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ABSTRACT. We consider the problem of determining ei-
ther the surface impedance A = A(z) or surface conductivity
n = n(z) from far field data corresponding to time-harmonic
incident plane waves scattered by a coated infinite cylinder.
We show that A and n are uniquely determined from the far
field data and provide a numerical algorithm for determining
these quantities.

1. Introduction. Inverse problems connected with the detection of
decoys play a special role in inverse electromagnetic scattering theory
since for such problems the shape of the scattering object is typically
known a priori. For example, in order to distinguish between a real
missile and a decoy coated with metallic paint the shapes are the
same and known and the target identification problem is based on
distinguishing between a perfect conductor and a dielectric coated with
a thin highly conducting layer. Assuming that the frequency is chosen
such that the thickness of the coating is less than the skin depth, the
problem then becomes one of determining the surface conductivity, i.e.,
the problem of determining a coefficient in a boundary condition. In
other decoy problems the hostile object can be a perfect conductor
coated by a thin dielectric layer, i.e., in this case the surface impedance
serves as target signature. Problems associated with the detection of
decoys are further complicated by the fact that the far-field data is
measured over a limited aperture and the directions of the incident
plane waves used to interrogate the target are also restricted to a limited
aperture.
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In this paper we will consider two inverse scattering problems which
are associated with the detection of decoys. The first problem is to
determine the surface impedance A = A(z) of a scattering object of
known shape from limited aperture far field data and the second is to
determine the surface conductivity n = n(z) using the same type of
data. (For simplicity we restrict ourselves to the case of TM polarized
waves scattered by an infinite cylinder.) We first show that under
appropriate assumptions A and 1 are both uniquely determined from
limited aperture far field data. In the case of the surface impedance
A this is a new proof of a known result (Theorem 8.11 of [3, 4]), but
using weaker hypotheses on A\ and the boundary, whereas for n the
proof is both new and a significant improvement on previous results
(Theorem 8.26 of [4, 7]). We then show how A and 7 can be determined
by solving a linear integral equation of the first kind (if A and 7 are
constant we obtain a formula for A and 7 and avoid the need to solve an
integral equation) and provide some numerical examples showing the
practicality of our inversion algorithm for moderate values of A or 7.
We note that in both the uniqueness theorems and the reconstruction
algorithms we allow for the case of partially coated obstacles. For
related results on the determination of boundary coefficients from far
field data, we refer the reader to [1, 10, 13, 16].

2. The surface impedance. We consider the scattering of an
electromagnetic time harmonic plane wave by a perfectly conducting
infinite cylinder that is (partially) coated by an inhomogeneous di-
electric material. This leads to a mixed boundary value problem for
the Helmholtz equation [6]. In particular, let D C R? be an open,
bounded region with Lipschitz boundary 8D such that R?\ D is con-
nected. We assume that the boundary 0D has a Lipschitz dissection
0D = 0Dp UIl U 0Dy, where 0Dp and 0D; are disjoint, relatively
open subsets of D, having II as their common boundary in dD. Fur-
thermore, boundary conditions of Dirichlet and impedance type with
the surface impedance a bounded measurable function A € L., (0Dy)
are specified on 0Dp and 0Dy, respectively. We assume that the sur-
face impedance is positive and uniformly bounded, i.e., A(z) > Ao > 0
for almost all x € 0D;. Let v denote the unit outward normal vector

defined almost everywhere on 0DpUOD;. The total field u = u®+e?*® ¢
given as the sum of the unknown scattered wave and incident plane

wave satisfies
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(1) Au+k’u=0 inR*\D,

(2) u=0 on dDp,

(3) Ou +iX(z)u=0 on dD;
Ov ’

where k > 0 is the wave number and d is a unit vector in the direction
of propagation of the incident plane waves. Moreover the scattered field
u® satisfies the Sommerfeld radiation condition

ou®
4 li —iku® ] =0
@ Jim vy )
uniformly in Z = z/|z| with r = |z|.

The well-posedness of the exterior mixed boundary value problem
is established in [6] (in [6] A was assumed to be constant, but all
the results remain valid if A = A(z) € Lo (0Dy)). In particular it is
shown that the direct scattering problem (1)—(4) has a unique solution
u € I{I]E)C(R‘2 \ D)

It is easy to see [4, 11] that the scattered field has the asymptotic
behavior '
ezkr
Jr
where u, is the far field pattern of the scattered wave. The far field
pattern defines the far field operator F : L*(2) — L*(2) by

u’(z) =

uso(Z,d) + O(r~*/?),

(5) (Fg)(@) == / oo (7, d)g(d) ds(d), g € L2(Q)

where Q := {z € R? : |z| = 1} is the unit circle. A Herglotz wave
function with kernel g € L?(£2) is an entire solution of the Helmholtz
equation defined by

(6) vi(z) = /Q eikrdg(d) ds(d), « e R

In this paper we assume that D is known. Then the inverse problem
we consider here is to determine the surface impedance A as a function
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in Loo(0D;) from a knowledge of uy(Z,d) for T € Qp C Q and
deQ CQ.

First we give a uniqueness proof for A € Lo,(0Dy). To this end we
prove the following equality.

Theorem 2.1. Let v; be the Herglotz wave function with kernel g
and vy = v5 + v}, the solution of (1)—(4) with e**¢ replaced by v}.
Then

M) [ M@l ds = k| FalP +Virk I (¢7/4(Fg, o))

where F is the far field operator and (-, -) is the inner product over
L2(Q).

Proof. We follow the proof in [12]. We first note that if v* and w*
are two radiating solutions of the Helmholtz equation with far field
patterns vy, and we, then from Green’s theorem we have that

ows  __0ov®
s — S = —2 Woo .
(8) /BD (v 5 Y5, > ds zk/ﬂvoowoo ds

Furthermore, if v* € HL . (R?\ D) is a radiating solution to the
Helmholtz equation with far field pattern v, then

eiﬂ"/4 8e—ik/z\-y 0o 6vs(y)>
Voo (T) = —— vi(y)———— — e TV —22 ) ds(y),
@)= [ (v ") 4s(y)

and hence if w}, is a Herglotz wave function with kernel wave function
with kernel h then an interchange of orders of integration shows that

saw_;" _ZE — —im/4 TN
(9) /aD <v £ wy, Y > ds =V8nke /Qh(d)voo(d) ds.

Now let vy, = v + v}, be the solution of (1)~(4) with kernel e**%
replaced by v}. Then, since vy = 0 on dDp and using (8) and (9), we
have that
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m'/ M@)o, 2ds(z)
oD
ovs s ovi __9v?
_ s9%Y 0 s9Vg —0Uy
a /aD <Ug v 9o > d5+/6D (vg oy 9o > ds

Jus ot
i %% 0%
+ /BD <Ug (91/ Ug 8V>
= 72ik/ [0g.00|% ds + V/8mk e t7/4
Q
X / G Vg,00 ds — V8TE ei"/‘l/ 9Vg,00 ds
Q Q

= —2ik||Fg||* + V8rke ""/*(Fg, g) — V8rke™/4(g, Fy),

which proves the theorem. ]

Theorem 2.2. Let

where v,is as in Theorem 2.1

Then W is dense in L*(8Dy).

Proof. Tt suffices to show that if ¢ € L2(0Dy) satisfies

(10) / vgpds =0
0Dy

for all f = vy|lop, € W then ¢ = 0. Suppose (10) is true for all such
vy and let w € HL (R?\ D) be the solution [6] of

Aw+k?*w=0 inR?\D
w=0 ondDp
ow

o +iX(z)w=¢ on dD;

lim \/F(a—w — zkw) =0.
r—00 or
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Then since vy = 0 on 0Dp, using the boundary conditions and the
integral representation formula, we have that

ow
0:/ vcpds:/ v<—+i/\w>ds
op ° op “\ OV

O

- /BD [U;Z—f + i+ vl s +Mv;w] ds
:/{m {U;Z_ZJFIU(_%_%—?—@\U;)]CZS
+ /8 i (%‘Z—f +¢Av;w> ds
Lo (5 ) e [, (5 - )

, ot
:/ < i Ow vgw> ds for all g € L*(Q).
oD

vt
90v  Ov

Substituting (6) into the last line of this equation and interchanging

the order of integration now implies that

ifez.d OW Detke-d
ikx-d _ _
/{:)D (e o (z) o w(a:)) ds(z) =0 fordeQ,

and hence ws(d) = 0 which implies w = 0 by Rellich’s lemma. Hence
¢ =0.

Theorem 2.3. Let ul, be the far field pattern for (1)—(4) correspond-
ing to A =X\j, u=u’, j =1,2, and let Qp and 1 be open nonempty
subsets of the unit circle Q. Then if ul (Z,d) = v% (Z,d) for T € Qo,
d € Q1, M(z) = A2(z) almost everywhere on 0Dy, = 0Dy, .

Proof. Since us(Z,d) is an analytic function of Z and d on Q x ,
the hypotheses of the theorem imply that ul, (Z,d) = u2,(Z,d) for Z,
d € €. Hence by Rellich’s lemma u! = u? in R?\ D for all d € Q which
implies that v, = v} = vZ on AD, where v} is the solution of (1)—(4)
with e?**4 replaced by vg and A = );. By Holmgren’s theorem and
the boundary condition satisfied by u’/, dD;, = 8Dy, = dD;. From

Theorem 2.1 we have that

| @) = @]yl do = .
0D
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Viewing the Lo (0Dy) function A; — A2 as a self-adjoint operator on
L?(0Dy) we have by Theorem 2.2 that A\;(z) = A2(z) almost every-
where on 0Dy (cf. [15, Theorem 9.2-2]) which proves the uniqueness
for both the support of the coating and the surface impedance.

Next we show how to reconstruct the surface impedance . To this
end we consider the far field equation
ei7r/4

(@, d)g(d)ds(d) = —
| @ o) dste) =
g€ L*(Q), 7€, z € D.

In [3] combined with the result of [2] it is shown that for z € D and
for every € > 0 there exists a g7 € L?(Q2) with support in Q; such that

i /4
(12) \ [ w i@ asa - S

e—ik:?z:\-z

(11)

e—zkz-z < €,

L2(Q0)

and the corresponding Herglotz function vf]z is such that

where u, € H'(D) is the unique solution of the interior boundary value
problem

(13) Au, +k*u, =0 in D
(14) u, =—®(-,2) ondDp
ou, . _09(,2) .
(15) 5, HiA@us = === —iA(2)@(-,2) on dDy,

O(z,2) = (i/4)H(gl)(k|$ — z|) is the fundamental solution to the
Helmholtz equation and Hél) is a Hankel function of the first kind
of order zero. Using the interior regularity results for elliptic equations
it is easy to see that, for z € D, lim._,q Uég (2) = uz(2).

The following lemmas were proven [3].

Lemma 2.4. For every point z € D we have that

(16) - A(z) |u, (z) + @(w,z)\Q ds(z) = =1/4 — Im (u,(z))

where u, is defined by (13)—(15).
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Lemma 2.5. Let B, C D be a ball of radius r, and denote by

- 2 [ = (u +2(2))lop,, }
V= {f € L*(0D1) : 2 € B, and u, the solution of (13)—(15)]

Then V is complete in L*(0Dy).

Equation (16) can be seen as an integral equation of the first kind
for A. Since u, + ® vanishes on Dp we can replace the region of
integration 0Dy by 0D. Using Lemma 2.5, it is easy to see in the
same way as in the proof of Theorem 2.3 that the left hand side of this
equation is an injective compact integral operator with positive kernel
defined on Ly, (0D;). Using Tikhonov regularization techniques it is
possible to determine A by finding the regularized solution of (16) in
L?(0D) with noisy kernel and noisy right hand side. In particular, if
the surface impedance is a positive constant A > 0 we obtain that

—1/4 —Im (u.(z))

(17 -
lluz + (-5 Z)Hiz(aD)

, z2€D,

where we have used the fact that u,(-) + ®(-,2) =0 on dDp.

3. The surface conductivity. We now consider the scattering
of an electromagnetic time harmonic plane wave by an inhomogeneous
dielectic infinite cylinder, that is, (partially) coated by a thin highly
conducting layer. In particular, consider the scattering of a time-
harmonic plane wave by a partially coated infinitely long cylinder with
axis in the z-direction and assume that the incident field is propagating
in a direction perpendicular to the cylinder such that the electric field
is parallel to the z-axis. This leads to a mixed transmission problem
for the Helmholtz equation [8]. In particular let D be as in Section 2
and let n(z), x € D, denote the index of refraction of the dielectric
obstacle. We assume that n(x) > ny > 0 and is piecewise continuous
in D. The physical properties of the thin highly conducting coating
are represented by the surface conductivity . We assume that the
surface conductivity 7 € L, (0D3) is positive and uniformly bounded,
i.e., n(x) > ny > 0 for almost all = € dD,. Let v again denote the unit
outward normal vector defined almost everywhere on 0D, U0D5. Then
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the total field u = u® + €'**'¢ outside D and the interior field w inside
D satisfy the mixed transmission boundary value problem

(18) Au+ ku=0 in R*\ D,
(19) Aw + E*n(z)w =0 in D
(20) w—u=0 on 0D
ow Ou
(21) % - 5 =0 on 6D1
ow Ou .
(22) % 9 in(z)u on 0D
. ou® .\ _
(23) lim \/;( e —iku > =0

where again k > 0 is the wave number and r = |z|. In [8] it is shown
that there exists a unique solution w € H'(D) and u € H} _(R?\ D)
to the mixed transmission problem (18)—(23). The scattered field u®
again has the asymptotic behavior [4, 11]

ezkr

7

as 7 — 0o where u (7, d) is defined for Z, d € Q is the far field pattern.

u®(z) = Uoo (F, d) + O(r~%/?)

In this section we again assume that the support of the inhomogeneity
D is known. Then the inverse problem we consider here is to determine
the surface conductivity n as a function in Ly, (0D2) from a knowledge
of uso(Z,d) for T € Q9 C Q and d € Q; C Q. Note that we do not
assume that n(z) is known and we will not reconstruct it.

We first want to prove a uniqueness theorem for n € Ly, (0D3). Let
us denote by 7j € Lo, (0D) the extension by zero to the whole boundary
of the surface conductivity 7.

Theorem 3.1. Let v; be the Herglotz wave function with kernel g
and vy and wy be the solution of (18)~(23) with e**¢ replaced by v}.
Then

@) [ @)l ds = k| Fgl? + VExk In (¢7/4(Fg, 9))
oD

where F is the far field operator (-, -) is the inner product over L%(Q).
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Proof. The proof is similar to the proof of Theorem 2.1. In particular
from Theorem 2.1 we have the relations (8) and (9). Now let v, and
wy be solutions of (18)—(23) with e?**¢ replaced by v}. Then from the
second Green’s identity by using the equations for v, and w, and the
transmission condition together with the fact that n is real we have
that

ov ov
2 2% ~ 2 — 9 _ - g9
(25) 2/8D n(x)|vg|*ds(x) /BD <vg—81/ vg—ay > ds,

and the theorem now follows in the same way as in the proof of
Theorem 2.1.

We call k a Dirichlet eigenvalue for D if

Av+ k*n(z)v =0 in D
v=0 on dD

has non trivial solutions.
Theorem 3.2. Assume that k is not a Dirichlet eigenvalue for D,

and define

Z:= {f e 12(op) ; | = Valop for some g € L* (@) }

where v, is as in Theorem 3.1

Then Z is dense in L?(0D).

Proof. Tt suffices to show that if ¢ € L2(0D) satisfies

(26) / vgpds =0
oD

for all f = vglspp € W then ¢ = 0. To this end, let v, = v; + vy €
H! (R*\D) and wy, € H'(D) be the solutions of (18)—(23) with e*<d
replaced by v, and suppose (26) is true for all such v,. We construct
u € HL (R?\ D) and w € H*(D) as the unique solution [8] of
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Au+Kk*u=0 in R?\ D
Aw + k*n(z)w = 0 in D
w—u=0 on 0D
ow Ou ..

%—Ezm(w)u—ﬂo on 0D

lim ﬁ(ﬁ - zku) =0
r—00 or

Then, using the boundary conditions and Green’s second identity, we
have that

ow Ou
0—/8Dvgcpd3—/8Dvg<%—$—mu) ds
ow s . i\ 0u .
_/BDwg%ds—/aD(vg—i-vg)ay ds /BDznvguds
Ow s i\ Ou
_‘/E}Dwg%dsf/aD(vg—}-vg)%ds
_/ Dy _ O +3) ) uds
8D ov ov
_ ow  dwy sO0u  Ovg
B /BD (wg ov  Ov w> ds /BD <vg ov Ov u> ds
; Ou 31};
—/BD <vg%— aVu)ds

. ot
:/ (l@_ vgu)ds for all g € L*(Q).
oD

Vg ov Ov

This implies that

' ikz-d
/ <ezkz-d% _ 6681/ u> ds(z) =0, fordeQ,
oD

and hence uq(d) = 0 which implies u = 0 and since k is not a Dirichlet
eigenvalue w = 0 and therefore ¢ = 0. This ends the proof. ]

Theorem 3.3. Assume that k is not a Dirichlet eigenvalue for D.
Let ul_ be the far field pattern for (18)—(23) corresponding to 7 := 7;,
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vu=ul, w=w', j=1,2, and let Qy and Q; be open nonempty subsets
of the unit circle Q. Then if ul (Z,d) = 2 (Z,d) for T € Qo and
d € Qy, T =12 as functions in Lo, (0D). In particular the support of
coatings DY = 0D2 coincide and n1(z) = n2(z) almost everywhere on
oD} = dD3.

Proof. As in the proof of Theorem 2.3, we have that ul (Z,d) =
u2 (Z,d) for Z,d € Q and hence by Rellich’s lemma then u! = u? in
R?\ D for all d € Q which implies that v, = v} = v2 on 8D. From
Theorem 3.1 we have that

[ o) @il de =o.
oD

Viewing the Lo, (0D) function 7; — 72 as a self-adjoint operator on
L?(0D) we have by Theorem 3.2 that n; = 72 as functions in L (8D)
(cf. [15, Theorem 9.2-2]). In particular, this means that the support of
coatings D} = D32 coincide and 11 (z) = n2(z) almost everywhere on
dD} = D2, which proves the theorem.

We proceed next with the reconstruction of . To this end we consider
again the far field equation

6i'/r/4

/Q o (& D)g(d) d(d) =

g€L2(Ql), C/U\EQ(), z € D.

efikg-z

(27)

For z € D, it is easy to see (cf. [11, Theorem 8.9]) that the far
field equation has a solution g* € L?(Q) if and only if the interior
transmission problem

(28) Av, + k*v, = in D
Aw, + k*n(z)w, =0 in D
w, — v, = D(+,2) on 0D
ow, 0Ov, 0%(-2)
v v v on 0D

ow, 0Ov, 0%(-2)

ov ov ov

+in(v, + @(+, 2)) on 0Dy
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has a solution v,,w, such that v, := vg- is a Herglotz wave function
with kernel g*. We call k a transmission eigenvalue if the homogeneous
interior transmission problem, i.e., (28)—(29) with ®(-, z) = 0, has a non
trivial solution. In [5] it is shown that, provided k is not a transmission
eigenvalue, the interior transmission problem has a unique solution
w, € L*(D) and v, € L?(D) such that w, — v, € H%(D). In addition
it can be shown that the set of transmission eigenvalue is at most
discrete. From this result, Theorem 3.3 of [5] and the approximation
property of the Herglotz wave functions with compactly supported
kernels proven in subsection 1.3 of [2], one can show, provided that
k is not a transmission eigenvalue, that for z € D and for every ¢ > 0
there exists a g7 € L?(Q) with support in Q; such that
/ oo (B, d) g2 (d) ds(d) — Eo ik <c
a, e’} ) 9c \/m L (@) = Cy

and the corresponding Herglotz function vgg is such that

(30)

tlli% H’U;; — ’UZ||L2(D) = 0

where v,, w, is the unique solution of the interior transmission problem
(28)—(29).

In order to connect the approximate solution to the far field equation
with the solution of the interior transmission problem and the forward
scattering problem we remark that the direct scattering problem is well
defined for incident fields in

Hine(D) == {u € L*(D) : Au+ k*u = 0 in the distributional sense}.
To see this, for an incident field u! € Hi,.(D) we can rewrite (18)—(23)

in terms of the scattered field u® in R?\ D and v® := w — u’ in D in
the form

(31) Au® + E*u® =0 in R*\ D,

(32) Au® + E*nu® = (1 — n)u’ in

(33) u? —ui =0 on 0D
ou®  Ous

(34) ;V* - ; =0 on 9D,
ous  ou’ ) s

(35) 5 8; = in(z)u’ on 0D,

(36) lim ﬁ(aus —ikus> =0

r—00 ov
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where 43 and u? denote the limiting values of u® as x tends to 9D
from outside D and inside D, respectively. A standard variational
approach shows the existence of a unique solution to this transmission
problem in H'(D) x HL (D) that depends continuously on the data
u' € Hine(D) in the L*(D) norm. For z € D, if w,,v, is a solution
of the interior transmission problem (28)—(29), then u® := ®(+,z) in
R?\ D and u® = v, — w, in D satisfy the direct scattering problem
(31)—(36) with incident field u’ := w,. Now if vg- is the scattered

field corresponding to vgg, then vy. = u® = v, —w; in H'(D) and

vge — @(+,2) in Hy, (R? \ D) as ¢ — 0. Using this fact (see also [9])

it is possible to justify the use of Green’s formula applied to w, and v,
and thus obtain the following result:

Lemma 3.4. Assume that k is not a transmission eigenvalue. Then
for every point z € D we have that

(37) /{:)D n(z) v, (z) + @(:c,z)|2 ds(z) = =1/4 — Im (v,(2)),

where v,,w, is the solution of the interior transmission problem

(28)—(29).
Proof. Set V, = v, + ®(+,2). Then, using the fact that n is real,

ow, _ Ow,
0—/8D <’U]2W —wzﬁ) ds

= / Vz% — VZ% ds — Zi/ n(z)V,V, ds.
8D 61/ (91/ 8D

But

ov, —oV,
/aD (VZW‘VZ a,,)ds
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0v, _ 0®(-,z2)
—l—/BD (@(-,z) 5 Y25, >ds

- —2ik/ﬂ<1>oo(-,z)<1>oo(-,z) ds +7,(2) — v.(2)

= 5 — 2ilm (v:(2)),

i.e.,

/aD n(2) |02 (2) + (2, 2)|? ds(z) = —1/4 — Im (v(2)) .

Lemma 3.5. Assume that k is neither a Dirichlet or a transmission
eigenvalue for D. Let B, C D be a ball of radius r, and let

f= (UZ + @("Z))|3D27 }

X =3 feL*0D,):
{f (9D2) z € By and v,,w, the solution of (28)—(29)

Then X is complete in L?(0D3).

Proof. Using Green’s second formula, it is shown in [5, Section 3] that
if v,,w, is a solution to the interior transmission problem (28)-(29)
then v, |sp is well defined in L?(0D). Now let V, := v, + ®(-,2) and 7
be a function in L?(8D5) such that for every z € B,

V,7ds =0.
Dy

Construct v € L?(D) and w € L?*(D) such that v — w € H?(D) as the
unique solution of the interior transmission problem

Av+k*v=0 in D
Aw + k*n(z)w =0 in D
w—v= on 0D
ow Ov
%—5—0 onaDl
(38) ow _ dv =inp+T on 0Ds.
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The existence of such a solution is shown in [5, Section 3]. Then we

have that
0:/ Vszs:/ T@(a—w@imJ)ds
8D, 8D, 81/ 61/

:/ sz?_wds_/ VZ@dS—i/ nvV,ds.
op Ov ap Ov aD,

Next from the equations for w, and w, the divergence theorem and the
transmission conditions we have that

/Vza—wds:/ wza—wds:/ 6wzwds
8D ov 8D ov 8D ov

:/ 8V2vds+i/ noV,ds,
op OV dD>

and substituting (40) into (39) yields

Ov 8‘/2 - Ov aUz
o= [, Gove o) ae= [, (G Gv)e
Ov 64)(7'2) _
+/3D <$ ®(-,z) — T’l)) ds =wv(z) forall z € B,.

The unique continuation principle for the Helmholtz equation now
implies that v = 0 in D. Hence if k is not a Dirichlet eigenvalue
for D then w = 0 and therefore ¢ = 0 which proves the lemma.

(39)

(40)

(41)

We recall that v, can be approximated by U;g- Equation (37) can
now be seen as an integral equation of the first kind for n where by
setting 7 = 77 we can assume that the region of integration is 0D
instead of 0Dy. Using Lemma 3.5, it is easy to see in the same way
as in the proof Theorem 3.3 that the left hand side of this equation is
an injective compact integral operator with positive kernel defined on
Lo (0D3). Using Tikhonov regularization techniques it is possible to
determine 7 by finding the regularized solution of (37) in L?(8D) with
noisy kernel and noisy right hand side.

In particular, if the dielectric obstacle is fully coated (i.e., 0D = 0D5)
and the surface conductivity is a positive constant 1 > 0 we obtain that
—1/4 — Im (v.(2))

To- + 90 Paop)

(42) n
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0.31

FIGURE 1. The shape of the scatterer used in these experiments. The same triangle
is used for both conductivity and impedance problems. In the first case (impedance)
the scatterer is impenetrable so the region inside the triangle is not meshed. For the
second case conductivity, the triangle is penetrable and the inside is meshed for the
forward problem. The circle shown inside the triangle is the position of auxiliary
sources z used in the computation of the conductivity or impedance functions.

4. Numerical results. In this section we shall present some
numerical results, using synthetic far field data, that illustrate the
theory given in previous sections. Following the method of our previous
papers [6, 7] we shall use far field patterns computed via a cubic finite
element scheme that uses the perfectly matched layer to terminate the
computational domain.

For a given scatterer (all our examples will be computed using the
triangular scatterer in Figure 1) we generate an approximate far field
pattern for IV equally spaced incident angles in the aperture {2; and
record the far field pattern at NV equally spaced points in 4. There is
no reason to require the same number of points in both apertures, and
indeed our code allows an arbitrary choice of points (not even equally
spaced) but we do not investigate this aspect here. We always make
the choice that the incident and measurement apertures are given by
Q; = —Q. This corresponds to backscattering (i.e., the measurement
and source points are in the same portion of physical space). The data
thus gives an N x N approximation to the matrix of A of multistatic
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far field measurements where Ay, = oo (Zp, —Trm) and Zp, 1 <L < N,
is a set of equally spaced points in §2yg. The entries of this matrix are
further corrupted by random noise as described in [6, 7] with the same
noise level as in those papers. In particular, to each entry A;,, we
obtain “noisy” entries (A.);,,, using

(As)l,m = Al,m (]- + E(fl,m,n + Z.'52,m,'n))

where ¢ = 0.01 and & y,n and &2, are given by a random number
generator uniformly distributed in the range [—1, 1].

We shall assume throughout this paper that D is known (i.e., orienta-
tion, position and shape) and that the goal is to compute the impedance
or conductivity. Using the data matrix A in the same way as in the
previously mentioned papers, we can compute a discrete approximation
to a regularized solution of (11) and (27) using Tikhonov regulariza-
tion and Morozov’s discrepancy principle for any auxilliary source point
z € D [4, 11]. This then provides a discrete kernel for the Herglotz
wave function

vy(z) = / e dg(d) ds(d)

where the integral is replaced by mid-point quadrature. Assuming that
the discrete kernel approximating g is computed sufficiently accurately,
the resulting discrete Herglotz wave function will then be an approxi-
mation to the function u, in the integral equation (16) or the function
v, in (37). Indeed these integral equations are identical once u, or v,
are known, so we will now discuss only (16).

Since we know D we can choose z € D and then, as described
in the previous paragraph, we can compute an approximation to u,.
The integral in (16) is then approximated using quadrature on 9D.
Here we use the finite element grid used for the forward problem and
then use the trapezoidal rule with five points on each subinterval and
as discussed after Lemma 2.5, without loss of generality we replace
O0D; = O0D. A linear system for the values of A at the quadrature
points is obtained by taking P points z € D. Arbitrarily we choose
these P points to be uniformly distributed on a circle of radius g about
the origin (our example scatterer contains the origin). The resulting
discrete approximation to (16) is highly ill-conditioned so we again
use Tikhonov regularization via the L?(0D) norm of d\/ds where s
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FIGURE 2. Reconstructions of the constant functions A = 1 (top left), n =
1 (bottom left), and piecewise constant A and n (top right and bottom right,
respectively) using full aperture data when k = 2. The results are shown as a
function of arc length measured anti-clockwise from the leftmost point of the triangle
and the exact solution is shown as a thin line.

is the arc length along 0D (implemented via finite differences). This
regularization is particularly well suited to computing a constant A.
We choose the regularization parameter giving the solution which best
approximates the exact solution in the discrete L?-norm over a discrete
set of parameter values: 10~1,1072,... ,10719,

Our example domain D is the triangle shown in Figure 1. This is very
unlikely to be a Herglotz domain and hence represents a reasonable test
of our algorithms.
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TABLE 1. Table of parameter values for the results in this section.

51 (except Fig. 5 when N = 25) ro | 0.07
k | 0.2, 2 or 5 (depending on the figure) | P | 100

Full aperture reconstructions. We first consider full aperture
data in which Q¢ = 21 = Q. Our first graphs in Figure 2 show the
results of reconstructing a constant function and a piecewise constant
function on 0D when k£ = 2. Other data is given in Table 1. For the
constant function, A = 1 or n = 1, while for the piecewise constant
function A = 1 on the long sides of the triangle and A = 0.2 on the
short side (the same function is also used for 7). The results clearly
indicate the variation of the piecewise constant function, although the
reconstructions are smooth (as is to be expected from regularization)
and have a large error (for example an L?(9D) relative error of 18% in
the case of the reconstruction of the piecewise constant \).

Our goal is to distinguish different coatings by variations in 7 or
A, so in Figure 3 we examine the performance of the algorithm for a
constant parameter A = C (or n = C as appropriate) as C varies from
0.125 to 10. For both the impedance and conductivity parameters
the accuracy of the reconstruction deteriorates as C increases. This
implies that it would be difficult to differentiate between, for example,
A =5 and A =500 (the latter being very close to a perfect conductor).
The method can differentiate between objects with low impedance or
conductivity (the range is slightly larger for the conductivity 1 than for
the impedance ).

Limited aperture reconstructions. In this section we only
attempt to reconstruct the constant impedance A = 1 or the constant
conductivity n = 1. We investigate the sensitivity of the reconstruction
to the size and orientation of the measurement aperture €y. We first
examine three limited apertures:

1. The aperture subtends 7/8 radians and extends from polar angle
6 =0tof=m/8.

2. The aperture subtends /4 radians and extends from polar angle
0=—m/8tof=m/8.
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3. The aperture consists of two disconnected components, the first
extends from polar angle # = 0 to § = /8 and the second is from
6 = w/2 to § = 5w /8. This has the same total aperture as the second
case above.

10 10
9| —— Perfect reconstruction 1 97| —— Perfect reconstruction
8 - - - Computed reconstruction| s - - - Computed reconstruction|
7 7
< =
T 1 B
° o ° -
2 Lemm T 2 P
£ - £s PP
c - c -
8 a - 8 a -
o i o
-4 .- < 7z
3 - 3 /
2 z 2
1 1
) 2 4 6 8 10 ) 2 4 8 10
Exact A Exact n

FIGURE 3. Reconstruction of various constant impedance A (left panel) and 7
(right panel) when k = 2 using full aperture data. As A or i increase the method
loses accuracy. This implies that it is difficult or perhaps impossible to distinguish
between a perfect conductor and an impedance or conductive boundary.

—— Single /8 aperture
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- Double /8 aperture
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FIGURE 4. The error in limited aperture reconstructions as a function of wave
number k for various apertures (impedance: left panel, conductive: right panel).
We use three apertures: a single aperture subtending 7/8 between polar angle § = 0
and § = /8, a single aperture subtending 7/4 between § = —m/8 to # = 7/8, and
a pair of 7/8 apertures between § = 0 and 0 = /8 and between 6 = 7/2 and
0 = 5m/8. The single larger aperture and the smaller aperture behave similarly in
that accuracy deteriorates similarly as k increases. The pair of apertures allows the
use of a higher wave number.
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Results are shown in Figure 4. For low wave number, all the apertures
provide the same high accuracy of reconstruction. As k increases the
error in the reconstruction for both the connected apertures increases
at the same rate despite their difference in size. (From these limited
experiments we feel it is premature to offer an explanation as to why the
error appears to increase as k increases). For the disconnected aperture
the error remains substantially lower than the other apertures for a
wider range of wave numbers. The reason for the better performance
of the disconnected aperture is not clear.

The accuracy of the reconstruction depends both on the aperture
size and also the orientation of the aperture relative to the triangle.
We investigate this next. In Figure 5 we show the error in the
reconstruction for a different aperture size (the angle subtended by
the aperture) and starting angle measured counter clockwise from the
x axis. For this experiment we use N = 25 incident fields to decrease
overall computer time. When k& = 5 we see that for the reconstruction
of A the aperture needs to be over 7 in extent in order to give less than
10 % error regardless of orientation. When k = 2 a smaller aperture
can be used (below 2 radians) in most directions. Similar results are
seen for the conductivity n although this example is less sensitive to
the aperture position than for the impedance.

Throughout the paper we have assumed that D is known (i.e. its
position, shape and orientation). As we might expect, at resonance
frequencies the orientation of the target is vital for obtaining a reliable
reconstruction. In Figure 6 we show the results of using the far field
pattern generated by a rotated target (about the origin) on a limited
aperture from # = 0 to § = 7/8. But we have performed the inversion
assuming the target is in its standard orientation. When k = 2 the
reconstruction of A or 7, which is already poor due to the limited
aperture, varies strongly with orientation. Of course for low frequency
(for example k = 0.2) the reconstruction is much better and roughly
independent of orientation (the fourfold symmetry in the reconstruction
is most likely caused by errors in the far field pattern due to the PML
which is less efficient for low frequency.

5. Conclusion. In the paper we have given uniqueness theorems
and reconstruction algorithms for determining the surface impedance
A or surface conductivity n for an obstacle from noisy far field data.
Although our algorithm works well for moderate values of A and 7,
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FIGURE 5. Contour maps of reconstruction error as a function of aperture extent
(i.e. the angle subtended by the aperture) and the start angle of the aperture. The
top panels are for impedance (k = 2 left and k = 5 right) and the lower panels
are for conductivity. At the higher wave number the error is poor for any aperture
smaller than roughly 4 radians. For most aperture positions a smaller aperture can
be used when k decreases as is to be expected.

numerical examples show that, as A or 7 increase, our reconstruction
algorithms become less accurate. We believe that this is due to the
fact that both the kernel and right hand side of the integral equation
satisfied by A or n become very small as A or n become large. Hence,
in order to be effective in distinguishing between coated decoys and
perfect conductors (i.e., A or 77 equal to infinity) more work needs to be
done on improving the accuracy of our algorithms for large values of A
or 7 (possibly through the use of techniques from asymptotic analysis).
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FIGURE 6. A test to show the sensitivity of the reconstruction of A = 1 (left
panel) or n = 1 (right panel) to incorrect orientation of the target. Data for a
rotated triangle (rotated about the origin) is used assuming the triangle is in its
original orientation. For low wave number the reconstruction is not very sensitive
to orientation (the four fold symmetry is likely due to the damping layer used in
the forward problem). For higher wave numbers the reconstruction is more variable
and also overall less accurate.

Acknowledgments. We thank the referees for their careful reading
of our paper which has resulted in a much improved paper.

REFERENCES

1. I. Akduman and R. Kress, The direct and inverse scattering problems for inho-
mogeneous impedance cylinders of arbitrary shape, Radio Sci. 38 (2003), 1055-1064.

2. F. Cakoni and D. Colton, Combined far field operators in electromagnetic
inverse scattering theory, Math. Methods Appl. Sci. 26 (2003), 413-429.

3. , The determination of the surface impedance of a partially coated
obstacle from far field data, SIAM J. Appl. Math. 64 (2004), 709-723.

4. , Qualitative methods in inverse scattering theory, Springer-Verlag,
Berlin, 2006.
5. , Inequalities in inverse scattering theory, J. Inverse Ill-posed Problems

15 (2007), 483-491.

6. F. Cakoni, D. Colton and P. Monk, The direct and inverse scattering problems
for partially coated obstacles, Inverse Problems 17 (2001), 1997-2015.

7. , The determination of the surface conductivity of a partially coated
dielectric, SIAM J. Appl. Math. 65 (2005), 767-789.

8. , The inverse electromagnetic scattering problem for a partially coated
dielectric, J. Comp. Appl. Math. 204 (2007), 256—267.

9. F. Cakoni and H. Haddar, Identification of partially coated anisotropic buried
objects using electromagnetic Cauchy data, J. Integral Equations Appl. 19 (2007),
361-391.




THE DETERMINATION OF BOUNDARY COEFFICIENTS 191

10. F. Cakoni, G. Nakamura, M. Sini and N. Zeev, The identification of a partially
coated dielectric medium from far field measurements, Appl. Anal. 89 (2010), 29-47.

11. D. Colton and R. Kress, Inverse acoustic and electromagnetic scattering
theory, 2nd ed., Springer Verlag, Berlin, 1998.

12. , Eigenvalues of the far field operator for the Helmholtz equation in
an absorbing medium, SIAM J. Appl. Math. 55 (1995), 1724-1735.

13. J.J. Liu, G. Nakamura and M. Sini, Reconstruction of the shape and surface
impedance from acoustic scattering data for an arbitrary cylinder, STAM J. Appl.
Math. 67 (2007), 1124-1146.

14. D.J. Hoppe and Y. Rahmat-Samii, Impedance boundary conditions in elec-
tromagnetics, Taylor and Francis, London, 1995.

15. E. Kreyszig, Introductory functional analysis with applications, John Wiley,
New York, 1978.

16. G. Nakamura and M. Sini, Obstacle and boundary determination from
scattering data, SIAM J. Math. Anal. 39 (2007), 819-837.

17. T.B.A. Senior and J.L. Volakis, Approzimate boundary conditions in electro-
magnetics, IEE, London, 1995.

DEPARTMENT OF MATHEMATICAL SCIENCES, UNIVERSITY OF DELAWARE, NEwW-
ARK, DELAWARE 19716
Email address: cakoni@math.udel.edu

DEPARTMENT OF MATHEMATICAL SCIENCES, UNIVERSITY OF DELAWARE, NEW-
ARK, DELAWARE 19716
Email address: colton@math.udel.edu

DEPARTMENT OF MATHEMATICAL SCIENCES, UNIVERSITY OF DELAWARE, NEW-
ARK, DELAWARE 19716
Email address: monk@math.udel.edu




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


