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ABSTRACT. We present a variant of Tikhonov regulariza-
tion for nonlinear ill-posed problems in Banach spaces, where
the convergence rate O(§) for the Bregman distance is ob-
tained under the same conditions as this rate is achieved for
standard Tikhonov regularization. However, in this variant
the regularization parameter can be chosen a-priori and inde-
pendently from the condition on the exact solution.

1. Introduction. We consider nonlinear ill-posed problems
(1.1) F(z) =y,

where F' : DF C X — Y is a nonlinear bounded operator between
Banach spaces. In practice only noisy data y° are available, where §
denotes the noise level. Throughout this paper we will assume that
ly —y°ll < 6.

Due to the ill-posedness, one has to use regularization methods to
obtain stable approximations for an exact solution z' of problem (1.1).
A widely used method is Tikhonov regularization, where the regularized

solution, 7, is a minimizer of the functional

1
(1.2) EIIF(I) 9y’ |IP + aR(z), a>0,

where R(z) is a penalty term.

This method is well understood if F' is an operator between Hilbert
spaces, p = 2 and R(z) = ||z — z.|* (see, e.g., [3]). It turns out
that in several situations Tikhonov regularization in Hilbert spaces
does not yield good results, since it has the tendency to smooth the
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solutions. This is of course not appropriate if one knows that the
exact solution has jumps or a sparse structure. Better results are
then achieved when the Tikhonov functional is considered in Banach
spaces. Usually the penalty term is then either chosen as R(x) = ||z
or R(z) = Y72, wil{z, ¢;)|?, where X is a Hilbert space and {¢;} is
a frame. The latter is the usual choice for problems with sparsity
constraints. In some papers, where sparsity is treated, ¢ is allowed to
be between 0 and 1. Since we need convexity of our functional R (see
(A2) below), we have to restrict ¢ such that ¢ > 1. Sparsity then means
q close to 1.

For stability and convergence questions we refer the reader to [14] and
the many references therein. Usually, convergence is considered in the
Bregman distance. Convergence results with respect to the norm in X
are only available if the Bregman distance may be estimated from below
by some power of the norm. Methods for how to actually minimize the
functional in (1.2) have been considered, e.g., in [1, 2, 7].

As for Tikhonov regularization in Hilbert spaces also in Banach spaces
the convergence of the regularized solutions towards the exact solution
as the noise level § goes to 0 can be arbitrarily slow. Convergence rates
can be obtained only if ! satisfies some source conditions and if the
regularization parameter is chosen appropriately.

For instance, if 2 satisfies (A10), then it was shown (see, e.g., [14])
that the rate O(d) is obtained for the Bregman distance D¢ (zd,z")
provided that o ~ 6771,

Improved rates were derived under additional assumptions on the
solution z' and/or the spaces X and Y in, e.g., [4, 6, 11, 12, 13]. For
rate results in Hilbert spaces see [3].

All results have one thing in common: the regularization parameter
a has to be chosen in a specific way to obtain the rate. Unfortunately,
this specific choice depends on the source conditions satisfied by the
exact solution z!. But usually, it is not known what source conditions
are satisfied.

Therefore, for Tikhonov regularization in Hilbert spaces a lot of
interest was put in developing so called a-posteriori parameter rules
that always yield optimal convergence rates without having to know
any information about the exact solution (see [3]).
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A-posteriori parameter rules have in common that a nonlinear prob-
lem has to be solved to find the correct regularization parameter. For
linear equations (1.1) in Hilbert spaces this might be okay since the
minimizer of (1.2) for a fixed value o > 0 can be found by solving just
one linear equation. However, for nonlinear equations (1.1) this is quite
some work since the calculation of a minimizer for a fixed « is already
quite involved.

Therefore, in [9, 10] a modification of the Tikhonov functional was
presented that allows to find regularized solutions converging with the
desired rates by only solving one nonlinear problem. In the next section,
we extend this method to regularization in Banach spaces. Finally, we
apply the results to nonlinear integral equations.

2. Modified Tikhonov regularization. We approximate exact
solutions of problem (1.1) by a solution :cg’" (8 >0, 6,n > 0) of the
problem

fg(xg’") < fi(z)+n, forallzeA,

(2.1) . S
f5(@) == |[|F(z) =y’ = 0| + BR(z).

The parameter 7 reflects the fact that, in general, a minimizer of the
(modified) Tikhonov functional fg cannot be calculated exactly.

The question is what conditions have to be satisfied by the operator
F and the functional R so that one can guarantee existence of such
solutions, stability and convergence results. A rather general answer to
this question has been given in the book [14] for the minimizers z? of
(1.2). We ask for somewhat stronger conditions that guarantee norm
convergence and not only weak convergence. These conditions are:

(Al) X and Y are reflexive Banach spaces with norms ||-||x and |||y,
respectively. We will omit space indices whenever it is clear from the
context what norm is meant. X* and Y* denote the dual spaces of X
and Y with dual forms (-, )y« y and (-, ) x- x, respectively. Again we
omit space indices.

(A2) The functional R : X — [0, 0o] is convex and weakly sequentially
lower semi-continuous.

(A3) The operator F': D(F) C X — Y is weakly sequentially closed
and continuous.
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(A4) D := D(F) N D(R) is nonempty and convex, where D(R) :=
{z € X : R(z) # oo}.

(A5) Equation (1.1) has a solution in D. Note that then it also has
an R-minimizing solution z' (see [14, Theorem 3.25)), i.e., R(z') =
min{R(z) : F(z) = y}.

(A6) Every sequence {z)} in D satisfying that R(zy) and ||F(zg)||
are bounded has a weakly convergent subsequence.

(A7) There is an element z, € D such that R(z.) < R(z) for all
z € D with F(z) = y.

(A8) The exponent p in (1.2) satisfies 1 < p < 0.

(A9) For every R-minimizing solution z'

zp — ' A R(zp) = R(z') = zp — .

(A10) (see [14, Assumption 3.34] There is an R-minimizing solution
z!, an element ¢ € OR(x"), and constants ¢; € [0,1), ¢z > 0, p > 0
such that

(€ 2" — ) < c1De(,a") + c2| F(z) — F(aT)]
for all € D with R(z) < R(z') + p and ||[F(z) — F(z")| < p. Here,
D¢(z,z") := R(z) — R(z") — (¢,2 — zT)

denotes the Bregman distance.

Remark 2.1. Note that if X is a Hilbert space and if R(z) =
|z — z.||?, then (A7) is equivalent to F(z.) # y. Moreover, £ =
2(z' — z,) and D¢(z,zt) = ||z — zT||%

Assumption (A9) is satisfied if R is totally convex and if every R-
minimizing solution z' has a nonempty subdifferential 9R(x") (compare
the proof of [14, Proposition 3.32]). If R(z) = ||z||%, ¢ > 1, assumption
(A9) is equivalent to the so-called Radon-Riesz property stating that
rr, — z' and ||z || — ||z'|| imply that 2, — 2. This property typically
holds in every L"-space with 1 < r < oo (cf. [8]).

According to [14, Proposition 3.35] Assumption (A10) is satisfied if
F is Gateaux-differentiable in z! and if there are constants ¢y > 0 and
p > 0 such that

¢ = F'(z")#w € OR(z"), weY?™, cr|lw|| <1,
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and

IF(z) = F(a') = F'(2")(z — &")|| < cpDe(x,27)
for all z € D with R(z) < R(z') + p and ||F(z) — F(z")|| < p. Here
F'(z")# : Y* — X* denotes the Banach space adjoint of F’(z).

Let us turn to the question of existence of solutions xg,’". Obviously,
such solutions exist for n > 0. We will show that under conditions
(A1)—(AT) the functional fg has a minimizer a:g, = mg’o ifd >0is
sufficiently small.

For the proof of this result and the convergence proofs we need the
following lemma.

Lemma 2.2. Let assumptions (A1)—(AT) hold. Then there exists an
element x° € D minimizing the functional R(z) on the set M? := {x €
D ||F(x) —y°|| < 8}. Moreover, if x, ¢ M° with x. as in (A7) which
is the case for 6 > 0 sufficiently small, then

IF(2°) — 4’|l = 6.

Proof. Note that M°® # @, since zf € M. The existence of the
minimizing element z° immediately follows from conditions (A1)—(A6)
and the weak lower semi-continuity of the norm.

Due to (A7), F(z.) # y. Hence, z. ¢ M? for § > 0 sufficiently small.
Let us now assume that =, ¢ M° and that ||F(z°) — y°|| < 6. Then,
due to the continuity of F' and the convexity of D, there is a t € [0,1)
such that |[F(z;) — y°|| < §, where z; := t2 + (1—t)z,. Thus, z; € M°
and R(z;) < tR(x%) 4+ (1—t)R(z,) < R(x%) contradicting the definition
of 2°. Therefore, the assumption ||F(z°) — 4°|| < § was wrong. This
shows that ||F(z°) — y°|| = § whenever z, ¢ M°. O

Theorem 2.3. Let assumptions (A1)—(A8) hold. Then the func-
tional fg defined by (2.1) has a minimizer :cg €D ifx, ¢ M°. More-
over, ||F(acg) —y% >4.

Proof. Since x, ¢ M?, it follows by Lemma 2.2 and (AS8) that
£5(2%) = BR(2°) < f§(x), forallw e M°.
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Let us assume that z’ is not a minimizer of fg, otherwise we are
done. Then obviously p := inf{fg(a:) cx € D} < fg(:v5) and there
is a sequence {zr} in D such that fg(:ck) — pas k — oo and
R(z1) < R(x%) —¢ for some ¢ > 0 and z), ¢ M?, i.e., |F(zx) —y°|| > 0.

Now assumptions (Al)—(A4) and (A6) imply that there is a sub-
sequence (again denoted by {zx}) and an element T € D such that
zy — T, F(zy) — F(%), and R(Z) < R(2%) — . Hence, 7 ¢ M°.

Since | F(z) — 3°|| > 6 and || F(Z) — y°|| > J, by the weak lower semi-
continuity of the norm and (A2) we obtain that fg (Z) < limg—y00 fg (zk)
=p< fg (z). Thus, T is a minimizer. O

Weak stability of the minimizers ¢, can be shown as in [14, Theorem

3.23]. Strong stability holds if assumption (A9) not only holds for R-
minimizing solutions but for all z € D.

In the next theorem we answer the question concerning convergence
of the regularized solutions x B’" towards an R-minimizing solution.

Theorem 2.4. Let assumptions (A1)—(A9) hold and assume that
§ =5 0,8 = 0and n = o(B). Then every sequence wg’;’"’“ has a
convergent subsequence. The limit of every convergent subsequence is
an R-minimizing solution. If, in addition, the R-minimizing solution
zt is unique, then

xg’n—HET as 6—=0 and [ —0.

Proof. Let § > 0 be so small that x, ¢ M°. Then Lemma 2.2 implies
that

£3(8) < £3(2®) +n = BR(z®) + n < BR(z") + n.

The rest of the proof follows the lines of [14, Theorem 3.26] noting that
(A9) yields strong convergence. o

Note that in the theorem above 8 only has to go to 0 to get

convergence of the regularized solutions acg,’". No restriction with
respect to ¢ is needed. In comparison, to get convergence of the

regularized solutions 22 , the minimizers of (1.2), one needs that 6? /o —



MODIFIED TIKHONOV REGULARIZATION 347

0, i.e., a is not allowed to go to 0 too fast. Moreover, it immediately
follows from the proof that ||F(m2’") —yl| = O(d) if B = O(4P).
We now turn to convergence rates. It was mentioned in the introduc-

tion that under condition (A10) it was shown that D¢ (xS, z") = O(4)

)
if @ ~ P~ 1. We will show in the next theorem that this is also true for

the regularized solutions xg’".

Theorem 2.5. Let assumptions (A1)—(A10) hold and assume that
B =0(6?) and n = O(BJ). Then

De(ay",2°) = O(8) and |F(z3") - yll = O(9).

Proof. Let 6 > 0 be so small that z, ¢ M?°. Then (2.1) and
Lemma 2.2 imply that

IF @™ - ¥l - 8| + BR@S™) < BR(2%) +n < BR(z') +n.

Hence, ||F(xg’") —y = O(J) and R(xg’") < R(z") + O(8). Together
with (A10) we now obtain that

De(af" ') = R(=") - Rla') - (625" - o

< 0(0) - (€,25" — at)
0(8) + c1De (2", z1) + 2| F(257) — .

Since ¢; < 1, this yields that Dg(wg’",:ﬁ) = 0(9). o

Once more we want to emphasize that as for regularization in Hilbert
spaces the choice of 8 does not depend on the source conditions as
it is the case for the a-priori choices of a. For standard Tikhonov
regularization the power of how «a has to depend on § is strongly linked
to the source condition satisfied by the exact solution. In this variant
B only has to go to 0 fast enough.

Since for linear problems in a Hilbert space setting the modified
method (2.1) is equivalent to standard Tikhonov regularization where
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the regularization parameter is chosen according to a modified discrep-
ancy principle (cf. [10, Remark 2.7]) and since the discrepancy principle

does not yield better rates than D¢ (2%, z") = ||z2, — o’ = 0(9), even
if the exact solution is smooth enough, also in Banach spaces this ap-
proach will most probably not yield the enhanced rates in [6, 11] under

stronger source conditions.

Once more, we want to emphasize that rates can only be obtained
under condition (A10). This condition is usually only satisfied if the
exact solution is smooth enough (see next section) and, therefore, will
usually never hold for solutions with jumps, unless the smoothing
property of the operator F' is very weak and hence the problem is
only very mildly ill-posed.

3. Application to nonlinear integral equations. In this section
we apply the results above to nonlinear ill-posed integral operators.
For the theory of Tikhonov regularization applied to linear Fredholm
integral equations of the first kind in Hilbert spaces see, e.g., [5].

As Banach spaces we choose X = W;?[0,1] and Y = L"[0,1],
1<¢g<2,1<r< oo, with norms

el o= ( 1 m'<s>|st)”q
lylly := (/01 y(t)|rdt>1/r.

We consider nonlinear operators F': X — Y defined by

F(2)(t) ::/0 k(s,t,2(s)) ds.

The kernel k is assumed to be differentiable with respect to the third
variable (this differentiation is denoted by the operator Dj) satisfying

and

|Dsk(s,t,u1) — Dsk(s, t,us)| < g1(s,t)g2(c)|ur — usl

for all |uy|, Jus| < ¢,

where g, € L"([0,1]?) and g» : R{ — R{ is monotonically increasing.
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In the Tikhonov functional (2.1) we choose p > 1 and R(z) :=
(1/g)llz = |-

To be able to apply Theorem 2.5 we have to check if conditions
(A1)—(A10) are satisfied. It is easy to show that conditions (A1)—(A4),
(A6), (A8), and (A9) hold. F even satisfies a stronger condition than
(A3), it maps weakly into strongly convergent sequences. If we assume
that F(z) = y has a solution and that F(z.) # y, then also (A5) and
(A7) hold.

We turn to condition (A10): first of all note that F is Frechét-
differentiable with derivative

(F’(a:)h)(t):/o Dyk(s, t, 2(s))h(s) ds.
Moreover,

1
1F(2) = F(z) = () (z = z) < Sllgllz- g2(c) ||z = |70
for all ||z||pe, ||2]|lL> < c.

For all elements z € X the subdifferential OR(z) consists of one single
element and it holds that (see [14, Example 10.27])

OR(z) = — (|2’ — 2|7 'sgn (2’ — z))’ € (W()Lq)*-
Noting that for ¢ < 2 (see, e.g., [11])

/

1 1 -
De(z,z) = allZ’lquq = 312" 2e = (|1 Fsgn (a), 2" — =

2
> |2’ — 'L = cllz — 2

for some ¢ > 0 and that ||z — z| > ||z — z||L~, we may conclude from
Remark 2.1 that condition (A10) is satisfied if

¢ = OR(z") = F'(a")*w,
weY =01 f4+1—1,
r

Tx

with ||w|| sufficiently small or equivalently that
(3.1) (") (s) — 2%(s)|7 tsgn (1) (s) — 2L(5)))’
1
= / Dsk(s,t,zt(s)))w(t) dt.
0
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We give an interpretation of this condition for a specific choice of k,
namely for

s(1—1t) s<t,

k(s t,x) := k(s,t) 23 with k(s,t) = {t(l ) s>t

The operator F' with this kernel is a so-called Hammerstein integral
operator. Noting that Kw € W™ N W2 and (Kw)"” = —w, where

1
Kuw(s) = / R(s, )w(t) dt,
0
condition (3.1) is then equivalent to

ac W, d(0)=0=d(1),
! ! 0 ! 1
e, 2O )

@) @h0)?
w:<iiﬁ)’ a=|(@a') — 2" sgn ((a!) —al).

ot

This means that condition (3.1) can only be satisfied if z' and z, are
sufficiently smooth and if x, approximates xf asymptotically well in
points where z' is 0.
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