theorem 2.4 and for the variable coefficient case Theorem 3.2.
The additional convergence order results given here are, as in [2,
7], based on assumptions on the asymptotic behavior as y — 0 of
certain characteristic functions obtained when applying the qualocation
method to Lo (see Definitions 2.2 and 3.1). This differs from the
analysis in [10] for smoothest splines, where the degree of exactness
of certain quadrature formulas is directly used. In the last section we
specialize the condition of additional order from Section 3 to the case
of symmetric quadrature formulas thereby rediscovering the conditions
in [10] if M = 1.

2. Additional order of convergence, constant coefficients. In
this section we prove additional order convergence results for the case
that Lo has constant coefficients. We need some definitions from [5,
6].

Related to the operator Lg are the following characteristic functions

Zk 1
(21) £7yﬂ %UO €T, y+€ +Z) (g)

(2.2) (& ;@) =1+ (0o(@,y) 'y (& ysa) fory #0,
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(23) Ql(f,O,x) = ]-a

(2.4) Q& y;2) == ﬁk(f,y;x) for k=2,...,M.

We omit the variable x in the notation if o is independent of x. For
Q to be well defined we assume throughout the paper that

(2.5) B+ M <r.

Then it follows that the above Fourier series are absolutely convergent
and Q4 (&, ;) is continuous at y = 0 with value equal to 1.

Of special interest is the case that Lg is the identity, i.e., 8 = 0
and o9 = 1. With this setting the notation A in place of 2 is used.
The condition (2.5) is in this case relaxed to M < r, where now the
Fourier series are always understood to be the limit as L — oo of the
symmetric partial sums extended from —L to L. With the aid of these
functions the following basis of the spline space S;’M was found (see
[5, Proposition 2.1]):

i) = (@) (Ve 5 )

(2.6)
fork=1,... , M and pu€ Ay,
where
N N
(2.7) Ay = <—?,5] NZ with Nh=1.

As test space the splines SZI’M with 7’ possibly different from r are
used, and we denote the corresponding quantities by 1/1}67 T A} and A].

A central role in the analysis is played by the so-called qualocation
projection Ry, : Wy, — S;’M defined by

(2.8) (Ri fr,¥)n = (fn,®)n  for all € Sp.

The following condition (R) is necessary and sufficient that the positive
. . .. . . T, M
semidefinite sesquilinear form (-,-);, is an inner product on S;"™" (see

[6, Lemma 3.1]), thus guaranteeing that Ry is well-defined.
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Definition 2.1. We say that the condition (R) or (R') is satisfied
if the functions {Ag(-,y),k =1,... ,M} or {AL(-,y),k=1,... ,M},
respectively, restricted to the set (1.7) of quadrature points are linearly
independent for |y| < 1/2. o

The stability of the qualocation method is determined by the elliptic-
ity of the numerical symbol defined as the M x M-matrix D = D(y; z)
for |y] <1/2 and « € T with elements

(2.9)  [D(y;2)]k,e := Q(Q(-,y;3), AL(-y)) for k,=1,..., M.

The numerical symbol is said to be elliptic if D(y;z) is nonsingular for
z € T and |y| <1/2.

Throughout the paper we assume that conditions (R) and (R') are
satisfied and that the numerical symbol D is elliptic. We need the
following definition.

Definition 2.2. Let b > 0. The qualocation method is said to have
additional order b of convergence if

(2'10) ZD 1, kQ Q1 )7A;c(7y)) < C|y‘b as y — 0,
where
J
(2.11) Q(v,w) :=Y wv(&;)w(E;)
j=1

Remark 2.3. If 0 < b < 7/, Condition (2.10) is equivalent to
DI +ZD JTAQ (1 (5v), AL ()|
< C|y\b as y — 0.
Proof. Since A}(-,y) =1+ y" A)(-,y) it is sufficient to show that

DH)TIRE(E ), Bi(6:9)| < € for g e Rand |y < 3.
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Due to the ellipticity the factor D(y)l_j is bounded for |y| < 1/2.
Also €4 (€, y) is bounded since the series in its definition is uniformly
convergent with respect to (§,y). If ' > 1 also the series defining
é’l(f,n) is uniformly convergent with respect to (&,y), and hence
A’ (+,-) is bounded. We are left with the case v’ = 1. Then A} can be
written in the form

(©))

Z

:i 22_y£2 cos 2mlé — io: 2it sm27r€§
2w
=

M

1
cos 2mlé — sm 2mlé + 2mi <— — )

Y
y2 — (2

for £ € (0,1) and |y| < 1/2, from which the boundedness can be seen.
In the last formula line it was used that

(e o]

Z%sin27r€§:27r<%—£> for £ € (0,1). O

=1
In the case of collocation Definition 2.2 coincides with the one given
in [7, Equation (2.12)]. If M = 1 Definition 2.2 is equivalent to
[Q(21(9), AL(L )| < Clyl” asy =0,
which can be identified with condition [2, Equation (3.9)].

The main result of this section is stated in the following theorem.

Theorem 2.4. Assume that conditions (R) and (R’) are satisfied
and that the numerical symbol D is elliptic. Let L : H? — H° be
injective and

1 1
(2.12) s<r—M+§, B—b§s§,8<t—§, s<t<r.

The qualocation equations (1.11) are uniquely solvable for h € H;.
Let the qualocation method have additional order 0 < b < r — 3 of



390 R.D. GRIGORIEFF

convergence, and let Ly in (1.1) be a bounded map from HI — HIt6—B
for all ¢ € R. Then, if u € H*°B, the following error estimate with
additional order of convergence holds:

(2.13) llu — uplls < CR*"%||ul|t—s+p for h € Hi.

The corresponding additional order convergence results in [2, 7] are
contained as special cases. The highest rate of convergence given by
(2.13) occurs when s = 8 — b and ¢t = r, in which case

(2.14)  |ju —unllg—p < CA" P\ ull,yp for u € H™™® and h € H,,

while the highest rate from the basic Convergence Theorem A.12 is
only

(2.15) lu—unlg < Ch" P|lull, foruec H" and h € H;.

The proof of the theorem is prepared by a couple of lemmas. In
the next lemma we split the error u — uy in four parts which will be
separately estimated afterwards. We always assume in this section
that the symbol oy has constant coefficients. A prime on a sum sign
indicates that the m = p term is to be omitted.

Lemma 2.5. Assume s <1 — M + (1/2), let w € H®, and represent
rM .
up € S in the form

M
(2.16) =Y hutin

k=1 p€Ap
Then
(2.17)
M
= un 2 < c( S ) — e+ N30 Y |ck,u|2)
BEAR k=2 peAy
!
£ S ) a(m)?

HEAR M=p

+ Z Z,<m>23\61,u$1,p(m)|2.

HEARL M=p



ADDITIONAL ORDER CONVERGENCE 391

Proof. Denote by uf) the part of up, in (2.16) in which the summation
is only extended from k = 2,... , M. With the aid of Proposition A.3

applied to u,(f) and with {ﬁ\l,}t(y) = 0, for p,v € Ay, (see (A.1)) we
obtain

25 [~ R ~(2 2 2
= wnl2 <237 m)* [am) - @ - af?) m)|* + 20?2

meZ

/ N 2

<o T X o (jam +| T cvntiotm)] )
pEA, m=p vEA

M
25 ~ s
+ 3 W faw) — e P+ 823 Y |ck,u|2>.
BEAR k=2 peAy,

The assertion now follows by taking into account that 121\17,,(m) =0if
v ZEm. O

Let us point out that it is important for upcoming estimates (see
Lemmas 2.7 and 2.9) that the low order frequencies in the error u — uy,
are arranged such that the coefficient combination @(p) — ¢1,, appears.

Lemma 2.6. Assume s <3 <t—(1/2) and u € H"=**P. Then

219 X (00 X lamiatml) <l

HEAR

Proof. Taking the form (1.3) of o into account we have the estimates

!
> loo(m)i(m)| < CY " p+ ENP[a(u + (N)]
m=pu {#0

=CNPY

££0

ch(Z

££0

P
£+ fa(u+en)|

2(s—t)> 1/2

Ll
N+£
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2(t—s+pB)
« (Z

L#0

1/2
< CNS_t(Z’mZ“_S*ﬁ)ﬁ(m)IZ) ;

m=p

1/2
£+t la(u +€N)|2>

where the first sum in the third line converges uniformly for u € Ap,
since 2(s—t) < —1 and |u/N| < 1/2. Note that (u) > 1 and s — 5 < 0.
The assertion is thus obtained after multiplying by (msfﬁ , squaring
and summing up with respect to u. ]

Lemma 2.7. Assume 8+(1/2) < t, and letu € H. The qualocation
solution uyp, in the case L = Ly, written in the form (2.16), satisfies the
linear system

(2.19) D<%>c; =dy, for p € Ap,
where
(2.20)

. oo(p)(c1,, —u(p)) fork=1,
Ck#‘/ = B

NPey fork=2,... M,

(2.21)

i = )+ )
(2.22)

T —1
s ( AR
i =-a (3 ) oo(%) () k() o
(2.23)
14
dl(cZ,),L = Z o (m)Q<‘I>(m—M)/N,A;c< , %))ﬂ(m) fork=1,... , M
m=p

Proof. The coeflicients of the qualocation solution satisfy the linear
system

(2.24) D<%>EM =d, for pec Ay,
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where ¢, and d,, are from (A.16) and (A.17), respectively. Taking (A.4)
(with 9y, replaced by 1y ,) into account, the components of d,, can be
written as

i = (Lo, ¥ )n = D 00(m)a(m)(®m, ¥, )n

meZ

= Z ag(m <‘1’<m u)/NvAk< ;f,))

= 00 (1) A(1)Q (1’ Al < %>>

!

+ X anmam)@( - 24 5 ) ).

u

Subtracting oo(p)u(p) from the variable ¢; , in the system (2.24) the

equations (2.19)—(2.23) are now readily verified upon recalling the
nd

definition (2.9) and (2.1) of D(y) and €, (-,y), respectively. O

Lemma 2.8. Assume B+ (1/2) <t <r. Let u € H' and L = L.
If the qualocation solution uy is written in the form (2.16), then

M
(2.25) N33 feul < ORfulle

k=2 peA,

Proof. Consider the linear system (2.19). D(y) is continuous for
lyl < 1/2, and the ellipticity implies that the matrix D(y) has a
bounded inverse uniformly in y. Since c,, = N‘ﬂcz’u for £ > 2, we

can derive the estimate (2.25) by bounding N*# dy, correspondingly.
Note that the quantities of the form Q(:,-) in (2.22) and (2.23) are
uniformly bounded. Thus, for k =1,... ,M,

T -1
s et 20 5 (2 o(2) o
HEAR HEAR
0#£pEA,

— ON2(D) Z
< CRlul7,
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where we took |u/N| < 1/2 and r —t > 0 into account and that, due
to the ellipticity of Lo, |oo(p)| > v (1)” for some v > 0. Also

2
> \Ns—ﬁdgjlf < oNe-A) Y <Z'|ao(m)a(m)|>

BEAR pEA, “m=p

< CR* ) ful7,

where we applied (2.18) with s = 8. The two estimates together furnish
the result. ]

Lemma 2.9. Assume f —b < s < <t—(1/2) andt < r. Let
u € H 1P and L = Ly. Assume that the qualocation method has
additional order b of convergence. If the qualocation solution up is
written in the form (2.16) then

(2.26) D (™ fa(n) — erul® < ORI ullf_ .
HEAR

Proof. We start from the system (2.24). Since D! is bounded we
obtain, by virtue of the additional order of convergence, the bound

7’
< ~
<(|5

-1

<N
>0 (%), 5

1k

r+b

where @, is from (2.21). Recall that |oo(u)| > v (1)? holds for some
v > 0. Thus, inverting the left-hand side of (2.19) and multiplying the
resulting first equation by (u)° /|oo(p)| (< C (u)*~

(%)

™ Y ()i )

#) we obtain

)

r+b
(ZW)<Mﬂq#ﬂWN§O<WV

el
N
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Now square both sides of (2.27), estimate the right-hand side using the
sum of squares and sum up with respect to y € Aj. The last quantity
in the resulting right-hand side of (2.27) can be estimated with the aid
of (2.18) in the form we need. The first one vanishes for g = 0 and can
be bounded by

s+b—B+r—t

CN*~* ua(p)]-

N

Taking |u/N| < (1/2) and s+b—+r —t > 0 into account the desired
bound is obtained. O

Lemma 2.10. Assume s <t and uw € Ht. Then

(2.28) S°3 ) amm)[? < CRA ) Jul .

pEAL, M=p

Proof. The assertion follows from the chain of relations

SN mEam)PE = 30 S ImPe 0l am))?

HEAR, M=p HEAL M=p

— N2(sft) Z Z

HEAR £#£0
i+ ENPH a4 EN)P
< CR*9JullZ,

2(s—t)

el
N+€

where in the final step we used |u/N +£|2(*=) < C since |u/N| < (1/2)
and s —t <0. n]

Lemma 2.11. Assume s <r—M + (1/2) and 8 <t < r. Ifup is
written in the form (2.16), then

! ~
(2.29) > D m) lerutu(m) < OB ullf.

HEAR m=p
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Proof. From (A.1) we see that 121\1#("1) = (u/m)" for m = p, m # u,
and thus

S S ) e B (m)?

BEAR M=p
!
< 3 S P e, P
HEARL M=p
1 2(s—r) 1 2(r—t)
SN S (Z Nt 5 >|Ml2t|01,ul2-

0#pEA, ™ £#£0

Since 2(s—r) < —1, |u/N| < 1/2 and r —t > 0 the inner sum converges
uniformly for p € A, and we obtain

! ~
33 m)® et (m) < CREE D fluy |2, < CH2E ) ul 2.
REA, M=p

The last inequality is implied by Lemma 2.12 with vy := uy, where it
is known from the basic Convergence Theorem A.12 that uy satisfies
the condition in the lemma with v := . o

Lemma 2.12. Assume condition (R) holds. Let v, € S;™ satisfy
|lv —vnllg < Cht=P|v]|; for some v € H* with t > B. Then ||jvp||¢n <
Cllvfe-

Proof. Recall the definition (A.11) of P;"*. With the aid of the inverse
inequality (A.8), the approximation power (A.12) of Pg’l, Lemma A.8
and Proposition A.3, we obtain

lonlle < llon = Py vllesn + 125 olle,n
< W0 fon = Pyl n + Jlolle
< OB~ |lon = P ol + |lolle
< CH ™ (llon — vllg + llo — Prrollg) + [lolle
< CHZH (R ulle + B wlle) + [lolle
< C|vle- o

Proof of Theorem 2.4. We prove the theorem for the case L = Ly,
a proof of the extension to the general case is given at the end of
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the proof of Theorem 3.2. The four quantities on the right-hand side
of (2.17) are estimated in Lemmas 2.8-2.11 in accordance with the
asserted estimate. O

3. Additional order of convergence, variable coefficients. In
the variable coefficient case a direct Fourier analysis as in the section
before cannot be carried through. The proof of additional powers
of convergence relies instead, as in [10], on a dual argument and a
strengthened condition of additional order of convergence.

We denote by LE and Lg the special case of pseudodifferential
operators Lo that are defined with the symbol coefficients a™ = 1,a~ =
0 and a™ = 0,a~ = 1, respectively, such that Ly = a+L'B" +a"Lg.
Recall our principal assumption

(3.1) B+M<r and M <7

Definition 3.1. Let b € N. The qualocation method is said to have
strong additional order b of convergence if

(3.2) |Q(ﬁk(,y),1)| <Clyl® asy—0fork=1,..., M
with Qk to be taken for both L}' and Lg and

(3.3) 1Q(L, AL (y))| < Cly[" P+ asy =0,

(3.4) |Q(1,ﬁfc(,y))| <Cly"? asy—0fork=2,..., M.

It may be helpful for interpreting the two conditions in Definition 3.1
to hint to the fact that Q(Qk(-,y), 1) can be considered as the result
of the quadrature rule @ applied to the integral (ﬁk(-,y), 1), which
vanishes as is immediately seen from the definition of §~2k,. If one thinks
of an expansion of Q(+,y) with respect to y, where the coefficients are
functions of £ (see (3.33)), this means that some of these functions at
the beginning of the series are integrated exactly, i.e., to zero. These
observations apply also to Q(l, AL(, y))
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In the case M = 1 and an z-independent elliptic numerical symbol
D Condition (3.2) coincides with the condition in Remark 2.3. The
relation to the conditions in [10] (for the case M = 1) is elaborated in
Section 4.

We denote by L§7 ;» 1 € N, the operators corresponding to L? but of
order 8 — 7 in place of 8. The main theorem in this section is

Theorem 3.2. Assume that Conditions (R) and (R’) hold and that
the numerical symbol D is elliptic. Let (3.1) and

1 1
(35) s<r—M+ = ,ﬂ 5<r'fM—|—§, s§ﬁ<t75, s<t<r

be satisfied. Let the qualocation method have strong additional order b
of convergence with b € N satisfying

(3.6) B —s5<b<min(r',r — 3).
Let L have the form L = Lo+ L, + K, where

Lo (T( )Lj +ag (2)Lj,
b—
Z i+az’_($)LE—i)

and K is a bounded map from H? — HI* P for ¢ € R. Let L
map HP — HOC injectively. Then the qualocation equations (1.11)
are uniquely solvable for h € Hy. If u € H'=*1P8 the following error
estimate holds:

(3.7) lu —upl|s < Cht_s||u||t,s+g for h € Hi.

Remark 3.3. If a = 0 or af = 0 for i = 0,...,b, then it is
sufficient that the qualocation method has strong additional order b
of convergence to require (3.2) for LE or LE only, respectively.
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We prepare the proof of Theorem 3.2 by a couple of lemmas. In all
proofs the norm equivalence from Proposition A.3 and the boundedness
of the quantities

o) i(o)) (i),

for p € Ay, will be used without further notice. In the following lemmas
up, € S;’M and v, € S}, M Wil be represented in the form

M M
(3.8) Up = Z Z Ck Pk and vy = Z Z dz,;ﬂﬁz,,”

k=1 p€Ay 0=1 peAy

respectively. We recall our general assumption that (R) and (R') hold
and D is elliptic.

The following duality argument is an essential ingredient in the proof
of the next lemma.

Lemma 3.4. Assume that s and o satisfy

1 1
0§B—s<r'—M—|—§, s<r—M+§

1 1 1
oM+ = — ~,1].
ge<2,r v 6)0(2,]

Let v € HPT? | and let uy, € S;’M satisfy the qualocation equations

and

(Lo(u — up),vn)n =0 forup € S,TL”M.
Then the estimate
(3.9) |lu—wunlls <C [hﬂ_sllu —unllg + R — un|g o

+ max H ﬁup {5i|(L§(U —un),vn)o — (L (u = un), vn)nl;
vpllg—s<1

Vp € S;”M}]
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holds, where

5+‘{1 ifat #0 5‘{1 ifa” #0
" lo ifat =0, "0 ifa =0.

Proof. Since Ly is injective and a Fredholm operator with index zero,
it follows that Ly maps H® — H* P bijectively and hence the adjoint
L} of Ly with respect to the L?(T) inner product (-, )y maps the dual
spaces H?~* — H~* bijectively. For a given w € H™* let v € HP~* be
the solution of L{v = w. Invoking the approximation power (A.12) of
the projection P}, on SZI’M from (A.11) with r = 7/ we obtain
(3.10)

|(w = un, w)o| = [ (v — un, L§v)o |—|L0u—uh) v)o|

| Lo(u — up),v — Plv) 0‘+| Ly ufuh),P,'lv)0|

| /\

ChP=*||u — uh”ﬂ“””ﬁfs +[(Lo(u — un), Pv)o-

The last quantity is bounded by

|(Zo(u — un), th) |
= (Lo n), Phv)o = (Lo(u — un), Pro)n]
‘(L+ u— up),at Plv)y — (Lg‘(u —up,),atPjv) h|
+ |(L (u — up,),a=Plv)y — (Lg (u—up),a~ th)h|
< maox || (L (u = wa), (1 = P})(@® Piv))o|
+ (L (u —un), (1 — Pp)(a*Ppo))a|

+ 6% |(L5 (w—un), vy )o — (L5 (u — un), v )a

I

where v := P/ (aFPlv) € SI*™. With the aid of Theorem A.10, the
inverse inequality (A.8) on SZI’M (in the case 8 — s > r' — M use the
hypothesis 7' — M +1/2 > 8 — s instead) and ||v||g_s < Cl|lw|/—s we
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see that

(L5 (u = un), (1 = P;)(aE Pv))o]
< CR™ M |u = u | gl| Pl -
< O lu = un gl Phvllmin(s—s,r— )
< OWP™*||u — wnllgl|vllmin(s—s,r— )
< CRP*llu = unlgllwl| .

Similarly, with (A.10) for Pj in place of P, Proposition A.5 and
Theorem A.10 we obtain

(L3 (u = wn), (1 = Pf) (@ Pho)il
< (10 = POLE (w = wn)l + I PALE (w = wn)lln ) (1 = Ph) @ Pyo)ln
< C (W ILE (u — wn) o + IPALE (u — wn)llo) BII(L — Pr)(@E Pyo)lls

< C (W |lu = unllgro + llu = unlls) ™| Pollor—ar
< R (0 |lu — unllpro + llu — unllp) lw]|-s.

We combine the above estimates and end up with

|(u = un, wo| < C [A7*|lu— unllg + 1" lu — unllgso] wll-s

+ mfxéi\(Léc(u - Uh),v;jf)o - (LEE(U - “h)’vijf)h"

After taking the supremum with respect to [|w||-s < 1 and since
v |lp—s < Ollw||_s, the assertion follows. o

In the next lemma we use the elementary operator

(3.11) J:H® — H', Jv:=(v,1)g forv € H® and s,t € R.

Lemma 3.5. Assume condition (3.4) holds. Let vy, € SZ/’M. Then

(3.12) (vn, 1)n = n(0) = (vn,1)o
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and

(3.13) (Ju,vp)n = (Ju,vp)o  forv e H® and s € R.

Proof. Note that Q(1, A}(-,0)) =0for k =2,... , M as a consequence
of (3.4) since A} (&,y) is for each ¢ € [0,1) continuous in y = 0. The
continuity of A} (,y) for k = r’ can be seen by a similar argument as
in the proof of Remark 2.3. We then calculate, taking (A.4), (3.4) for
y = 0, the definition of A} and (A.5) into account,

M

(0 D= > die (W, 1 Po)n

k=1peA,

M
= Z dk,OQ(A;c(7 0)7 ]-)
k=1
=di1,0Q(1,1) =di,0 = (vr, ®o)o = V4(0) = (v, 1)o

proving (3.12). Then also (3.13) is obtained from
(Jv,vp)n = (v, 1)o(L,vr)n = (v, 1)o(L,vn)0 = (Jv,vp)0. O

Lemma 3.6. Assume S+ (1/2) <t,0<B—s<r'—M+(1/2) and
w € Ht=tP . Then, for{=1,... ,M

!
314) 3 ol 3 loo(m)am)| < Ot [onllg—sllulle—ss-
peEAL m=p

Proof. With Schwarz’s inequality the square of the left-hand side of
(3.14) can be bounded by

> P el 3 (0 S o(myatm)])

nEA, HEAR
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The assertion follows after an application of Proposition A.3 and
Lemma 2.6, where in the case £ = 2,..., M the estimate (u) < N
was used in the first sum. o

Lemma 3.7. Assume B—s<r'—M+(1/2) and B+ (1/2) <t <r.
Then, for{=2,... , M

Uo(mcw%)TJO(%)UWQ(@I (&) (- 2))

< Ch*=*||vallg—s]lulle-

(3.15)

D

HEAR

Proof. The term with g = 0 in the sum vanishes. Taking |u/N| < 1/2
and 7 —t > 0 into account, the left-hand side of (3.15) can be bounded
by

r—t
8 5 i
0ApEAR
1/2 1/2
con( X wans) (X WEOdr)
0F#pEA 0F£pEAR

< Ch'*|lonllp—sllun

lt,n < Ch'*||un||g=slulle,

where in the last step we used Lemma 2.12 with vy := uj, where it is
known from the basic Convergence Theorem A.12 that uy, satisfies the
condition in Lemma 2.12 with v := wu. a

The proof of the next lemma follows along the same lines.

Lemma 3.8. Assume f—s <r'—M+(1/2) and B+ (1/2) <t <r.
Fork,0=2,... , M

(3.16)
d Ol Y al. B < Opt—*
Ck,u Z,MQ k "N )’ l "N = HthH,UhHIB*S'

NP

HEAR
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Lemma 3.9. Let the qualocation method have strong additional order
b <r' of convergence. Assume 3 —s<b, —s<r' —M+(1/2) and
B+ (1/2) <t <r. Then, fork=2,... , M

(3.17)
ent @+ ¢ )81 (4 ¢ ) )| < o= ulonlo-.

NP>

HEAR

Proof. As in Remark 2.3 it can be seen that conditions (3.2) are
equivalent to

(318) |Q(§k(7y)7All(’y))| §C|y|b asy—)(]fork:l, aM
Thus the left-hand side of (3.17) can be estimated by

c 2.

0#£pEA,

s—pB+b
N*" Nk ul 72|, .

L
N

Taking |u/N| < 1/2 and s—f+b > 0 into account, the assertion follows
similarly as in the proof of Lemma 3.7. O

Lemma 3.10. Assume B—s <r'—M+(1/2) and B+(1/2) <t <r.
Then, fork=2,... , M

(3.19)
cone(2)5(.5)
0

Ny < O ullon .
Proof. The proof is as in the lemma before, this time using

HEAR

(320) |(ﬁk(7y)7 All(ay))0| < C|y|7‘/ fork=1,... , M
in place of (3.18). Inequality (3.20) follows with the aid of

A y)=1+y " Al(y) and (Q(,y),1)o=0. @O
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Lemma 3.11. Let the qualocation method have strong additional
order b < 1’ of convergence. Assume 3 —s<b,B—s<r' —M+(1/2)
and B+ (1/2) <t <r. Then

aom)cw<%>T"°<%>_ldl’”<ﬁl < %>’A'1 ( %»

< Ch*=*||ullellvnll—s-

(3.21)

D

HEAR

Proof. By virtue of (3.18) for k = 1 the left-hand side of (3.21) can
be estimated by

r—t+s+b—p

C Y NTuller

0FApEA,

p s
£ 177 di .

Hence, taking |u/N| < 1/2,7 —t > 0 and s+ b — 8 > 0 into account,
the assertion follows similarly as in the proof of Lemma 3.7. ]

Lemma 3.12. Assume 8—s <r'—M+(1/2) and B+(1/2) <t <.

Then
s\ (T (5 m p
Uo(#)%u(ﬁ) Uo<ﬁ> d1,u<91<',ﬁ>,Ai<',N>>
0

< Ch"*||ullellvnllp-s-

(3.22)

D

HEAR

Proof. The proof is as in the lemma before, this time using (3.20)
with k£ = 1 in place of (3.4). O

Lemma 3.13. Assume 8 —s<v' — M+ (1/2), B+ (1/2) <t <,
and let the qualocation method have strong additional order b < r' of
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convergence. Then for k=2,... ,M,

(3.23)
> [eotat (104 () ) < Crlull ol
HEAR
and
(3.24)
5 [ratrensane (1 i (- ) ) < crlultonl-o
HEAR

Proof. We prove (3.24) only, the proof of (3.23) is similar. In the
proof of Lemma 3.5 we have shown that Q(1,A}(-,0)) = 0 by virtue
of (3.4) and, consequently, the 4 = 0 term vanishes in the sum which
thus can be estimated by

r—

S— u
Cvz{: N un|CLp N

HEAR

t
N'B_S|dk,u|-

Taking |u/N| < 1/2 and r — ¢ > 0 into account, the assertion follows
similarly as in the proof of Lemma 3.7. o

Lemma 3.14. Assume § —s <1’ — M+ (1/2),8+ (1/2) <t <,
and let the qualocation method have strong additional order b < r' of
convergence. Then

(325) > |oo(w)a(p) di <%> T,Q <1’ A < %» ‘

HEAR
< Ch* = lullellvnllg-s

and

62 % () o(13 ()

HEAR
< Ch* = |lun|lellvn|g-s-
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Proof. We prove the second inequality, the proof of the first one is
similar. The g = 0 term vanishes. With the aid of (3.3) the left-hand
side of (3.26) can then be estimated by

r—t+s+b—p
|72 -

C Y Nl el |

HEAR

Taking |u/N| < 1/2, s+b— 8 > 0 and r — ¢ > 0 into account the
assertion follows similarly as in the proof of Lemma 3.7. |

In the proof of the next theorem we need the following representation
of some quantities, which can be verified with the aid of Lemmas A.2
and A.11. If Ly has constant coefficients then

(3.27)
(Low, ¥, )0 = 70(1)(1)Q (1, A, ( %))
+ Z IUo(m)ﬁ(m)Q <<b(mu)/N, Al (.7 %) > ,

(3.28)
(LOU, %,u)o =00 (M)a(ﬂ)(sf,l

+ Z 'oo(m)a(m) <<1>(mu>/Nv A ( %))0
(3.29) o
(Lotun, ¥p,)n = oo(p)c,, [Q <1, Ay ( %))

“(5) »(%)

(3.30)
T -1
(Loun, ¥y, )0 = oo(p)er [55,1 + <%> oo (%)
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<(m(5)a(x)))

M
oS (B ()i ) )
DL N) TN,

k=2

We are now in a position to prove our theorem on additional order of
convergence. The basic convergence result is stated in Theorem A.12.

Proof of Theorem 3.2. The proof will be obtained by estimating the
right-hand side of (3.9). We start with observing that from (A.18) with
s = f3, the approximation power (A.12) of P, and the inverse inequality
on S;™ follows

lu = unllpto < [[u = Prullpro + |Phu — unllgto
(3.31) < llu = Phullg4o +h™7|| Pau — unllp
< Ch*=P77 ful|,

for (1/2) < 0 < t—Band u € H'. Consequently, the first two quantities
on the right-hand side of (3.9) are seen to have the asserted order of
convergence.

We are left to estimate the third quantity on the right-hand side of
(3.9) and consider

(3.32) (Lgc(u —up),vn), — (Lg(u —up),vn),

in more detail. For each basis function v, = 1/)27 , we have calculated
(3.32) in (3.27)—(3.30) with oo (&) = |€]P or o¢(€) = sign € |€|? in which
case Ly equals L; or L, respectively. An essential property is that for
¢ =1, where A}(€,y) = 1+ y" A}(€,y), the terms oo (u)a(u)(Q(1,1) —
d¢,1) and oo(p)e1,,(Q(1,1) —dp1) in (3.32) vanish since Q(1,1) = 1. By
suitably collecting terms it follows from the Lemmas 3.6-3.14 that all
the remaining contributions in (3.32) are bounded as needed.

We turn to consider the additional terms in the definition of L but
still with K = 0. The line of reasoning for this case is given in [10],
and we adapt it to our situation. Firstly, Lemma 3.4 has to be proved
for L replacing Ly. We can assume that L : H? — H° is injective.
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Otherwise, we change the definition of L to L + aJ (see (3.11)) and of
K to K —aJ, where a € R is chosen such that L+aJ is injective, which
is possible since J is a smoothing operator. An inspection of the proof
of Lemma 3.4 shows that also in the presence of the additional term
aJ the estimate (3.9) still holds true due to the relation (3.13). Now
the application of Lemma 3.4 leads in (3.9) to additional contributions

(L;’ii(u — uh),vh)o — (L;’ii(u — uh),vh)h fori=1,...,b—1.

They can be bounded in the same way as before with one major
difference concerning the condition (3.4) of strong additional order of

convergence that is needed for the functions ﬁf belonging to Li_i. By
definition (2.1) for LE and Lj these functions are given by

~ gkfl
+ _ 8
Q& y) —gﬁo ly + ¢ (y+€)r‘1>e(£)

and
Ek_l

Q- = ign S
O (&) Z;sg W+ Oly +8° 7 =gy 26):

respectively. Expanding in a Taylor series with respect to y = 0 we
obtain

b—1
(3.33) QL& y) =D @i Oy +0(ly") asy—0
n=0

with certain explicitly calculable functions ‘an' Condition (3.2) for
strong additional order b of convergence for L§ is equivalent to

(3.34) Q(¢j,,1) =0 forn=0,...,b- 1.

It is easy to check that conditions (3.34) forn = 1,... ,b—1 are identical
with the corresponding conditions for the functions ﬁf belonging to
L§—1 with strong additional order b—1 of convergence in place of b. This
conclusion can be repeated to show that Lg_i has strong additional
order b—1 of convergence for i = 1,... ,b— 1. Taking into account that
the order of the pseudodifferential operators int—i is only 8 —1i it is not
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difficult to verify that we also get the correct order of convergence for
all the additional contributions in (3.9) coming from L.

For the ease of the reader we provide the proof for the case K # 0
which is similar to the one in [7, page 439]. Both Ly := Ly + Ly and
L = Ly + K are bounded and invertible operators from H® on H* P,
so the operator L; 'L = I + L; ' K has a bounded inverse on H* for all
s € R. Thus,

(3.35)  |lu —uplls < Cllu — up + w||s, where w:= Ly K (u — up).

The qualocation equations (1.11) in operator form are Ry Lup = RpLu
and are equivalent to

RpLoup, = RpLo (u + w).
Consequently, if up,wy, € S,’;’M satisfy the qualocation equations
RhLzﬁh = RhLzu and Rthwh = RhLQ’U)

then up = 4y, — wp. Now assume that (3.5) and (3.6) are satisfied. The
error bound (3.7) for Ly gives

lu—@nlls < CR " [Jullt—stp-

Since u,u, € H® and L;lK . H® — H*t? is bounded for s € R, we
have w € HP*?. Applying the basic error estimate (A.18) yields

ko — whllg < CHT P wllgss < CRYJu — unlls
< R Plully < O ullo—ssp,

where we used 8+ b < r, and in the second line b — 8 > —s and
B — s > 0. Using the triangle inequality in (3.35) these estimates imply
(3.7).

The remark at the end of the theorem is clear from the proof given
so far. O

Remark 3.15. Under the conditions of Theorem 3.2 the map L :
HP — HO is injective if and only if L : H9 — H97# is injective for
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q € R since a solution u € HP of Lu = 0 lies in all spaces H?,q € R,
due to the bijectivity of Ly and the order less than 8 of L + K.

4. Symmetric quadrature formulas. For symmetric quadrature
rules the conditions in Definition 3.1 can be further elaborated. A
basic quadrature rule () is said to be symmetric if it satisfies the
condition that if £ € (0,(1/2)) is a quadrature point then so is (1 — &)
with the same weight w. In the case of smoothest splines in [9,
10] exactness conditions for symmetric quadrature rules are given to
provide additional order. In this section we sharpen these conditions
and extend them to multiple knot splines.

We need the following functions G, for @ > 0 and ¢ € (0, 1) which
have been studied in [1]:

Gu(&) :== 2; Zia cos 2mlE.

In [4] conditions (3.2)—(3.4) were given another form. The symbol oy
is said to be even or odd if the coefficient a~ or a™ vanishes, respectively.

Lemma 4.1. If o is even (odd), then condition (3.2) is equivalent
to

J
(4.1) ijGT,5+g(§j) =0 foreven (odd) £ € [-M +1,b—1]
j=1

if oo and r have like (opposite) parity. If o¢ is neither even nor odd,
then (3.2) is equivalent to the equation in (4.1) for all even and odd
te[-M+1,b-1].

Let || denote truncation of z € R to the next integer not larger
than z.

Lemma 4.2. Condition (3.3) is equivalent to

J
(4.2) ijGg(Ej) =0 foreventl€lr',r—[B]+b—1]

i=1
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and Condition (3.4) is void if M =1 and if M > 1 is equivalent to

J
(4.3) ijGe(fj) =0 forevenle|[-M+1+7r",r—|B]+7r" —2].

Jj=1

Sufficient conditions for (4.1)—(4.3) can be derived by noting that G,
is for even o a multiple of the Bernoulli polynomial B, (see [2]). From
this observation the next corollary follows easily from Lemmas 4.1 and
4.2. In its formulation we use the notation of an extended symmetric
quadrature formula ). By this we mean a modification of @, which is
symmetric for periodic functions only, into a general symmetric formula
Q. The modification is necessary only in the case §; = 0. To obtain
Q the additional quadrature point ;41 := 1 is introduced with weight
wyt1 = w1/2 and the weight for & = 0 is changed to also be equal to
w1 /2

Corollary 4.3. Let 8 € Z. Let oy and r have like parity, and let r—(3
be even or let g and r have opposite parity and r — B odd. Then the
conditions (4.1)—(4.3) are satisfied if the extended symmetric quadrature
rule Q has at least order 2|q| of exactness, where ¢ = (r—3+b—1)/2
unless M >1 and b<r' —1, where g= (r—B+r' —2)/2.

In the case of general operator L, observe that by our index assump-
tions we have r’ > 1, —-M +1+7' > 1 and r — 8 > 0 and the following
corollary can be derived from Lemmas 4.1 and 4.2.

Corollary 4.4. Let § € Z. If the symmetric quadrature formula Q
satisfies

(4.4)
J
ijBg(Ej) =0 forevent € |[2,7r—B+b—1],
j=1
(4.5)
J
D wiG(&) =0 foroddlelr—B—M+1r—B+b—1]

i=1
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and, additionally, if M > 1 and b < r' —1

J
(4.6) ijBg(éj) =0 forevenl€lr—B+br—B+r —2]

i=1

then Conditions (4.1)—(4.3) hold true for general variable coefficient
operators L.

In the case M = 1 these conditions coincide with (1.15) and (1.20) in
[10].

TABLE 1. Quadrature formulas from [9] and Table 2 providing additional order b

of convergence for general variable coefficient operators L.

r—8 b formula

1 G3,2,2,L3,2,2
1 2 Ga,3,2,L4,3,2
2 2,3 Gagsz2,La32
1 3 Gagseo,Lase
2 3 Gs,33,0533

TABLE 2. Quadrature formulas providing for M = 3 additional order b = 2 of

convergence.

J & wj Rule name
5 0.03675444410510 0.09796641612174 Gs,3,3
0.20980173750308 0.24512752237399
0.5 0.31381212300853
0.79019826249692 0.24512752237399
0.96324555589490 0.09796641612174
5 0.0 0.04767138349495 Ls 3,3
0.09758560632523 0.17451387385978
0.34287284360121 0.30165043439274
0.65712715639879 0.30165043439274
0.90241439367477 0.17451387385978

In [9] a list of symmetric quadrature formulas with various exactness
properties is provided. In Table 1 we collect those formulas which sat-
isfy the conditions of Corollary 4.4 for certain choices of the parameters
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and, additionally, include the two new formulas from Table 2. We keep
the notation in [9]. Useful information for us is the first index indi-
cating the number J. The parameters of the quadrature formula in
Table 2 have been calculated in [4].

Remark 4.5. The stability of the formulas from [9] has been numeri-
cally checked there for strongly and oddly elliptic operators with inte-
ger B € [—1,1]. For some of the rules stability was proved analytically
in [8].

APPENDIX
For the convenience of the reader we provide here some results for
the spline spaces S;’M and the convergence of the qualocation method

obtained in [5, 6]. Additionally, some easy consequences which are
needed are given.

In the next two lemmas some relations for the spline basis are given.

Lemma A.1 [5, Lemma A.5]. The Fourier series of the spline
functions ¥y, are

(A1) bral) = 0ua) + (L) ),
o= (1) (7)o
(A.2) m;:r k=2,..., M.

Recall that a prime on a sum sign indicates that the m = p term is
to be omitted.

Lemma A.2 [5, Corollaries A.3 and A.4]. For u,v € Ay, k, £ =
1,...,M and m € Z,

(A.3) (Vh,s Yew)n = 0up@ (Ak <', %),Ae <', %)>,

0 if m Z p,

(A.4) (Prs Y = { Q (Pim—py/n, Ae(- &) ifm=p,
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0 if m # p,

(A5) (¢m7¢2,u)0 = { (q)(mfu)/NvAf(W %))0 if m= H.

A useful relation for the subsequent analysis is the norm equivalence
given in the next lemma in which we use the definition
(A.6)

M 1/2
onllen = ( > [w)% lerul® + N2> |ck,”|2]> for s€ R

HEAR k=2

for a function v, € S;’M written in the form

M

(A?) Vp = Z Z Ck,uwk,u-

k=1peAy

Proposition A.3 [5, Proposition 3.3]. Let s <7 — M + (1/2). On
S;’M the norms || - ||s and || - ||s,n are uniform for h € H equivalent.

We also need an inverse inequality for the norms ||vp |5 5 that is proved
in the next lemma.

Lemma A.4. Ifs,t € R with s <t, then

(A.8) lonllen < B llonllsp for vn € Sy

Proof. Since (u) /N < 1 the assertion is obtained from the following
relations:

M
2t
lonllZn = Y (0™ lerul® + N2 7 Y lewul?

HEAL pEAL k=2

M
R OICECWERED ) STy
NeAh k=2

BEAR

=27, O
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A further norm equivalence is given in the next proposition.

Proposition A.5 [5, Proposition 3.5]. The norms || - |lo and || - ||n
are equivalent on S;’M, uniformly for h € H, if and only if condition
(R) is satisfied.

Next we cite results on the stability and approximation power of Ry,.

Proposition A.6 [5, Proposition 3.7]. Let condition (R) be satisfied
and assume 0 < s <r— M+ (1/2), s <t <r and (1/2) < t. Then

(A.9) If = Buflls < CR*=*|flle for f € H".
With respect to the norm || - ||, the qualocation projection Rj has
the same approximation power as with respect to the norm || - ||o.

Proposition A.7 [5, Proposition 3.11]. Let condition (R) be satisfied
and assume (1/2) <t <r. Then

(A-10) If = Buflla+ If = Puflln < ChIflle for f e H".

Here P}, := P,:’M cH — S;’M is the projection that was introduced
in [7, page 428] through the definition

(A11)  PPMpespM, (PPMf,®)g = (f,®) for @ € S;OM,
where

SpeM = span { @, o, p € Ap, £ € [-M/2, M/2)}.
It is shown in [7, Theorem 3.4] that for s <r—M+(1/2) and s <t <,
(A.12) If = PPY flls < CR'*| £l for f e H.

Lemma A.8. Ift € R and f € H', then ||Py fllen < || f]l:-
Proof. We have M = 1 and obtain with the aid of (A.l) the

representation

Prlf=2 ciptbrp= ) can®ut Y ZI(ﬁ) B

HEAR HEAR HEA M=p
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The double sum is orthogonal to ®, for v € Ah and we see from the
defining equations (A.11) of P, that ¢, = f(u). Thus

1B A lZn = 3 ™ lenul® = Y W IFWP <IIfIZ. o

HEAR HEA}

On the space W}, of grid functions on the mesh 7}, the qualocation
projection is bounded with respect to the norm || - ||5.

Proposition A.9 [5, Proposition 3.14]. Let condition (R) be satis-
fied. Then

(A].3) ||Rhfh||0 < C”fh”h fO’I‘ fh e Wy, and h € H.

Finally, we state the superapproximation property for Pj.

Theorem A.10 [5, Theorem 4.1], [3, Theorem 1.1]. Let g € C"(T)
and M <r,0<s<r—M+(1/2),t<r—M. Then

(A14) [ = Pu)(gvn)lls < CRF*2Nlg |10 llonlle  for vn € S

The following lemma provides formulas for certain inner products, in
which the spline space basis is involved.

Lemma A.11 [6, Lemma 4.1]. Let o¢ be independent of x. For
wv €A andl=1,... , M,

im0 £) (),

/ ’ v
(Lowk,ua wl,u)h = JM,VNBQ (Qk ('7 %) ) AZ ('7 N))
fork=2,... M.
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With the aid of this lemma the qualocation equations (1.11) can be
written (see [6, Equation 4.4]) as a block diagonal system

(A.15) D<%>Eu —d, for u€ Ay,

where D is from (2.9) and ¢,,d, for p € Aj, are vectors in CM with
components

(A.16) ¢, = oo(p)crp, Choyp 1= Nﬁckw fork=2,...,M,

(A].?) dk’” = (f, ,(’b;%li)h for k = ]., e ,M.
The basic convergence result reads as follows.

Theorem A.12 [6, Theorem 6.3]. Let the numerical symbol be
elliptic, and let L : H? — HO be injective. Assume 3+ M < r,
and let s and t be real numbers satisfying

1 1
s<r—M+§, B+§<t, B<s<t<nr.

Then the qualocation equations (1.11) are uniquely solvable for h € H;.
Moreover, if u € H?

(A.18) lu — uplls < Ch*"®||ully for h € Hi.
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