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ABSTRACT. In this work we consider the inverse prob-
lem of detecting inclusions or cavities in an elastic body, us-
ing a single boundary measurement on an external boundary.
We discuss the identifiability questions on shape reconstruc-
tion, presenting counterexamples for Robin boundary condi-
tions or with additional unknown Lamé parameters. Using the
method of fundamental solutions (MFS) we adapt a method
introduced twenty years ago by Andreas Kirsch and Rainer
Kress [20] (in the context of an exterior problem in acoustic
scattering) to this inverse problem in a bounded domain. We
prove density results that justify the reconstruction of the so-
lution from the Cauchy data using the MFS. We also establish
some connections between this linear part of the Kirsch-Kress
method and the direct MFS, through matrices of boundary
layer integrals. Several numerical examples are presented,
showing that with noisy data we were able to retrieve a fairly
good reconstruction of the shape (or of its convex hull) with
this MFS version of the Kirsch-Kress method.

1. Introduction. The identification of inclusions or cavities in
an elastic body from external boundary measurements is a problem
in nondestructive testing. This is an inverse problem that aims to
reconstruct the shape and location of the burried object from the
knowledge of the Cauchy data. This problem has been addressed in the
literature for both scalar and vectorial potential problems with different
boundary conditions. For the Laplace equation, with applications in
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thermal imaging see for instance [9, 15, 16] and more recently [10]
where an unknown Robin boundary condition was considered. For the
elasticity (or elastodynamic) system, see the review paper by M. Bonnet
[8]. Some recent works considered the detection of small diameter
inclusions (eg. [2, 4]) or spherical inclusions (eg. [6]). The detection
of elastic cavities and inclusions can also be analysed in a different
framework in terms of a change in the elastic material properties (e.g.
[1, 26, 27]).

In this work, we address the aforementioned inverse problem con-
sidering a single boundary measurement on an accessible part of the
external boundary. The buried object is either a rigid inclusion (defined
by a Dirichlet boundary condition), a cavity (defined by a Neumann like
boundary condition) or a more general inclusion (defined by a Robin
like boundary condition). The identifiability questions are discussed
in Section 2 and in Section 3 we focus on the numerical resolution of
the inverse problem. We propose a numerical scheme that connects the
Method of Fundamental Solutions (MFS), proposed forty years ago by
Kupradze and Aleksidze [22], and the Kirsch-Kress Method (KKM),
proposed twenty years ago [20]. The MFS was usually presented as a
numerical method for direct problems, but it has gained recently some
popularity as a method to solve some Cauchy problems (eg. [23]). This
feature was already present in the original formulation of the Kirsch-
Kress Method (for acoustic scattering) using single layer potentials,
that consists in two parts: (i) linear part - resolution of the Cauchy
problem, (ii) nonlinear part - recovering the level set by an optimiza-
tion technique. This connection is here made clear by analysing the
operator matrices with boundary potentials for both the MFS and the
KKM. Although density results are deduced for both methods, these
share an ill-conditioned feature that can be dealt with a Tikhonov reg-
ularization technique.

In Section 4 several numerical examples show the possibilities (and
some difficulties) of the MFS used in the KKM sense, for these elastic
inverse problems, considering unknown rigid inclusions. This technique
was previously tested for scalar (Laplace) problems with better recon-
struction results1, which can be explained by the difficulties in obtain-
ing a level curve in the vectorial case. Nevertheless this proved to be a

1Communication by the authors in the International Workshop on Integral
Equations and Shape Reconstruction (Göttingen, Germany, 2007).
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quite fast numerical scheme that enables a good approximation of the
location and shape of the unknown inclusion even with considerable
noisy data.

2. Direct and Inverse Problem. We consider an isotropic and
homogeneous elastic body Ω ⊂ R

d (d = 2, 3) with inclusions or cavities
represented by ω. We assume that Ω, ω are open, bounded and simply
connected sets with regular (C1) boundaries Γ = ∂Ω and γ = ∂ω such
that ω ⊂ Ω. We define the domain of elastic propagation by

Ωc := Ω \ ω.
Note that ∂Ωc = Γ ∪ γ.

In linearized elasticity, using Hooke’s law, the stress tensor σ is
defined in terms of the displacement vector u by

σλ,μ(u) = λ(∇ · u)I + μ
(∇u + ∇u�)

where λ and μ are the Lamé coefficients. When there is no body force
and the body is in static equilibrium, the equations of motion resume
to a null divergence of the stress, giving the Lamé system of equations

∇ · σλ,μ(u) = 0.

We will write Δ∗
λ,μu := ∇ · (σλ,μ(u)), noticing that

∇ · σλ,μ(u) = μΔu + (λ+ μ)∇∇ · u,
and we will use the notation ∂∗λ,μu := σλ,μ(u)n for the surface traction
vector, where n is the outward normal vector.

Direct problem. Given g ∈ H1/2(Γ)d, determine ∂∗λ,μu on Γ, such
that u satisfies

(1)

⎧⎨⎩
Δ∗

λ,μu = 0 in Ωc

u = g on ∂Ω = Γ
Bγu = 0 on ∂ω = γ

with known Lamé coefficients λ, μ > 0. The boundary operator Bγ is
defined by

(2) Bγu = a∂∗λ,μu + Zau
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where a ∈ {0, 1} is constant and Za is a L∞(γ) positive semidefinite
matrix function such that Z0 = I.

• If a = 0 then Bγ is the Dirichlet operator. In this case, ω is a rigid
inclusion and (1) will be denoted by (PD).

• When Z1 = 0, Bγ is the Neumann operator (ω is a cavity) and (1)
will be denoted by (PN ).

• More generally, we consider Bγ as the Robin operator (Z1 �= 0).
We denote this problem by (PR).

It is well known that (PD), (PN ) and (PR) are well posed with
solution u ∈ H1(Ωc)d.

Inverse problem. From a single pair of displacement and surface
traction data (g, ∂∗λ,μu) on a part Σ of the external boundary, ie.
Σ ⊆ Γ = ∂Ω, we aim to identify the shape of the internal boundary
γ = ∂ω and the boundary condition on γ.

It is well known that the recovery of a solution from Cauchy data is
an ill posed problem in the Hadamard sense. In terms of the inverse
problem, this means (assuming uniqueness of the inverse problem) noise
sensitive reconstructions. The uniqueness of the inverse problem is
addressed in the next section.

2.1. Identifiability.

2.1.1. Non-identifiability cases (single measurement)

(i) Robin boundary condition. As shown by Cakoni and Kress in
[10], for the Laplace equation, a single boundary measurement may
not suffice to identify an inclusion ω with Robin boundary conditions.
This non identification also occurs in the elastic case. For instance,
consider the function defined in R

2 \ {0} by

(3) u(x) = x −∇ log |x|
and the annular domain Ωc = Ω \ ω, where

Ω = B(0, P ) =
{
x ∈ R

2 : |x| < P
}
, ω = B(0, ρ)

and 0 < ρ < P. A forward computation gives, on γ = ∂ω

∂∗λ,μu
∣∣∣∣γ =

2 + 4ρ2

ρ2
n ∧ u

∣∣∣∣
γ

= −1 − ρ2

ρ
n.



METHOD OF FUNDAMENTAL SOLUTIONS 157

Since u solves the Lamé system in R
2 \ {0}, we have⎧⎨⎩

Δ∗
λ,μu = 0 in Ωc

u = g on Γ
∂∗λ,μu + Zρu = 0 on γ

where g is the restriction of u to Γ = ∂Ω and

Zρ =
2 + 4ρ2

ρ(1 − ρ2)
I.

Since the function ρ → 2+4ρ2

ρ(1−ρ2) is not injective for 0 < ρ < 1 (... it

has a derivative zero in ρ = 1
2

√
−5 +

√
33 ≈ 0.43) then at least two

circular inclusions generate the same Cauchy data on Γ.

(ii) Unknown Lamé coefficients. In [27], Nakamura and Uhlmann
obtained, in a more general framework, a sufficient condition for the
identification of Lamé coefficients, assuming the knowledge of the
Dirichlet to Neumann map. A further analysis of the previous example
shows that one measurement may not suffice for the identification of
these constants. For instance, if ρ = 1 < P, then u defined in (3) is the
solution of the Dirichlet problem⎧⎨⎩

Δ∗
λ0,μ0

u = 0 in Ωc

u = g on Γ
u = 0 on γ

with unknown Lamé constants λ0 and μ0. The Neumann data on Γ is

∂∗λ0,μ0
u|Γ =

2(μ0 + P2(λ0 + μ0))
P2

n

therefore, the (non empty) set of Lamé constants{
(λ, μ) ∈ R

2
+ : μ− μ0 =

P2

1 + P2
(λ0 − λ)

}
generates the same data on the boundary, and identification is not
possible.
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2.1.2. Identifiability results. We start with a proof that extends
to the elastic case the Holmgren lemma and analytic continuation
arguments.

Lemma 1. Let Ω ⊂ R
d with C1 boundary Γ = ∂Ω and consider

Σ ⊂ Γ open in the topology of Γ. If f ∈ E ′(Ω), a compactly supported
distribution, with support Ωf ⊂ Ω and Δ∗

λ,μu = f in Ω with null Cauchy
data on Σ then u = 0 in ΩΣ, where ΩΣ is the connected component of
Ω \ Ωf such that Σ ⊂ ∂ΩΣ.

Proof. Consider the extension ũ of u to the whole space by taking
ũ = 0 in R

d \ Ω. This extension can be given in convolution form by
the boundary layers (e.g. [30] for the notation)

(4) ũ = Φ ∗ f − Φ ∗ [∂∗λ,μu]δΓ + ∂∗λ,μ(Φ ∗ [u]δΓ)

where δΓ denotes the surface delta-characteristic distribution and [·]
denotes the boundary jump. By hypothesis, both interior and exterior
traces on Σ are null and [∂∗λ,μu]|Σ = [u]|Σ = 0, therefore

ũ = Φ ∗ f − Φ ∗ [∂∗λ,μu]δΓ\Σ + ∂∗λ,μ(Φ ∗ [u]δΓ\Σ).

Since the fundamental solution Φ is analytic in R
d \ {0} then this

representation implies that ũ is analytic in R
d \ (Ωf ∪ (Γ \Σ)). On the

other hand, ũ = 0 in R
d \ Ω hence, by analytic continuation through

Σ, the solution u is null in those connected components.

Remark 2. The previous Lemma includes the case of distributions f
that arise from the representation of boundary problems on the cavities
ω, in terms of f = αδγ +∂∗λ,μ(βδγ). This proof can be extended to other
linear elliptic differential operators with constant coefficients, where
the fundamental solution exists (Malgrange-Ehrenpreis theorem) and
is analytic in R

d \ {0} , using the integral representation formulation.

We now address the identification of inclusions or cavities defined
by homogeneous Dirichlet or Neumann conditions. Denote by RΩ the
linear space of rigid displacements, R, in Ω. In 2D,

R = span{(1, 0), (0, 1), (−x2, x1)}
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and in 3D

R = span{(1, 0, 0), (0, 1, 0), (0, 0, 1), (−x2, x1, 0), (0,−x3, x2), (x3, 0,−x1)}.

Theorem 3. Let Σ ⊂ Γ be an open set in the topology of Γ and
g ∈ H1/2(Γ)d such that the restriction g|Σ ∈/ RΣ. Then, the Cauchy
data (g, ∂∗λ,μu) on Σ, where u solves (PD) or (PN ), determines uniquely
ω and the boundary condition on γ.

Proof. We start by proving that ω is fully identified from Cauchy
data on Σ. Suppose that Ω1

c and Ω2
c are different non-disjoint propa-

gation domains with boundaries

∂Ω1
c = Γ ∪ γ1, ∂Ω2

c = Γ ∪ γ2,

where γj refer to the boundary of the inclusion/cavity ωj .

Denote by ui the solution of problem (PD) or (PN ) in the domain Ωi
c.

We show that, if

u1|Σ = u2|Σ, ∂∗λ,μu1|Σ = ∂∗λ,μu2|Σ

then u1 ∈ R
Ω#

c

, where Ω#
c denotes the connected component of Ω1

c∩Ω2
c

that contains Γ.

By the previous Lemma, the same Cauchy data on Σ implies

u1 = u2 in Ω#
c .

Now, ∂Ω#
c = Γ ∪ γ#

1 ∪ γ#
2 with γ#

j ⊂ γj and γ#
1 ∩ γ#

2 = ∅. Without
loss of generality assume that γ#

2 is not empty. If Ω1
c �= Ω2

c then we can
distinguish two cases:

Case 1: Ω1
c ∩ Ω2

c is connected, ie. Ω1
c ∩ Ω2

c = Ω#
c . Consider σ =

ω2 \ ω1 ⊂ Ω1
c which is an open set with boundary ∂σ ⊂ γ#

2 ∪ γ1. It is
clear that Δ∗

λ,μu1 = 0 in σ and on γ1 we have null Dirichlet/Neumann
data. By the previous Lemma, u1 has also null Dirichlet/Neumann
data on γ#

2 .
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Case 2: Ω1
c∩Ω2

c is not connected. In this case, take σ as the connected
component of Ω1

c \ Ω#
c that intersects ω2. Again, ∂σ ⊂ γ#

2 ∪ γ1.

In both cases we have

(5)

⎧⎨⎩
Δ∗

λ,μu1 = 0 in σ

u1 = 0 in ∂σD

∂∗λ,μu1 = 0 in ∂σN

where ∂σD, ∂σN ⊂ ∂σ are open and ∂σ = ∂σD ∪ ∂σN . Thus, u1 is
null on σ (a rigid displacement, if (5) is a pure Neumann problem) and
we conclude, by analytic continuation, that u1 ∈ R

Ω#
c

. Since Σ ⊂ Ω#
c

and g|Σ = u1|Σ then g|Σ ∈ RΣ, which contradicts the hypothesis. The
conclusion Ω1

c = Ω2
c (and therefore ω1 = ω2) follows.

For the second part of the proposition, we note that since Ω1
c = Ω2

c

then, by the previous Lemma, a solution of Δ∗
λ,μu = 0 in Ω1

c with null
Cauchy data on γ ⊂ ∂Ω1

c must vanish in Ω1
c . Thus, g|Σ = 0 ∈ RΣ

which contradicts the hypothesis. Therefore, the boundary condition
on γ is fully identified by the data on Σ.

Remark 4.

1. As shown in the non-identifiability counter-examples, the previous
result can not be extended to the Robin problem. In the interior
boundary problem (5) the boundary condition could be defined by
piecewise Robin coefficients Zj (positive definite matrices) but the
normal direction in ∂∗λ,μ would have opposite sign on ∂σ.

2. If ω is a disjoint union of simply connected sets then the result is
still valid if on the boundary of each component we have an homoge-
neous Dirichlet or Neumann boundary condition.

3. MFS and KKM.

3.1. The MFS in a multiconnected domain. For simplicity, we
present the results concerning the MFS in a two connected domain.
The general case can be handled in the same manner. Recall that
Ωc = Ω\ω, where ω,Ω ⊂ R

d (d = 2, 3) are open and simply connected.
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The complementary set R
d \ Ωc has two connected components, one

exterior ΩC = R
d \ Ω̄ and one interior, ω.

To apply the Method of Fundamental Solutions, we will consider
artificial sets that will define the location of the point-sources. In ω,
we consider as admissible sets, γ̂ = ∂ω̂ internal regular boundary of
ω̂ simply connected open set such that ω̂ ⊂ ω. Finally, we define an
external boundary Γ̂ = ∂Ω̂ with Ω̂ an open unbounded set Ω̂ ⊂ ΩC

with a boundary that encloses the domain Ω.

Recall that the fundamental solution for the Lamé system is given by
the tensor

[Φ(x)]ij =

⎧⎨⎩
λ+3μ

4πμ(λ+2μ)

[
− log |x|δij + λ+μ

λ+3μ
xixj

|x|2
]

2D case

λ+3μ
8πμ(λ+2μ)

[
1
|x|δij + λ+μ

λ+3μ
xixj

|x|3
]

3D case

and define the source tensor Φy(x) := Φ(x− y).

Consider the single and double layer potential given in the integral
form on a boundary S,

LS(φ)(x) =
∫

S

Φx(y)φ(y)dSy , x ∈ R
d \ S

MSψ(x) =
∫

S

∂∗λ,μΦx(y)ψ(y)dSy, x ∈ R
d \ S

with φ ∈ H−1/2(S)d, ψ ∈ H1/2(S)d. The derivative of the tensor
Φy appearing on the double layer potential is defined as the tensor
[∂∗λ,μ(Φyei)]i where (e1, . . . , ed) is the standard basis of R

d.

Define the operator

M(Γ, γ) : H−1/2(Γ̂)d ×H−1/2(γ̂)d −→ H1/2(Γ)d ×H(−1)a1/2(γ)d

by

M(Γ, γ)(φ, ψ) =

[
τΓL

Γ̂
τΓLγ̂

BγLΓ̂
BγLγ̂

] [
φ

ψ

]
where τS is the trace, τnS = ∂∗λ,μ the normal trace and

BS = aτnS + ZaτS

as in (2).
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We show that in the 2D case, M(Γ, γ) is injective in H−1/2
I (Γ̂∪ γ̂)2 and

has dense range in H1/2
I (Γ)2 ×H(−1)a1/2

Za
(γ)2, where

Hr
R(S)2 =

{
ψ ∈ Hr(S)2 :

∫
S

R(x)ψ(x)dSx = 0
}
.

Note that if
∫

S R(x)dSx is invertible then the map ψ �→ ψ + C defines
an isomorphism between Hr

R(S)2 and Hr(S)2/R2.

Theorem 5. M(Γ, γ) is injective in H−1/2
I (Γ̂ ∪ γ̂)2.

Proof. Let φ ∈ H−1/2
I (Γ̂ ∪ γ̂)2 be such that M(Γ, γ)(φ

∣∣∣
Γ̂
, φ
∣∣∣
γ̂
) = 0.

Denote by u the single layer potential on Γ̂ ∪ γ̂ with density φ, ie.,

u = L
Γ̂∪γ̂

φ = L
Γ̂
φ
∣∣∣
Γ̂

+ L
γ̂
φ
∣∣∣
γ̂
.

Then,

(6)

⎧⎪⎨⎪⎩
Δ∗

λ,μu = 0 in R
2 \ (Γ̂ ∪ γ̂)

u = 0 on Γ
Bγu = 0 on γ

• Since problem (6) restricted to Ωc is well posed in H1(Ωc)2 we have
u = 0 in Ωc and, by analytic continuation, u = 0 in Ω̂c, where Ω̂c is
the open and connected domain such that ∂Ω̂c = Γ̂ ∪ γ̂. In particular,
u−|

Γ̂∪γ̂
= 0 and ∂∗λ,μu−|

Γ̂∪γ̂
= 0. Since u is continuous across Γ̂ ∪ γ̂,

we must have u+|
Γ̂∪γ̂

= 0.

• Regarding the unbounded component Ω̂ we consider the well posed
problem (cf. [11])

(7)

⎧⎪⎨⎪⎩
Δ∗

λ,μu = 0 in Ω̂

u = 0 on Γ̂ = ∂Ω̂
u(x) = log |x| c + O(1) |x| → ∞

with
c = − λ+ 3μ

4πμ(λ+ 2μ)

∫
Γ̂∪γ̂

φ(y)dSy .
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Now u+ satisfies this exterior problem with c = 0 therefore, u+ = 0 in
Ω̂. This implies u+|

Γ̂
= 0 and ∂∗λ,μu+|

Γ̂
= 0.

• For the exterior and bounded component ω̂, the well posed problem{
Δ∗

λ,μu = 0 in ω̂

u = 0 on γ̂ = ∂ω̂

is satisfied by u+. This gives u+ = 0 in ω̂ and we conclude that
u+ |̂

γ
= 0 and ∂∗λ,μu+ |̂

γ
= 0.

Since φ is the boundary jump [∂∗λ,μu]
Γ̂∪γ̂

then, from the previous
points, we conclude that φ = 0.

Lemma 6. The adjoint of M(Γ, γ) is

M(Γ, γ)∗ =
[
τ
Γ̂
LΓ τ

Γ̂
(aMγ + LγZa)

τ
γ̂
LΓ τ

γ̂
(aMγ + LγZa)

]

Proof. We have〈
BγLΓ̂

φ, ψ
〉

γ
=
∫

γ

(a∂∗λ,μ + Za(x))
∫

Γ̂

Φx(y)φ(y)dSyψ(x)dSx

=
∫

Γ̂

∫
γ

(a∂∗λ,μ + Za(x))Φy(x)ψ(x)dSxφ(y)dSy

=
〈
τ
Γ̂

((aMγ + LγZa)ψ) , φ
〉

Γ̂

therefore (BγLΓ̂
)∗ = τ

Γ̂
(aMγ + LγZa). The other cases can be proved

using the same argument.

Theorem 7. The operator M(Γ, γ) has dense range in H1/2
I (Γ)2 ×

H(−1)a1/2
Za

(γ)2.

Proof. To prove the density of the range we show that the adjoint
M(Γ, γ)∗ is injective. Let (φ, ψ) ∈ H1/2

I (Γ)2 ×H(−1)a1/2
Za

(γ)2 such that
M(Γ, γ)∗(φ, ψ) = 0. Define the boundary layer

u = LΓφ+ (aMγ + LγZa)ψ.
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It is clear that

(9) [u]Γ = 0, [∂∗λ,μu]Γ = φ, [u]γ = −aψ ∧ [∂∗λ,μu]γ = Zaψ.

We follow the proof of Theorem 5.

• First note that the well posed exterior problem (7) (with c =
− λ+3μ

4πμ(λ+2μ) (
∫
Γ φ(y)dSy +

∫
γ Zaψ(y)dSy)) is satisfied by u+ with c = 0.

By analytic continuation, it follows that u+ = 0 in ΩC hence, u+|Γ = 0
and ∂∗λ,μu+|Γ = 0.

• From Δ∗
λ,μu+ = 0 in ω̂ and u+ = 0 on γ̂ = ∂ω̂ we conclude that

u+|γ = 0 and ∂∗λ,μu+|γ = 0.

• Using the jump relations (9), u− satisfies the well posed problem

(10)

⎧⎨⎩
Δ∗

λ,μu = 0 in Ωc

u = 0 on Γ
Bγu = 0 on γ

hence, u−|Γ = u−|γ = 0 and ∂∗λ,μu−|Γ = ∂∗λ,μu
−|γ = 0.

Thus φ = 0, aψ = 0 and Zaψ = 0 and it follows (recall that a ∈ {0, 1}
is constant and Z0 = I)

φ = ψ = 0.

Remark 8.

1. The spaces Hr
Z are only needed to control the asymptotic behavior

of u at infinity. In fact, taking for instance Ω̂ bounded, there is no need
to add the constants. Although theoretically simpler, this approach
(when Γ̂ does not enclose the domain Ω) gives worst numerical results.

2. In the 3D case, the asymptotic behavior for the exterior problem is
O(|x|−1), which is automatically satisfied by the fundamental solution.
In this case, M(Γ, γ) is injective in H−1/2(Γ̂∪ γ̂)3 with dense range in
H1/2(Γ)3 ×H−1/2(γ)3, regardless Ω̂ is unbounded or not.

We now address the question of solving the direct problem (1) with the
MFS approximation given by the system

(11)
[
τΓL

Γ̂
τΓL

γ̂

BγLΓ̂
BγLγ̂

] [
φ
ψ

]
=
[
g
0

]
.
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By Theorem 5, the set
{

(Φy|Γ,BγΦy) : y ∈ Γ̂ ∪ γ̂
}

is linearly indepen-
dent, hence a basis of the space (for simplicity, we suppress the constant
functions)

(12) S = span
{

(Φy|Γ,BγΦy) : y ∈ Γ̂ ∪ γ̂
}
.

On the other hand, the density proved in Theorem 7 shows that the
pair of input data for problem (1) can be approximated in S. Thus, we
consider as approximation for the solution of (1)

(13) ũ =
m∑

j=1

αjΦyj

and compute the vectorial coefficients αj = (αj,1, αj,2) such that

m∑
j=1

αj

(
Φyj (x

Γ
i ),BγΦyj(x

γ
i )
)

= (g(xΓ
i ),0),

on some collocation points xΓ
1 , . . . , x

Γ
n1

∈ Γ, xγ
1 , . . . , x

γ
n2

∈ γ and source
points y1, . . . , ym ∈ Γ̂ ∪ γ̂. When n1 + n2 =: n = m this can be done
by solving the linear system

(14) M(Γ, γ)X = B

with

M(Γ, γ) =

⎡⎢⎢⎢⎢⎢⎣
Φy1(xΓ

1 ) . . . Φym(xΓ
1 )

. . . . . . . . .
Φym(xΓ

n1
) . . . Φym(xΓ

n1
)

BγΦy1(x
γ
1 ) . . . BγΦym(xγ

1 )
. . . . . . . . .

BγΦy1(xγ
n2

) . . . BγΦym(xγ
n2

)

⎤⎥⎥⎥⎥⎥⎦ ,

X =

⎡⎣ α1
...
αn

⎤⎦ , B =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

g(x1)
...

g(xn1 )
0
...
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,
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and for overdetermined systems (n > m) in a least squares sense, ie.,
solving the system

M(Γ, γ)�M(Γ, γ)X = M(Γ, γ)�B.

3.2. MFS version of the KKM. We now consider the inverse problem,
ie., to obtain the shape of the boundary γ from the Cauchy data on Γ.
The Kirsch-Kress Method (cf. [20]) was initially presented for acoustic
scattering (twenty years ago), and the external boundary Γ was then
replaced by the knowledge of the far field pattern.

The method consists in assuming that some knowledge on γ exists,
such that we can prescribe an artificial boundary γ̂ inside γ and write
the solution in terms of the inner boundary layer representation.

In the acoustic scattering problem the unknown density for the
artificial inner boundary layer was recovered fitting its far field pattern.
In the bounded domain we need to fit the Cauchy data and it is clear
that the inner boundary will not be enough to adjust both Dirichlet and
Neumann data. An extra external boundary layer must be considered.

At least two adaptations could be possible for the bounded domain:

(a) Use the boundary element method (BEM) formulation, and
the extra boundary layer would be defined on the external accessible
boundary Γ.

(b) Use the method of fundamental solutions (MFS) and define an
external artificial boundary layer Γ̂.

We will consider the second approach, and therefore it should be
considered that we will use the MFS adaptation of the Kirsch-Kress
Method (KKM).

Therefore the MFS version of the KKM method for the inverse
bounded problem consists in two steps:

(i) linear part: solving the system of integral equations

(15)
[
τΓLΓ̂

τΓLΓ̂
τnΓ L

Γ̂
τnΓ L

Γ̂

]
︸ ︷︷ ︸

K(Γ,Γ)

[
φ|

Γ̂
φ|

Γ̂

]
=
[

g
∂∗λ,μu

]
,
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where τΓ, τnΓ are, respectively the trace and the normal trace on Γ.
Note that K(Γ,Γ) is M(Γ,Γ) with BΓ = τnΓ , when γ = Γ.

(ii) nonlinear part: the boundary γ will be given by the level set
u−1(0) = {x ∈ Ω : u(x) = 0}, for the Dirichlet problem (or computed
iteratively, in an optimization scheme for a class of approximating
shapes, for the Neumann or other boundary condition).

The linear part of the Kirsch-Kress Method to solve the Cauchy
problem is therefore connected to the MFS since it may use the same
boundary layers on γ̂ and on Γ̂ to approximate the solution of the
direct problem from the boundary conditions on γ and Γ, and the
reconstruction of the solution from the Dirichlet and Neumann data on
Γ. In fact, the first line of (15) would be the same – known Dirichlet
data.

As in the direct MFS (11), the system of equations (15) may not have
a solution, even for exact boundary data.

We will now present density results showing that a pair of Cauchy
data can be approximated using the MFS version of the KKM method.
Nevertheless, both (11) and (15) are ill posed integral systems, and
regularization techniques (for instance, Tikhonov regularization) are a
way to address ill conditioning arising from integral equations of the
first kind (on this subject, we refer for instance the book by Kress [21],
chapter 15).

Consider the matrix operator K(Γ,Γ) : H−1/2(Γ̂ ∪ γ̂)2 −→ H1/2(Γ)2 ×
H−1/2(Γ)2 defined in (15).

Lemma 9. The operator K(Γ,Γ) is injective in H−1/2(Γ̂ ∪ γ̂)2/R2

and its adjoint is given by

K(Γ,Γ)∗ =
[
τΓ̂LΓ τΓ̂MΓ

τγ̂LΓ τγ̂MΓ

]

Proof. To show the injectivity, suppose that K(Γ,Γ)(φ) = 0. Then,
considering the single layer potential u(x) = L

Γ̂∪γ̂
(φ)(x), x ∈ R

2 \ (Γ̂∪
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γ̂) we have ⎧⎪⎨⎪⎩
Δ∗

λ,μu = 0 in R
2 \ (Γ̂ ∪ γ̂)

u = 0 on Γ
∂∗λ,μu = 0 on Γ

By Lemma 1, u = 0 in the open connected set Ω̂c such that ∂Ω̂c = Γ̂∪γ̂.
Thus, the trace u−|

Γ̂∪γ̂
and normal trace ∂∗λ,μu

−|
Γ̂∪γ̂

are null. On the

other hand, the boundary jumps across Γ̂ ∪ γ̂ are given by

[u]
Γ̂∪γ̂

= 0 ∧ [∂∗λ,μu]
Γ̂∪γ̂

= φ

and therefore, u+|
Γ̂∪γ̂

is null. Following the proof of Theorem 5 (now

c = λ+3μ
4πμ(λ+2μ)

∫
Γ̂∪γ̂

φdSx = 0), we conclude that the exterior traces
∂∗λ,μu+|

Γ̂∪γ̂
are also null and it follows that φ = 0.

The adjoint can be easily computed, following the proof of Lemma 6.

Theorem 10. The matrix operator K(Γ,Γ) has dense range in
H1/2(Γ)2/R2 ×H−1/2(Γ)2.

Proof. Again, we follow the proof of Theorem 5. We identify the
space H1/2

I (Γ)2 with H1/2(Γ)2/R2. Let ψ ∈ H1/2
I (Γ)2, φ ∈ H−1/2(Γ)2

and define the function

u(y) = (LΓψ)(y) + (MΓφ)(y)

a combination of single and double layer potentials defined on Γ.
Now, if τ

Γ̂∪γ̂
u = K(Γ,Γ)(ψ, φ)= 0 then by analytic continuation

of the unique null solution of the interior and exterior problems (
c = λ+3μ

4πμ(λ+2μ)

∫
Γ
ψ(x)dSx = 0,), we obtain u = 0 in R

2 \ Γ. Then
ψ = [∂∗λ,μu]

Γ
= 0, φ = −[u]Γ= 0 and the result follows.

Remark 11. If Ω̂ is bounded, the injectivity can be established in
H−1/2(Γ̂ ∪ γ̂)2 and the density of the range in H1/2(Γ)2 ×H−1/2(Γ)2.
Again, for the 3D case, there is no need to add the constants.
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This suggests the use of (13) to approximate the solution of the system
(15). Now, the vectorial coefficients must be computed in order to
obtain

(16)
m∑

j=1

αj(Φyj , ∂
∗
λ,μΦyj )|Γ = (g, ∂∗λ,μu)

for some source points y1, . . . , ym ∈ Γ̂ ∪ γ̂. As usual, we proceed
by imposing (16) on some collocation points x1, . . . , xn ∈ Γ, thus
obtaining a discrete version of (15) for n = m and a least squares
version, if n > m. In general the measured data is affected by noise
hence, some regularization scheme must be considered.

Remark 12. The density results prove that an approximation is
possible, however since the proof is not constructive we do not have
an algorithm that gives us the appropriate choices for source and
collocation points in MFS based methods. For Laplace equation,
exponential convergence of the MFS, for smooth data and appropriate
chosen source points, has been proven for circles or its conformal
mapped domains (eg. [7, 17, 18, 25]). On the other hand, this
optimal exponential decay of the error O(R−n) has a counterpart of
exponential increase of the condition number O(Rn), for a circle of
radius R (cf. [19]). This leads to an “uncertainty principle” already
pointed out for RBF approximations (cf. [29]): we can not get both
accurate approximations and low condition numbers. In the next
section, we present numerical simulations for the MFS (direct problem)
and the MFS–KKM (inverse problem). In Table 1 we present maximum
errors and computed condition numbers for the MFS, for a non trivial
shape. We may notice that despite early high condition numbers, the
MFS presents increasing accurate approximations. Under regularity
assumptions, still one limitation to MFS performance concerns machine
precision. Unlike other classical methods, the MFS presents accurate
results much sooner, and ill conditioning problems also appear in
an early stage. The ill conditioning limitation can be circumvented
using regularization techniques (with some loss in accuracy) or higher
machine precision calculations (with some loss in computation time).

Remark 13. For general domain shapes Ωc we can perform an
optimization scheme to choose the location of the points (eg. [25]),
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but this approach is computational expensive, and when applied to
the MFS-KKM requires some a priori knowledge of ω. For other
approaches to inverse geometric problems in acoustic scattering, we
refer the book of Colton and Kress [12], where the computation of the
density of the single layer potential and γ is made by optimization;
or the paper by Potthast and Schulz [28], for an adaptation using the
range test method. We note that such type of non linear optimization
on the shape of ω can be applied to the elastic problem, as it has been
made for the Stokes system (cf. [24]).

4. Numerical Simulations. In this section we consider three
numerical simulations of the MFS - Kirsch-Kress Method applied to
the recovery of a single inclusion. The accessible part of the boundary,
Γ, is a centered circle with radius r = 3.5 and the boundary of the
inclusion is given by the parametrization

γi(t) = ci + ji(t)(cos t, sin t), 0 ≤ t ≤ 2π

with c1 = (−1, 1), j1(t) = 1.1 + 1.6 cos2 (t/2) sin (t/2), c2 = (1,−0.3),
j2(t) = 1.2 + 0.2 cos2 (2t), c3 = (0, 0) and j3(t) = 1.3 − 0.3 cos (4t) (see
Fig. 1). The Lamé constants are λ = μ = 1 and as input function we
use

gi(x) = x − ci −∇ log(|x − ci|)
(in particular, we are assuming that the center of the inclusion is known
in the inverse problem).

• As mentioned before, the convergence of the method for the direct
problem strongly depends on the number and location of source and
collocations points. We considered, as artificial boundary,

γ̂i = ∂B(0, 4.2) ∪ γ#
i ,

with γ#
i (t) = ci + 0.9ji(t)(cos t, sin t). For this choice of artificial

boundary we present in Table 1 the evolution of the condition number
of M(Γ, γ) and the absolute error on the boundary in terms of the
number of (uniformly distributed) source and collocation points, n.
This table concerns the first simulation and the error (middle column)
was computed taking the maximum norm of the error vector, whose
entries are given by pointwise evaluation of the boundary error at 600
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(non collocation) boundary points. To solve the direct problem for
each example, we used 400 collocation and source points (distributed
uniformly). In Fig. 2 we plot the absolute error of the first component
on Γ and the second component on γ3.

• For the inverse problem, we used ∂B(0, 4.0)∪∂B(ci, 0.7) as artificial
boundary and solved the system of linear equations arising from the
discretization of (15) in a least squares sense, using 300 source and
300 collocation points. This avoids the so called inverse crimes since
the artificial boundaries used in the direct problem are different in the
inverse problem as well as the number of collocation points. To retrieve
the curve, we performed a search along the segment joining radial points
on Γ and on the internal artificial boundary and choose the point with
image near zero (in norm). Repeating this procedure for several points
on Γ we obtain the approximation of γ.

For exact data, we retrieved the correct shape of the inclusion (first
and second simulations). We present the numerical simulations for
measured data affected by random (maximum norm) noise, i.e. the
input vector is

[∂∗λ,μu]noise
k = [∂∗λ,μu]k + εk||∂∗λ,μu||∞

with random values εk such that |εk| ≤ ρ < 1. A Tikhonov regulariza-
tion procedure was implemented to solve the systems with an L-curve
analysis to choose the regularization parameter. Figs. 3 and 4 shows
the comparison between the given (noiseless) Cauchy data on Γ and
the computed data on the inverse problem (introducing 8 % of random
noise in the measured data) for simulations 1 and 2, respectively.

For the first simulation, we present in Fig. 5 the results of the
reconstructions with 3% and 8% of random noise.
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Figure 1. Geometry of the domains. Left- first test, middle- second test and right-
third test.

n Absolute error on the boundary κ(M(Γ, γ))

50 2.4 × 10−2 4.2 × 1022

100 2.2 × 10−3 1.8 × 1031

200 4.7 × 10−4 5.6 × 1025

300 2.1 × 10−6 1.3 × 1021

400 4.5 × 10−7 3.1 × 1020

500 4.5 × 10−7 5.1 × 1020

600 6.5 × 10−8 7.2 × 1020

1000 9.3 × 10−9 2.4 × 1022

Table 1. Evolution of the absolute error on the boundary (using the maximum
norm) and the condition number of M(Γ, γ) with the number of source points n

1 2 3 4 5 6

2×10-14

4×10-14

6×10-14

8×10-14

1×10-13

1.2×10-13

Absolute Error

1 2 3 4 5 6

5×10-12

1×10-11

1.5×10-11

2×10-11

2.5×10-11

3×10-11

Absolute Error

Figure 2. Absolute error on the boundary (third simulation): On the left–first
coordinate on Γ, on the right– second coordinate on γ.
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Figure 3. Comparison between the noisy Cauchy data on Γ and the computed
data on the inverse problem (first simulation). On the left– first coordinate of the
solution, on the right– second coordinate of the traction vector. Dots– data from
the direct problem, thick red line– inverse problem. Noise level: 8 %.
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Figure 4. The same as in Fig. 4, for the second simulation. On the right picture
we considered the first coordinate of the traction vector.
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Figure 5. Reconstruction of the shape with 3 % (left) and 8 % (right) of noise. Full
line- Shape of the inclusion; Dotted line- Reconstructed curve.
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Figure 6. Reconstruction of the shape with internal circle (dashed line) centered
with the inclusion (left) and on (1.3,−0.4) (right). Noise level: 8 % .
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Figure 7. Reconstruction using different internal curves (exact data).
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Figure 8. Error on Γ for the computed solution of the Cauchy problem: left- first
coordinate; right- second coordinate of the traction vector.
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Figure 9. Absolute difference between the solution of the direct problem and the
inverse problem: Left- first coordinate; Right- second coordinate.
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Figure 10. Eigenvalues of the system arising from the discretization of the problems:
Left- Inclusion reconstruction (homogeneous Dirichlet condition on γ); Right- cavity
reconstruction (homogeneous Neumann condition on γ). Blue (top) curve- direct
problem using MFS; Red (bottom) curve- inverse problem using the Kirsch Kress
method.

In the second simulation we present the effect of changing the center of
the internal artificial curve in the reconstruction of the shape. Here, we
tested for the artificial boundary ∂B(c2, 0.7) and ∂B((1.3,−0.4), 0.7)
(see Fig. 6) with 8 % of noise. The result obtained with the second
choice of center is slightly better (and the corresponding system of
equations is better conditioned) than the centered case.

The third simulation is presented using exact data. For this geometry
the results are not so good even when tested with a non convex artificial
internal domain (Fig. 7), yet the Cauchy data on Γ is well approximated
(Fig. 8). In Fig. 9 we present the absolute difference between the
MFS solution of the direct problem and the inverse problem solution,
which shows the instabilities that led to the problems observed in
the reconstructions. In fact, the distance between the collocation and
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(inner) source points is bigger in the inverse problem and we observe
a faster decay of the inverse problem matrix eigenvalues than in the
direct problem (see Fig. 10). Recall that for the direct problem the
artificial boundary is close to the boundary of Ωc leading to a better
conditioned system of equations whereas in the inverse problem only
the outer part of the boundary is being considered and the internal
part of the artificial boundary must be inside the inclusion.

Conclusions. In this work we discussed the question of the
identification of inclusions/cavities in an elastic body, using a single
boundary measurement. We proved the adequacy of the MFS to solve
not only the direct problem, but also to solve the inverse (Cauchy)
problem with a MFS version of the Kirsch-Kress Method. We proposed
a fast procedure to reconstruct the shape of the inclusion and test it for
several examples. In general, we were able to retrieve the localization
and dimension of the inclusion and in some cases (mainly convex
inclusions) a good reconstruction of the shape, for data affected by
random (norm) noise.
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