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ABSTRACT. We characterize a class of functions satisfy-
ing the classical Bedrosian identity or the circular Bedrosian
identity by certain homogeneous semi-convolution equations.
The structure of solutions of these equations is then studied
using translation invariant subspaces of Hardy spaces and ad-
ditive positive definite kernels. The results obtained provide
some insight into the Bedrosian identity and a construction
of intrinsic mode functions for the time-frequency analysis of
nonlinear and nonstationary signals.

1. Introduction. The Hilbert transform is defined for each function
f ∈ Lp(R), 1 ≤ p ≤ ∞, at x ∈ R as

(1.1) (Hf)(x) := p.v.
1
π

∫
R

f(y)
x− y

dy := lim
ε→0+

N→∞

1
π

∫
ε≤|y−x|≤N

f(y)
x− y

dy,

whenever the Cauchy principal value of the above singular integral
exists. In engineering analysis, people often face the need for calculating
the Hilbert transform of a product of functions. A simple method
for computing such products under certain conditions was found by
Bedrosian [2]: If two functions f, g ∈ L2(R) satisfy either supp f̂ ⊆
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[0,∞), supp ĝ ⊆ [0,∞) or supp f̂ ⊆ [−a, a], supp ĝ ⊆ (−∞,−a]∪ [a,∞)
for some positive number a, then there holds

(1.2) [H(fg)](x) = f(x)(Hg)(x), almost everywhere x ∈ R.

Here supp f̂ denotes the support of the Fourier transform f̂ of f . Recall
that the Fourier transform F is defined for h ∈ L1(R) as

ĥ(ξ) := (Fh)(ξ) :=
∫
R

h(x)e−iξx dx, ξ ∈ R,

and for h ∈ L2(R) by the standard approximation process, [16].
Formula (1.2) is known as the Bedrosian identity in the literature and
the result above is called the Bedrosian theorem.

A reason for the wide application of the Hilbert transform in signal
theory is its importance in the time-frequency analysis, [8, 10, 11, 17,
23]. For a given real signal f ∈ L2(R), we form its analytic signal
Af := f + iHf . Denote by sgn the signum function taking values 1,
−1 and 0 for ξ > 0, ξ < 0 and ξ = 0, respectively. By the well-known
fact, see, e.g., [9, page 324], that for each f ∈ L2(R)

(Hf )̂ (ξ) = −i sgn(ξ)f̂(ξ), almost everywhere ξ ∈ R,

supp (Af )̂ ⊆ [0,∞). Hence, Af can be extended to a holomorphic
function on the upper half-plane, [15]. The mathematical term analytic
is applied to Af for this reason. We further decompose Af into

(1.3) (Af)(t) = ρ(t)eiθ(t), t ∈ R.

The ρ(t) and θ(t) above are called the instantaneous amplitude and
phase of the signal f at time t, respectively. However, the instanta-
neous phase θ is physically meaningful only if its derivative is nonneg-
ative. This suggested introducing the intrinsic mode function (IMF) in
[17]. IMFs are expected to have the property that the instantaneous
amplitude and phase derived from (1.3) have sound physical meaning.
They are fundamental for the Hilbert-Huang transform (HHT) for the
time-frequency analysis of nonlinear and nonstationary signals, [17].
We shall present in Section 4 a method of constructing IMFs by under-
standing the equation

(1.4) H(ρ(·)eiθ(·))(t) = ρ(t)(Heiθ(·))(t), t ∈ R,
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which together with (1.2) has attracted much interest from engineering
[6, 7, 11, 17, 22, 23].

Another variation of the Bedrosian identity comes from the practical
application of analytic signals. In engineering applications, a real-
valued signal f is typically represented by its finite samples

(1.5) Sf := {f(nt0) : n = 0, 1, . . . , N},

where t0 is a selected sampling interval and Nt0 is the sampling time.
A popular method, see e.g., [20], of calculating the Hilbert transform
of f using the samples (1.5) works by multiplying the discrete time
Fourier transform (DTFT) of Sf with sgn and then applying the
inverse DTFT. The mathematical principle of this algorithm is easy
to detect. Suppose we have an observation of a signal f ∈ L2(R) in
a finite time duration, which we assume without loss of generality to
be [0, 2π]. This observation is first extended to a periodic function
f̃(t) := f(t − 2π[t/2π]), t ∈ R, where [x] denotes the biggest integer
that is less than or equal to x ∈ R. An approximation of the analytic
signal of f is finally constructed as

(1.6) Ãf̃ := f̃ + iH̃f̃ ,

where H̃ is the circular Hilbert transform defined for each f ∈ L1
2π at

t ∈ [0, 2π] as

(H̃f)(t) := p.v.
1
2π

∫ π

−π
f(t− s) cot

s

2
ds(1.7)

:= lim
ε→0+

1
2π

∫
ε≤|s|≤π

f(t− s) cot
s

2
ds

if the Cauchy principal value of the above singular integral exists. Here
with χA being the characteristic function of a subset A ⊆ R, we denote
by Lp2π, 1 ≤ p ≤ ∞, the set of all the 2π-periodic functions f on R
such that fχ[0,2π] ∈ Lp[0, 2π]. The above algorithm based on DTFT
suggests the necessity to study the condition for the following circular
Bedrosian identity in L2

2π

(1.8) [H̃(fg)](t) = f(t)(H̃g)(t), almost everywhere t ∈ [0, 2π].
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In particular, our interest in the Bedrosian identities is stimulated
by the recent mathematical progress on the Bedrosian identity [25,
31]. Before introducing these results, we collect here some notations
that are frequently referred to throughout the paper. Let N be the
set of all the positive integers, Z the set of all the integers and
Z+ := N∪{0}. We shall enumerate finite sets with Zp := {0, . . . , p−1}
and Np := {1, . . . , p} for p ∈ N. Following the custom in the literature,
we also denote by R and C the set of real numbers and the set of
complex numbers, respectively. Finally, we set R+ := {x ∈ R : x ≥ 0},
R− := {x ∈ R : x ≤ 0}, CR := {z ∈ C : Re (z) > 0} and
C+ := {z ∈ C : Im (z) > 0}.

The following characterization of the classical Bedrosian identity was
given in [31].

Theorem A. If f, f ′, g ∈ L2(R), then the Hilbert transform of the
function fg satisfies the Bedrosian identity (1.2) if and only if

(1.9)
∫ 0

−1

∫
R

ξ

t2
eixξ(t+1)/tf̂

(
ξ

t

)
ĝ(ξ) dξ dt = 0.

A sufficient condition was derived from (1.9) in the same paper, which
states that if f, g ∈ L2(R) are such that

(1.10) μ
(
{tξ : t ∈ [−1, 0], ξ ∈ supp f̂} ∩ supp ĝ

)
= 0,

then the Bedrosian identity (1.2) holds, where μ denotes the Lebesgue
measure on R. Note that condition (1.10) covers the sufficient condi-
tions in the Bedrosian theorem.

The circular Bedrosian theorem for the circular Bedrosian identity
(1.8) was established in [25]. Note first that if f ∈ L2

2π then H̃f has
the following form in terms of the Fourier coefficient of f

(1.11) (H̃f)(t)=
∑
k∈Z

−i sgn(k)ck(f)eikt, almost everywhere t ∈ [0, 2π],

where ck(f) is the kth Fourier coefficient of f defined as

(1.12) ck(f) :=
1
2π

∫ 2π

0

f(t)e−ikt dt.



THE BEDROSIAN IDENTITY 531

Theorem B. Let f, g ∈ L2
2π and K ∈ Z+. If cn(f) = 0 for |n| > K

and cn(g) = 0 for |n| ≤ K or if cn(f) = 0 for n < −K and cn(g) = 0
for n ≤ K, then the circular Bedrosian identity (1.8) holds.

We shall show in Section 2 that the classical Bedrosian identity (1.2)
is equivalent to two homogeneous semi-convolution equations. The
characterizations of right translation invariant subspaces of L2(R+)
and additive positive definite kernels on R+ are then used to investi-
gate these equations. The results will provide some insight into the
Bedrosian identity (1.2). For example, we are able to show that con-
dition (1.10) is unnecessary. The circular Bedrosian identity (1.8) is
studied in Section 3. Especially, we shall prove that the sufficient con-
dition in Theorem B is unnecessary for (1.8). In Section 4, we apply the
method and theory developed in Sections 2 and 3 to the construction
of intrinsic mode functions.

2. The Bedrosian identity in L2(R). In this section, we focus
on the classical Bedrosian identity (1.2) where f, g ∈ L2(R) and
“almost everywhere x ∈ R” implies that the equation H(fg) = fHg
holds everywhere on R except for a subset of R that has zero Lebesgue
measure. Note that we have used this convention several times in the
introduction. Our study will be based on a necessary and sufficient
condition for identity (1.2). A similar condition was first obtained in
[7] under the assumption that f, g ∈ L2(R) ∩ L∞(R).

2.1 A necessary and sufficient condition. We begin with two lemmas
from [9, Chapter 8].

Lemma 2.1. There exists a positive constant c such that for each
f ∈ L1(R) and y > 0

μ{x : |(Hf)(x)| > y} ≤ c

y
‖f‖L1(R).

Lemma 2.2. Let f ∈ Lp(R), 1 < p ≤ 2. Then Hf ∈ Lp(R),
H2f = −f almost everywhere and the Fourier transform of Hf is
given by

(2.1) (Hf )̂ (ξ) = −i sgn(ξ)f̂ (ξ), almost everywhere ξ ∈ R.
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For p = 1, formula (2.1) remains valid for all ξ ∈ R provided that
Hf ∈ L1(R).

Lemma 2.2 exhibits that if Hf ∈ L1(R), then −i sgn(·)f̂ is the
Fourier transform of some function in L1(R). Our next result shows
that this is also sufficient for Hf to be integrable on R.

Lemma 2.3. Let f ∈ L1(R). If there exists g ∈ L1(R) such that

(2.2) −i sgn(ξ)f̂ (ξ) = ĝ(ξ), ξ ∈ R,

then Hf = g almost everywhere.

Proof. Suppose f ∈ L1(R) and there exists g ∈ L1(R) such that
(2.2) holds. We can choose a sequence of functions {φn : n ∈ N} that
are infinitely differentiable and compactly supported such that for each
h ∈ L1(R), see e.g., [16, pages 188 189],

lim
n→∞ ‖φn ∗ h− h‖L1(R) = 0,

where the convolution φn ∗ h of φn and h is defined by

φn ∗ h :=
∫
R

φn(· − y)h(y) dy.

It is also clear that for each h ∈ L1(R), φn ∗ h ∈ L2(R), and hence

(φn ∗ h)̂ (ξ) = φ̂n(ξ)ĥ(ξ), almost everywhere ξ ∈ R.

The above equation implies that

−i sgn(ξ)(φn ∗ f )̂ (ξ) = (φn ∗ g)̂ (ξ), almost everywhere ξ ∈ R.

By Lemma 2.2, we have

(2.3) H(φn ∗ f) = φn ∗ g almost everywhere.

Since φn∗f converges to f in L1(R), by Lemma 2.1,H(φn∗f) converges
to Hf in Lebesgue measure. There hence exists a subsequence {φni :
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i ∈ N} for which H(φni ∗ f) converges to Hf almost everywhere on R
with respect to the Lebesgue measure. This combined with (2.3) yields
that Hf = g almost everywhere and completes the proof.

Theorem 2.4. Functions f, g ∈ L2(R) satisfy the Bedrosian identity
(1.2) if and only if

(2.4)
∫
R+

f̂(ξ + η)ĝ(−η) dη = 0, ξ ∈ R+

and

(2.5)
∫
R−

f̂(ξ + η)ĝ(−η) dη = 0, ξ ∈ R−.

Proof. Since fg, fHg ∈ L1(R), by Lemmas 2.2 and 2.3, H(fg) =
fHg almost everywhere if and only if

(2.6) (fHg)̂ (ξ) = −i sgn(ξ)(fg)̂ (ξ), ξ ∈ R.

By the fact that for all f1, f2 ∈ L2(R)

(f1f2)̂ =
1
2π
f̂1 ∗ f̂2 and (Hf1)̂ = −i sgn(·)f̂1 almost everywhere,

equation (2.6) has the form∫
R

f̂(ξ − η)ĝ(η)(sgn(ξ) − sgn(η)) dη = 0, ξ ∈ R.

Clearly, the above equation can be divided into the following three
equations ∫

R+

f̂(ξ + η)ĝ(−η) dη = 0, ξ ∈ R+ \ {0},(2.7) ∫
R−

f̂(ξ + η)ĝ(−η) dη = 0, ξ ∈ R− \ {0},(2.8) ∫
R+

f̂(η)ĝ(−η) dη =
∫
R−

f̂(η)ĝ(−η) dη.(2.9)
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By the continuity of
∫
R+

f̂(· + η)ĝ(−η) dη and
∫
R−

f̂(· + η)ĝ(−η) dη,
f, g satisfy equations (2.7), (2.8) and (2.9) if and only if they satisfy
(2.4) and (2.5).

2.2. Particular solutions. By Theorem 2.4, we shall consider the
two Hilbert spaces L2(R+) and L2(R−). For simplicity, we denote by
f+ := f χR+ and f− := f χR− for each f ∈ L2(R). Equations (2.4)
and (2.5) can be interpreted as

(2.10) (ĝ(−·)+) ⊥ span {τ∗y (f̂+) : y ∈ R+}, in L2(R+)

and

(2.11) (ĝ(−·)−) ⊥ span {τ∗y (f̂−) : y ∈ R−}, in L2(R−),

where f̄ denotes the conjugate of f , τ∗ is the dual of the translation
operator τ which is defined for each function f ∈ L2(R) and y ∈ R as
τyf := f(·− y). We remark that the sufficient condition (1.10) can also
be derived from (2.10) and (2.11) by noting that

⋃
y∈R+

supp (τ∗y (f̂+)) =
{
tξ : t ∈ [0, 1], ξ ∈ R+ ∩ supp (f̂)

}
,

supp (ĝ(−·)+) = {ξ : ξ ∈ R+,−ξ ∈ supp ĝ} .

Equations (2.4) and (2.5) are independent of each other in the sense
that only the values of f̂ and ĝ(−·) on R+ are used in equation (2.4)
while equation (2.5) only involves the values of f̂ and ĝ(−·) on R−.
For this reason, we shall work in the space L2(R+) only and consider
the general homogeneous semi-convolution equation

(2.12)
∫
R+

ψ(x+ y)φ(x) dx = 0, y ∈ R+,

where ψ, φ ∈ L2(R+), or its equivalent form

(2.13) φ̄ ⊥ span {τ∗yψ : y ∈ R+}, in L2(R+).

The results to be obtained for (2.13) can be applied directly to equa-
tions (2.10) and (2.11).
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A subspace M of L2(R+) is said to be left translation invariant if
for each y ∈ R+, τ∗y (M) ⊆ M. The homogeneous semi-convolution
equation (2.12) is closely related to the closed left translation invariant
subspace of L2(R+). To see this, we set for each ψ ∈ L2(R+),
τ∗(ψ) := span {τ∗yψ : y ∈ R+}, the closure of span {τ∗yψ : y ∈ R+} in
L2(R+). Clearly, τ∗(ψ) is the smallest closed left translation invariant
subspace of L2(R+) that contains ψ. For a specified ψ ∈ L2(R+), there
exists nontrivial φ ∈ L2(R+) satisfying (2.13) if and only if τ∗(ψ) is
a proper subspace of L2(R+). For instance, if the following sufficient
condition in the Bedrosian theorem

supp f̂ ⊆ [−a, a], supp ĝ ⊆ (−∞,−a] ∪ [a,∞)

is valid for some a ∈ R+, then

τ∗(f̂+) ⊆ Ma := {h ∈ L2(R+) : supph ⊆ [0, a]}

and ĝ(−·)+ is in the orthogonal complement of Ma. The Bedrosian
theorem is essentially a consequence of the trivial fact that Ma is a
closed left translation invariant subspace of L2(R+). This suggests
that if we impose other particular requirements on τ∗(ψ) we may obtain
more sufficient conditions for (2.13). The following theorem provides a
characterization of functions ψ for which τ∗(ψ) is finite dimensional.

Theorem 2.5. Set ψ ∈ L2(R+). Then the space τ∗(ψ) is finite-
dimensional if and only if there exists p ∈ N, {λj : j ∈ Np} ⊆ CR,
{nj : j ∈ Np} ⊆ Z+ and {cjk : j ∈ Np, k ∈ Znj} ⊆ C such that

(2.14) ψ(t) =
∑
j∈Np

∑
k∈Znj

cjkt
ke−λjt, t ∈ R+.

It was established in [1] that τ∗(ψ) is finite dimensional if and only if
ψ is of form (2.14). With the additional requirement that ψ ∈ L2(R+),
the λj in (2.14) can be chosen from CR.

Suppose ψ ∈ L2(R+) has the form (2.14). The second step in solving
equation (2.12) is to find φ ∈ L2(R+) such that φ̄ ⊥ τ∗(ψ). To this



536 B. YU AND H. ZHANG

end, we introduce the Laplace transform L defined for each h ∈ L2(R+)
at s ∈ CR as

(Lh)(s) :=
∫
R+

e−sth(t) dt.

Proposition 2.6. Let ψ be given by (2.14) with cjnj−1 �= 0, λj �= λk,
j, k ∈ Np. Then φ ∈ L2(R+) satisfies φ̄ ⊥ τ∗(ψ) if and only if for all
j ∈ Np and k ∈ Znj

(2.15)
dk(Lφ)
dsk

(λj) = 0.

Proof. Set I := {(j, k) : j ∈ Np, k ∈ Znj} and q := #I, the
cardinality of I. We first prove that

τ∗(ψ) = M := span {tke−λjt : (j, k) ∈ I}.

It is clear that τ∗(ψ) ⊆ M . To show the inverse inclusion, we observe
for all y ∈ R+ that

(2.16) ψ(t+ y) =
∑
j∈Np

∑
k∈Znj

tke−λjte−λjyPjk(y),

where

Pjk(y) :=
nj−1∑
l=k

cjl

(
l

k

)
yl−k.

We define a matrix associated with each {yjk : (j, k) ∈ I} ∈ Cq by
setting

B(yjk : (j, k) ∈ I) := {e−λj′yjkPj′k′(yjk) : (j, k), (j′, k′) ∈ I}.

Since cjnj−1 �= 0 for each j ∈ Np, Pjk is a nontrivial polynomial of
degree nj − 1 − k, k ∈ Znj . One can see by this fact that the function
(yjk : (j, k) ∈ I) → det(B(yjk : (j, k) ∈ I)) is a nontrivial entire
function on Cq. By the well-known fact that the real zeros of an
entire function on Cq form a set of zero Lebesgue measure on Rq,



THE BEDROSIAN IDENTITY 537

we can choose {yjk : (j, k) ∈ I} ⊆ R+ such that B(yjk : (j, k) ∈ I) is
nonsingular. Substituting these yjk into equation (2.16) yields that

{tke−λjt : (j, k) ∈ I} ⊆ τ∗(ψ).

This relation implies that M ⊆ τ∗(ψ).

We conclude that φ̄ ⊥ τ∗(ψ) if and only if for all (j, k) ∈ I

(2.17)
∫
R+

tke−λjtφ(t) dt = 0.

The proposition is proved by the observation that (2.15) is equivalent
to (2.17).

The application of Theorem 2.5 and Proposition 2.6 to equations
(2.10) and (2.11) yields a class of functions f, g satisfying the Bedrosian
identity (1.2).

Proposition 2.7. Let f, g ∈ L2(R). If there exists {λj : j ∈ Np} ⊆
CR and {γj : j ∈ Nq} ⊆ CR such that λj is the zero of L(ĝ(−·)+) of
order nj, j ∈ Np, γj is the zero of L(ĝ+) of order mj, j ∈ Nq and f̂
has the form

(2.18) f̂(ξ) = u(ξ)
∑
j∈Np

∑
k∈Znj

cjkξ
ke−λjξ

+ u(−ξ)
∑
j∈Nq

∑
k∈Zmj

c′jkξ
keγjξ, ξ ∈ R,

where u is the Heaviside function defined by u(x) = 1 for x ≥ 0
and u(x) = 0 for x < 0, {cjk : j ∈ Np, k ∈ Znj} ⊆ C and
{c′jk : j ∈ Nq, k ∈ Zmj} ⊆ C are arbitrary constants, then the
Bedrosian identity (1.2) holds.

Let f ∈ L2(R) be given by (2.18). If there exist nonzero constants cjk
and c′jk in (2.18), then supp f̂ = R. Since τ∗(f̂+) and τ∗(f̂(−·)+) are
of finite dimensions, there must exist g ∈ L2(R) satisfying equations
(2.10) and (2.11). This implies that condition (1.10) is unnecessary
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for the Bedrosian identity (1.2). We give an explicit example below to
make this clearer. Set

(2.19) f̂(ξ) := e−|ξ|, ĝ(ξ) := e−|ξ| − 3
2
e−2|ξ|, ξ ∈ R.

It can be verified by Proposition 2.7 that f, g satisfy the Bedrosian
identity. Therefore, the functions f, g ∈ L2(R) given above satisfy
the Bedrosian identity (1.2) while we have the property that supp f̂ =
supp ĝ = R.

The example above tells us that f, g ∈ L2(R) are of low Fourier
frequency and high Fourier frequency respectively is unnecessary for
them to satisfy the Bedrosian identity (1.2). On the other hand, we
shall prove in a special case that if f ∈ L2(R) is of low Fourier frequency
then it is necessary for g ∈ L2(R) to have high Fourier frequency to
satisfy the Bedrosian identity. We begin with a technical lemma.

Lemma 2.8. Let ψ ∈ L2(R+) be such that suppψ ⊆ [0, 1]. If
there exists k ∈ N and ε ∈ (0, 1) such that ψχ[1−ε,1] ∈ C(k)[1 − ε, 1]
and ψ(k−1)(1) �= 0 then φ ∈ L2(R+) satisfies the homogeneous semi-
convolution equation (2.12) if and only if suppφ ⊆ [1,∞).

Proof. Let ψ ∈ L2(R+) have all the properties described in the
assumption. It is clear that if φ ∈ L2(R+) satisfies suppφ ⊆ [1,∞)
then (2.12) holds. On the other hand, suppose φ ∈ L2(R+) satisfies
(2.12), or equivalently,

(2.20)
∫ 1−y

0

ψ(x+ y)φ(x) dx = 0, y ∈ [0, 1].

Let k be the smallest positive integer such that there exists ε ∈ (0, 1)
satisfying ψχ[1−ε,1] ∈ C(k)[1 − ε, 1] and ψ(k−1)(1) �= 0. We can choose
ε ∈ (0, 1) small enough so that

(2.21) ε‖ψ(k)‖L∞[1−ε,1] < |ψ(k−1)(1)|.
Differentiate the lefthand side of equation (2.20) with respect to y

on (1 − ε, 1) k times to get at each y ∈ (1 − ε, 1) for which 1 − y is a
Lebesgue point of φ that

ψ(k−1)(1)φ(1 − y) −
∫ 1−y

0

ψ(k)(x+ y)φ(x) dx = 0.
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This equation implies that we can define a function ϕ ∈ C[0, ε] such
that

ϕ(y) = φ(y), almost everywhere y ∈ [0, ε]

and

ϕ(y) =
1

ψ(k−1)(1)

∫ y

0

ψ(k)(x + 1 − y)ϕ(x) dx, y ∈ [0, ε].

We observe that ϕ is a fixed point of the mapping K : C[0, ε] → C[0, ε]
that is defined for each h ∈ C[0, ε] as

(Kh)(y) :=
1

ψ(k−1)(1)

∫ y

0

ψ(k)(x+ 1 − y)h(x) dx, y ∈ [0, ε].

By (2.21), K is a contraction mapping, which implies that ϕ(y) = 0 for
each y ∈ [0, ε]. It follows that φ(y) = 0 almost everywhere y ∈ [0, ε].

Equation (2.20) can then be rewritten as

∫ 1−y

0

ψ(x + y)φ(x+ ε) dx = 0, y ∈ [ε, 1].

The arguments above can be repeated to show that φ(y) = 0 almost
everywhere y ∈ [0, 1].

Recall that a function h on R is real-analytic if it possesses derivatives
of all orders and agrees with its Taylor series in a neighborhood of every
point. A nontrivial real-analytic function h has the property that at
each x ∈ R there exists n ∈ Z+ such that h(n)(x) �= 0. Proposition 2.9
is a consequence of this fact, Theorem 2.4 and Lemma 2.8.

Proposition 2.9. Let f, g ∈ L2(R). Suppose there exists a, b ∈ R+

such that supp f̂ ⊆ [−a, b] and f̂χ[−a,b] is the restriction on [−a, b] of
a nontrivial real-analytic function. Then the Bedrosian identity (1.2)
holds if and only if supp ĝ ⊆ (−∞,−b] ∪ [a,∞).

2.3 Relations with right translation invariant subspaces of L2(R+).
As shown by the Bedrosian theorem, the roles of f, g in the Bedrosian
identity (1.2) are different. The purpose of this subsection is to
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determine for what g ∈ L2(R) would there exist nontrivial f ∈ L2(R)
satisfying the Bedrosian identity (1.2). The study will be based on
a characterization of closed right translation invariant subspaces of
L2(R+) due to Lax, [18]. We need to introduce the Hardy spaces
on the upper half-plane, also the Hardy spaces on the unit disc for
later use in Section 3, from [12, 15, 26].

Set U := {z ∈ C : |z| < 1} and T := {z ∈ C : |z| = 1}. Let H(U)
and H(C+) be the set of all the holomorphic functions on U and C+,
respectively. We introduce the Hardy spaces by setting for 0 < p <∞

Hp(U) :=
{
h ∈ H(U) : sup

{∫ 2π

0

|h(reit)|p dt : r ∈ (0, 1)
}
<∞

}
,

Hp(C+) :=
{
h ∈ H(C+) : sup

{∫
R

|h(x+ iy)|p dx : y > 0
}
<∞

}

and for p = ∞

H∞(U) := {h ∈ H(U) : sup{|h(z)| : z ∈ U} <∞} ,
H∞(C+) := {h ∈ H(C+) : sup{|h(z)| : z ∈ C+} <∞} .

If h ∈ Hp(U) or Hp(C+), 0 < p ≤ ∞, then h has a nontangential
boundary limit, which we still denote by h. For instance, an inner
function on U is a function h ∈ H∞(U) for which |h| = 1 almost
everywhere on T. An interesting class of inner functions on U is the
Blaschke products. Such functions are given by

B(z) := zk
∏
n∈N

zn − z

1 − z̄nz

|zn|
zn

, z ∈ U

where k ∈ Z+, {zn : n ∈ N} is a sequence in U\{0} such that∑
n∈N(1− |zn|) <∞. A function h ∈ H(U) is called an outer function

if it is of the form

h(z) = c exp
{

1
2π

∫ 2π

0

eit + z

eit − z
logϕ(eit) dt

}
, z ∈ U,

where c ∈ T, ϕ is a positive measurable function on T such that
logϕ ∈ L1(T). The Blaschke products, inner functions and outer
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functions on C+ are obtained from their counterparts on U through
the Cayley transform

K(w) :=
i− w

i+ w
, w ∈ C+.

There is a canonical factorization in Hardy spaces. For each nontrivial
h ∈ Hp(U), 0 < p ≤ ∞,

Qh(z) := exp
{

1
2π

∫ 2π

0

eit + z

eit − z
log |h(eit)| dt

}
, z ∈ U

is an outer function in Hp(U), and there exists a unique inner function
Mh on U such that h = MhQh. Similarly, for each nontrivial h ∈
Hp(C+), 0 < p ≤ ∞,

Qh(z) := exp
{

1
iπ

∫
R

(1 + tz) log |h(t)|
(t− z)(1 + t2)

dt

}
, z ∈ C+

is an outer function in Hp(C+), and there exists a unique inner function
Mh on C+ such that h = MhQh. In both cases, we shall call Qh, Mh

in the factorization the outer factor and inner factor of h, respectively.

Let us return to the Bedrosian identity (1.2). We introduce a map
HC+ from L2(R+) to H2(C+) by setting for each φ ∈ L2(R+)

(HC+φ)(z) :=
1√
2π

∫
R+

eizxφ(x) dx, z ∈ C+.

If we further impose an inner product (·, ·) on H2(C+) by setting for
each h1, h2 ∈ H2(C+)

(h1, h2) :=
∫
R

h1(t)h2(t) dt,

then HC+ is an isomorphism from L2(R+) to H2(C+). The translation
operator τ is turned into a multiplication operator, which we denote
by Λ, on H2(C+)

(Λyh)(z) := eiyzh(z), y ∈ R+, z ∈ C+, h ∈ H2(C+).
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In terms of the isomorphism HC+ , the relation between the translation
operator on L2(R+) and the multiplication operator on H2(C+) is
shown below.

HC+τy = ΛyHC+ , y ∈ R+.

A subspace M of H2(C+) is called right translation invariant if
Λy(M) ⊆ M for each y ∈ R+. We set for each h ∈ H2(C+), Λ(h) :=
span {Λyh : y ∈ R+} which is the smallest closed right translation
invariant subspace of H2(C+) that contains h. It was established in
[18] that M is a closed right translation invariant subspace of H2(C+)
if and only if there exists an inner function hM ∈ H(C+) such that

M = {hMϕ : ϕ ∈ H2(C+)}.

Moreover, the hM above is uniquely determined by M, save for
multiplication by a complex constant in T. One can obtain the
following result using this fact and the same arguments as those for
Theorem 17.23 in [26, page 350].

Lemma 2.10. Suppose Mh is the inner factor of h ∈ H2(C+). Then

Λ(h) = {Mhϕ : ϕ ∈ H2(C+)}.

Moreover, Λ(h) = H2(C+) if and only if h is an outer function in
H2(C+).

Theorem 2.11. Let g ∈ L2(R). Then there does not exist nontrivial
f ∈ L2(R) satisfying the Bedrosian identity (1.2) if and only if both
HC+(ĝ+) and HC+(ĝ(−·)+) are outer functions in H2(C+).

Proof. It suffices to show that for a given φ ∈ L2(R+), there does not
exist a nontrivial ψ ∈ L2(R+) satisfying (2.12) if and only if HC+φ is
an outer function in H2(C+). It is clear that (2.12) can be rewritten
as

ψ̄ ⊥ {τyφ : y ∈ R+}, in L2(R+).

Since HC+ is an isomorphism, the above equation is equivalent to

(2.22) HC+(ψ̄) ⊥ Λ(HC+φ), in H2(C+).
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There does not exist a nontrivial ψ satisfying (2.22) if and only
if Λ(HC+φ) = H2(C+). The result now follows directly from
Lemma 2.10.

If either HC+(ĝ+) or HC+(ĝ(−·)+) is not an outer function then a
method of constructing nontrivial f ∈ L2(R) satisfying the Bedrosian
identity will be provided in subsection 2.5. To this end, we need to
characterize additive positive definite kernels on R+.

2.4. Additive positive definite kernels. This subsection will make
preparations for the next one where we shall show that there exists
f ∈ L2(R) for which there is no nontrivial g ∈ L2(R) satisfying the
Bedrosian identity (1.2) and give a method of constructing f ∈ L2(R)
from a given g ∈ L2(R) so that f, g would satisfy identity (1.2). These
will be done through the additive positive definite kernels on R+.

We first explain our motivation. For each ψ ∈ L1(R+) we define an
operator Lψ on L2(R+) by setting for each φ ∈ L2(R+)

Lψ(φ) :=
∫
R+

ψ(· + x)φ(x) dx.

Then φ satisfies the homogeneous semi-convolution equation (2.12) if
and only if Lψ(φ) = 0. If Lψ is a strictly positive self-adjoint operator
on L2(R+) then there does not exist a nontrivial φ ∈ L2(R+) such that
Lψ(φ) = 0. Suppose we have ψ1, ψ2 such that Lψ1 , Lψ2 are positive self-
adjoint, then Lψ1 + Lψ2 = Lψ1+ψ2 has more chance to become strictly
positive. This suggests that we should look for ψ ∈ L1(R+) such that
Lψ is positive self-adjoint and use them to construct strictly positive
self-adjoint operators on L2(R+). We shall study the construction in
a general setting.

With X being R+ or Z+ in mind, we let X be a locally compact
metric space with a Borel measure dx on X such that every nonempty
open subset of X has nonzero measure and every compact subset of X
has finite measure. Suppose there exists a sequence of compact subsets
{Xn ⊆ X : n ∈ N} such that X = ∪n∈NXn and Xn ⊆ Xn+1, n ∈ N.
We also suppose that there exists a continuous commutative operator
+ : X × X → X . The image of this operator at each (x, y) ∈ X × X
will be denoted by x+ y. We require that there exist an element of X ,
denoted by 0, such that 0 + x = x for each x ∈ X .
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Recall that C0(X ) is the space of all the continuous functions f on X
such that for each ε > 0, the set {x ∈ X : |f(x)| ≥ ε} is compact. We
point out that a continuous function f ∈ C0(X ) if and only if for each
sequence {xn : n ∈ N} ⊆ X that has no clustering points

lim
n→∞ f(xn) = 0.

Denote by B(X ) the set of all the regular complex Borel measures on
X and B+(X ) the set of all the finite regular positive Borel measures
on X . It is well known that the dual of C0(X ) is B(X ), namely,
C0(X )∗ = B(X ). We shall make use of the fact that a continuous
functional T on C0(X ) satisfies T (f) ≥ 0 for each f ∈ C0(X ) with f ≥ 0
if and only if there exists ν ∈ B+(X ) such that for each f ∈ C0(X ), see
e.g., [26, pages 40 41]

T (f) =
∫
X
f(x) dν(x).

Finally, we assume that there is a function E : X ×X → R such that
for all x, y, y1, y2 ∈ X

E(x, y) = E(y, x), E(x, y1 + y2) = E(x, y1)E(x, y2),

and that the class of functions Ex := E(x, ·), x ∈ X , is uniformly
bounded and has the properties that E0 = 1, span {Ex : x ∈ X , x �= 0}
is dense in C0(X ).

A continuous function f : X × X → C is called a positive definite
kernel ([19]) on X if for each sequence {xj : j ∈ Nn} ⊆ X the matrix
{f(xj , xk) : j, k ∈ Nn} is positive semi-definite. We call f ∈ C(X ) an
additive positive definite kernel if f(·+ ·) is a positive definite kernel on
X . Let F (X ) := {c + g : c ∈ R+, g ∈ C0(X )} and P (X ) be the set of
all the functions in F (X ) that are additive positive definite kernels on
X .

We start the characterization of additive positive definite kernels on
X with an extension of a result of Mercer [19].

Lemma 2.12. A function f ∈ F (X ) is an additive positive definite
kernel if and only if for each g ∈ L1(X , dx)

(2.23)
∫
X

∫
X
f(x+ y)g(x)g(y) dx dy ≥ 0.
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Proof. By Lemma 1 in [5], f ∈ C(X ) is an additive positive definite
kernel if and only if for each compact set Z ⊆ X and g ∈ L1(Z, dx)

∫
Z

∫
Z
f(x+ y)g(x)g(y) dx dy ≥ 0.

Therefore, if f ∈ F (X ) satisfies (2.23) for each g ∈ L1(X , dx) then
f ∈ P (X ). On the other hand, suppose f ∈ P (X ). Noting that for
each g ∈ L1(X , dx)
∫
X

∫
X
f(x+ y)g(x)g(y) dx dy = lim

n→∞

∫
Xn

∫
Xn

f(x+ y)g(x)g(y) dx dy

proves the lemma.

Lemma 2.13. Let ν ∈ B(X ). Then the function

fν :=
∫
X
E(·, y) dν(y)

belongs to P (X ) if and only if ν ∈ B+(X ).

Proof. Suppose ν ∈ B+(X ) then for each sequence {xj : j ∈ Nn} ⊆ X
and {cj : j ∈ Nn} ⊆ C

∑
j,k∈Nn

cj c̄kfν(xj + xk) =
∫
X

∑
j,k∈Nn

cj c̄kE(xj , y)E(xk, y) dν(y)

=
∫
X
|

∑
j∈Nn

cjE(xj , y)|2 dν(y) ≥ 0.

Since
fν = ν({0}) +

∫
X\{0}

E(·, y) dν(y),

to show that fν ∈ P (X ) it suffices to show that

∫
X\{0}

E(·, y) dν(y) ∈ C0(X ).
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Let {xn : n ∈ N} ⊆ X be a sequence without clustering points. Since
Exn , n ∈ N, are uniformly bounded and for each y ∈ X \ {0}

lim
n→∞E(xn, y) = 0,

by the Lebesgue dominated convergence theorem [26, page 26],

lim
n→∞

∫
X\{0}

E(xn, y) dν(y) = 0.

We conclude that fν ∈ P (X ) if ν ∈ B+(X ).

On the other hand, suppose that fν ∈ P (X ). For each g ∈ C0(X )
with g ≥ 0, by the density of span {Ex : x ∈ X\{0}} in C0(X ), for each
ε > 0 we can choose {xj : j ∈ Nn} ⊆ X\{0} and {cj : j ∈ Nn} ⊆ R
such that

‖√g −
∑
j∈Nn

cjE(xj , ·)‖L∞(X ,dx) < ε.

Therefore,

∫
X
g(x) −

( ∑
j∈Nn

cjE(xj , x)
)2

dν(x) ≥ −ε‖ν‖(2‖√g‖L∞(X ,dx) + ε),

where ‖ν‖ is the total variance of ν on X . By the calculation that

∫
X

( ∑
j∈Nn

cjE(xj , x)
)2

dν(x) =
∫
X

∑
j,k∈Nn

cjckE(xj + xk, x) dν(x)

=
∑

j,k∈Nn

cjckfν(xj + xk) ≥ 0,

we have

(2.24)
∫
X
g(x) dν(x) ≥ 0.

The measure ν hence has the property that for each g ∈ C0(X ) with
g ≥ 0, (2.24) holds. We conclude that ν ∈ B+(X ) and prove the lemma.
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Lemma 2.14. The set {fν : ν ∈ B+(X )} is closed under uniformly
convergence. Namely, if fνn where νn ∈ B+(X ), n ∈ N, converges
uniformly to f ∈ C(X ) then there exists some ν ∈ B+(X ) such that
f =

∫
X E(·, y) dν(y).

Proof. Suppose that {fνn : νn ∈ B+(X ), n ∈ N} converges to
f ∈ C(X ) uniformly. Firstly,

lim
n→∞ fνn(0) = lim

n→∞ ‖νn‖ = f(0).

This equation means that ‖νn‖, n ∈ N, are bounded. The Alaoglu
theorem states that the closed unit ball of B(X ) is compact in the weak-
star topology. There hence exists a subsequence {nj : j ∈ N} ⊆ N and
a ν ∈ B(X ) such that for each g ∈ C0(X )

lim
j→∞

∫
X
g(x) dνnj (x) =

∫
X
g(x) dν(x).

We hence have for each x ∈ X\{0} that

(2.25) f(x) =
∫
X
E(x, y) dν(y).

By the continuity of both sides of the equation above, (2.25) holds
for all x ∈ X . Since for each sequence {xj : j ∈ Nm} ⊆ X and
{cj : j ∈ Nm} ⊆ C

∑
j,k∈Nm

cj c̄kf(xj + xk) = lim
n→∞

∑
j,k∈Nm

cj c̄kfνn(xj + xk) ≥ 0,

f is an additive positive definite kernel on X . By the second part of the
proof of Lemma 2.13, we have ν ∈ B+(X ), which completes the proof.

Theorem 2.15. A function f ∈ F (X ) is an additive positive kernel
on X if and only if there exists ν ∈ B+(X ) such that

(2.26) f =
∫
X
E(·, y) dν(y).
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Proof. By Lemma 2.13, if there exists ν ∈ B+(X ) such that f is given
by (2.26) then f ∈ P (X ).

Now suppose f ∈ F (X ) is an additive positive definite kernel on X .
Since {f + (1/m) : m ∈ N} converges uniformly to f , by Lemma 2.14,
it suffices to show that for each m ∈ N there exists νm ∈ B+(X ) such
that

f +
1
m

=
∫
X
E(·, y) dνm(y).

Let g := f + (1/m). Since span {Ex : x ∈ X\{0}} is dense in C0(X ),
the set {fν : ν ∈ B(X )} is dense in F (X ) with respect to the norm of
L∞(X , dx). As a consequence, we have a sequence {fνn : νn ∈ B(X )}
that is convergent to g in L∞(X , dx). For each h ∈ L1(X , dx) we have∫

X

∫
X
fνn(x+ y)h(x)h(y) dx dy −

∫
X

∫
X
g(x+ y)h(x)h(y) dx dy

≥ −‖fνn − g‖L∞(X ,dx)‖h‖2
L1(X ,dx).

Note that ∫
X

∫
X
g(x+ y)h(x)h(y) dx dy ≥ 1

m
‖h‖2

L1(X ,dx).

By Lemma 2.12, there exists N ∈ N such that for each n > N , fνn is
an additive positive definite kernel on X . This implies, by Lemma 2.13,
νn ∈ B+(X ) for n > N . By Lemma 2.14, there exists νm ∈ B+(X ) such
that

g =
∫
X
E(·, y) dνm(y).

This equation completes the proof.

We shall use Theorem 2.15 to characterize additive positive definite
kernels in F (R+) and F (Z+). To this end, we remark that by
Theorem 6.2 in [30, Chapter 2], span {e−xt : x > 0} and span {En :
n ∈ N} is dense in C0(R+) and C0(Z+) respectively, where for each
n ∈ N, En := {e−nm : m ∈ Z+}.

Theorem 2.16. A function f ∈ P (Z+) if and only if there exists
λ := {λm : m ∈ Z+} ∈ �1(Z+) with λm ≥ 0,m ∈ Z+ such that

(2.27) f(n) =
∑
m∈Z+

λme
−nm, n ∈ Z+.
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Theorem 2.17. A continuous function f is a bounded additive
positive definite kernel on R+ if and only if there exists ν ∈ B+(R+)
such that

(2.28) f(x) =
∫
R+

e−xt dν(t), x ∈ R+.

Proof. By Theorem 2.15, it suffices to show that if f is a bounded
additive positive definite kernel on R+ then f ∈ P (R+). We assume
that f is not the zero function on R+. Since f is an additive positive
definite kernel on R+, we have for each x, y ∈ R+ that f(x) ≥ 0 and

(2.29) f(2x)f(2y) ≥ f2(x+ y).

We claim that f has no zero on R+. Otherwise, suppose there exists
x0 ∈ R+ such that f(x0) = 0. Then we set y = 0 and x = x0/2n

for n ∈ N successively in (2.29) to find that f(x0/2n) = 0 for each
n ∈ N, which implies by the continuity of f that f(0) = 0. By (2.29),
f(y) = 0 for each y ∈ R+, contradicting with the assumption that f is
nontrivial. Therefore, (2.29) can be rewritten as

(2.30) log f(2x) + log f(2y) ≥ 2 log f(x+ y).

For all x0 ∈ R+ and δ > 0, setting x = (x0 + 2δ)/2 and y = x0/2 in
(2.30) yields that

log f(x0 + 2δ) − log f(x0 + δ) ≥ log f(x0 + δ) − log f(x0).

We deduce from the above inequality for each n ≥ 2 that

log f(x0 + nδ) ≥ (n− 1)[log f(x0 + δ) − log f(x0)] + log f(x0 + δ).

Since f is bounded, log f(x0 + δ) − log f(x0) ≤ 0. This means that f
is nonincreasing on R+. There hence exists c ∈ R+ such that

lim
x→∞ f(x) = c.

To complete the proof, we decompose f into f = c + (f − c) with
f − c ∈ C0(R+).
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Theorem 2.17 shows that bounded additive positive definite kernels
on R+ turn out to be the only functions f ∈ C(R+) such that f(‖·−·‖2)
is a positive definite kernel on Rd for all d ∈ N, [27]. Here ‖ · − · ‖ is
the distance on Rd.

We end up this subsection with a discussion on existing results on
additive positive definite kernels on Z+ and R, [30]. The problem
of Hanburger is to determine for what f ∈ C(Z+) will there exist a
nondecreasing function ψ such that

(2.31) f(n) =
∫
R

tndψ(t).

It was proved in [30] that there exists a nondecreasing function ψ such
that (2.31) holds if and only if f is an additive positive definite kernel on
Z+. Another result ([4, 29, 30]) states that for all −∞ ≤ a < b ≤ ∞,
f is continuous on (a, b) and satisfies for all a < a′ < b′ < b and real
functions g ∈ C[(a′/2), (b′/2)] that∫ b′/2

a′/2

∫ b′/2

a′/2
f(x+ y)g(x)g(y) dx dy ≥ 0

if and only if f can be represented in the form

f(x) =
∫
R

e−xt dψ(t), x ∈ R,

where ψ is nondecreasing and the above integral converges for a < x <
b. It is difficult to prove Theorems 2.16 and 2.17 from these two results
or to conjecture form (2.27) from (2.31). Finally, we remark that our
methods of proof are different from those in [4, 29, 30].

2.5 Studying the Bedrosian identity with kernels in P (R+). Let us
return to the homogeneous semi-convolution equation

(2.32)
∫
R+

ψ(x+ y)φ(x) dx = 0, y ∈ R+.

We shall set ψ ∈ P (R+) ∩ L1(R+). This suggests that ψ ∈ C0(R+)
and hence ψ ∈ L2(R+). By Theorem 2.17, ψ must have the form

(2.33) ψ(x) =
∫
R+

e−xt dν(t), x ∈ R+,
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where ν ∈ B+(R+). By Tonelli’s theorem [14, page 67], we impose the
requirement that

(2.34)
∫
R+

dν(t)
t

<∞

to make ψ ∈ L1(R+). This requirement implies that ν({0}) = 0.

Our proof for the next result is adapted from [21]. Recall that the
support of a Borel measure ν on a topological space Z, denoted by
supp ν, is defined as

supp (ν) :=
⋂{

S ⊆ Z : S is closed, ν(SC) = 0
}
.

Lemma 2.18. Let ψ be defined by (2.33) with ν satisfying condition
(2.34). Then

τ∗(ψ) = span {e−xt : t ∈ supp (ν)\{0}}.

Proof. It suffices to show that g ∈ L2(R+) satisfies g ⊥ τ∗(ψ) if
and only if g ⊥ e−xt for each t ∈ supp (ν)\{0}. Suppose for each
t ∈ supp (ν)\{0} that

(2.35)
∫
R+

g(x)e−xt dx = 0.

Then we observe by the Fubini theorem that for each y ∈ R+

(2.36)
∫
R+

g(x)ψ(x + y) dx =
∫
R+

e−yt dν(t)
∫
R+

g(x)e−xt dx = 0.

Conversely, suppose for each y ∈ R+ there holds (2.36). Integrating
the second term in (2.36) with respect to g(y)dy on R+ and using the
Fubini theorem yields that

(2.37)
∫
R+

∣∣∣∣
∫
R+

g(x)e−xt dx
∣∣∣∣
2

dν(t) = 0.
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Since
∫
R+

g(x)e−xt dx is continuous on (0,∞), by the definition of
supp ν, equation (2.35) holds true for each t ∈ supp (ν)\{0}. The proof
is complete.

The following results follow immediately from Lemma 2.18.

Lemma 2.19. Let ψ be defined by (2.33) with ν satisfying (2.34).
Then φ ∈ L2(R+) satisfies the homogeneous semi-convolution equation
(2.32) if and only if Lφ vanishes on supp (ν)\{0}.

Lemma 2.19 suggests a method to construct f ∈ L2(R) satisfying
the Bedrosian identity (1.2) from a given g ∈ L2(R) for which either
HC+(ĝ+) or HC+(ĝ(−·)+) is not an outer function in H2(C+). Let g be
a specified function in L2(R). First determine the two sets A+ := {t ∈
R+\{0} : L(ĝ+)(t) = 0} and A− := {t ∈ R+\{0} : L(ĝ(−·)+)(t) = 0},
then find two measures ν+, ν− ∈ B+(R+) satisfying (2.34) that are
supported on A− and A+, respectively. The function f satisfying (1.2)
is finally given by

f̂(ξ) := c1u(ξ)
∫
R+

e−ξt dν+(t) + c2u(−ξ)
∫
R+

eξtd ν−(t), ξ ∈ R,

or equivalently,

f(x) =
c1
2π

∫
R+

1
t− ix

dν+(t) +
c2
2π

∫
R+

1
t+ ix

dν−(t), x ∈ R,

where c1, c2 are arbitrary complex constants. Example (2.19) falls into
this kind of construction.

We next give examples of f for each of which there does not exist
nontrivial g ∈ L2(R) satisfying the Bedrosian identity (1.2). For
this purpose, we introduce the concept of uniqueness subsets of CR,
which are subsets A ⊆ CR such that there does not exist a nontrivial
holomorphic function on CR that vanishes on A. For example, if A has
a clustering point in CR then A is a uniqueness subset of CR.

Theorem 2.20. Let f be given by

f(x) :=
∫
R+

1
t− ix

dν+(t) +
∫
R+

1
t+ ix

dν−(t), x ∈ R,
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where ν+, ν− ∈ B+(R+) satisfy condition (2.34). If both supp (ν+)
and supp (ν−) are uniqueness subsets of CR then there does not exist
nontrivial g ∈ L2(R) satisfying the Bedrosian identity (1.2).

Proof. Since ν+, ν− satisfy (2.34), we have

f̂(ξ) = 2πu(ξ)
∫
R+

e−ξt dν+(t) + 2πu(−ξ)
∫
R+

eξt dν−(t), ξ ∈ R.

By Lemma 2.19, g ∈ L2(R) satisfies (1.2) if and only if L(ĝ(−·)+) and
L(ĝ+) vanish on supp (ν+)\{0} and supp (ν−)\{0}, respectively. Since
L(ĝ(−·)+) and L(ĝ+) are holomorphic on CR, this is possible if and
only if g = 0.

3. The circular Bedrosian identity in L2
2π. We study in this

section the circular Bedrosian identity (1.8) where f, g ∈ L2
2π.

3.1. A necessary and sufficient condition. Similar results as Lemmas
2.1 and 2.2 hold for the circular Hilbert transform [9, Chapter 9].

Lemma 3.1. There exists a constant c such that for each f ∈ L1
2π

and y > 0

μ{x ∈ [0, 2π] : |(H̃f)(x)| > y} ≤ c

y
‖f‖L1

[0,2π]
.

Lemma 3.2. If f ∈ Lp2π, 1 < p < ∞, then H̃f ∈ Lp2π, H̃
2f =

−f + c0(f) almost everywhere and the Fourier coefficients of H̃f are
given by

(3.1) ck(H̃f) = −i sgn(k)ck(f), k ∈ Z.

For p = 1, formula (3.1) remains true under the additional assumption
that H̃f ∈ L1

2π.

The same arguments as those for Lemma 2.3 are able to yield the
following result based on Lemmas 3.1 and 3.2.
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Lemma 3.3. Let f ∈ L1
2π. Then H̃f ∈ L1

2π if and only if there
exists g ∈ L1

2π such that

(3.2) −i sgn(k)ck(f) = ck(g), k ∈ Z.

Moreover, if (3.2) holds then H̃f = g almost everywhere.

We shall give a characterization of the circular Bedrosian identity
(1.8). Let I be a countable index set. An element ψ ∈ �2(I) will be
viewed as a continuous function on I. The kth component of ψ is
denoted by ψ(k) for each k ∈ I. For convenience, we also introduce a
map F̃ from L2

2π to �2(Z) by setting for each f ∈ L2
2π

(F̃ f)(k) := ck(f), k ∈ Z

and two adjoint maps F̃+, F̃− from L2
2π to �2(Z+) by setting

(F̃+f)(0) :=
c0(f)

2
, (F̃+f)(k) := ck(f), k ∈ N

and

(F̃−f)(0) :=
c0(f)

2
, (F̃−f)(k) := c−k(f), k ∈ N.

The shift operator S on �2(Z+) is defined for each ψ ∈ �2(Z+) as

(Sψ)(0) := 0, (Sψ)(k) := ψ(k − 1), k ∈ N.

The adjoint operator S∗ of S is hence given for each ψ ∈ �2(Z+) by

(S∗ψ)(k) := ψ(k + 1), k ∈ Z+.

Using Lemmas 3.2, 3.3 and similar arguments as those in the proof
of Theorem 2.4, we get a characterization of the circular Bedrosian
identity.

Theorem 3.4. Let f, g ∈ L2
2π. Then the circular Bedrosian identity

(1.8) holds if and only if f, g satisfy the following three equations:∑
j∈Z+

(F̃+f)(j)(F̃−g)(j) =
∑
j∈Z+

(F̃−f)(j)(F̃+g)(j),(3.3)

∑
j∈Z+

(S∗kF̃+f)(j)(F̃−g)(j) = 0, k ∈ N,(3.4)

∑
j∈Z+

(S∗kF̃−f)(j)(F̃+g)(j) = 0, k ∈ N.(3.5)
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3.2. Particular solutions. We start the discussion of this subsection
by making a simple observation based on Theorem 3.4. Theorem B
in the introduction says that if f ∈ L2

2π is of low Fourier frequency
and g ∈ L2

2π is of high Fourier frequency, then they satisfy the circular
Bedrosian identity (1.8). Our next result shows that if f is of low
Fourier frequency, then it is necessary for g ∈ L2

2π to have high Fourier
frequency in order to satisfy the circular Bedrosian identity.

Proposition 3.5. Let f, g ∈ L2
2π. If there exists k1, k2 ∈ N such that

supp F̃f ⊆ [−k1, k2] and (F̃f)(−k1)(F̃f)(k2) �= 0, then the circular
Bedrosian identity (1.8) holds if and only if

(3.6) supp F̃g ⊆ (−∞,−k2] ∪ [k1,∞)

and

(3.7) (F̃f)(k2)(F̃g)(−k2) − (F̃f)(−k1)(F̃g)(k1) = 0.

Proof. It can be verified directly that if (3.6) and (3.7) hold, then
equations (3.3), (3.4) and (3.5) are satisfied. Conversely, suppose
H̃(fg) = fH̃g almost everywhere, or equivalently, equations (3.3),
(3.4) and (3.5) hold. We substitute k = k2 − j for j = 0, . . . , k2 − 1
successively into equation (3.4) to find that (F̃g)(−j) = 0 for j =
0, . . . , k2 − 1. Similarly, (F̃g)(j) = 0 for j = 0, . . . , k1 − 1. Equation
(3.7) is now a direct consequence of equation (3.3).

We impose in this subsection the requirement that

(F̃+f, F̃−g) = (F̃−f, F̃+g) = 0,

in order to satisfy (3.3), where (·, ·) is the inner product on �2(Z+),
φ̄ denotes the conjugate of φ ∈ �2(Z+). As a consequence, it suffices
to solve the homogeneous discrete semi-convolution equations below to
find f, g ∈ L2

2π satisfying the circular Bedrosian identity (1.8)

(S∗kF̃+f, F̃−g) = 0, (S∗kF̃−f, F̃+g) = 0, k ∈ Z+.
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Therefore, we shall consider the following general homogeneous discrete
semi-convolution equation

(3.8) (S∗kψ, φ̄) = 0, k ∈ Z+,

where ψ, φ ∈ �2(Z+). Let ψ be a specified element in �2(Z+). We set

S∗(ψ) := span {S∗kψ : k ∈ Z+}.
There exists nontrivial φ ∈ l2(Z+) satisfying (3.8) if and only if S∗(ψ)
is not dense in �2(Z+). Theorem 3.6 gives a characterization for S∗(ψ)
to be finite dimensional.

Theorem 3.6. Let ψ ∈ �2(Z+). Then S∗(ψ) is finite dimensional if
and only if ψ is given by

(3.9) ψ(n) = ϕ(n) +
∑
j∈Np

∑
k∈Znj

cjkn
kλnj , ; n ∈ Z+,

where ϕ ∈ �2(Z+) is of finite support, p ∈ N, {λj : j ∈ Np} ⊆ U \ {0},
{nj : j ∈ Np} ⊆ Z+, {cjk : j ∈ Np, k ∈ Znj} ⊆ C.

Proof. Suppose ψ is defined by (3.9) with {λj : j ∈ Np} ⊆ U \ {0}.
Then S∗(ψ) is of finite dimensions because

S∗(ψ) ⊆ span {{ϕ} ∪ {Ejk : j ∈ Np, k ∈ Znj}},
where Ejk := {nkλnj : n ∈ Z+} ∈ �2(Z+). Conversely, suppose that
S∗(ψ) is of finite dimensions. Then there exists q ∈ N such that

S∗(ψ) ⊆ span {S∗kψ : k ∈ Zq}.
This inclusion relation implies that there exists {ck : k ∈ Zq} ⊆ C such
that

S∗qψ =
∑
k∈Zq

ckS
∗kψ,

or equivalently,

ψ(n+ q) =
∑
k∈Zq

ckψ(n+ k), n ∈ Z+.
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By the theory of linear difference equations, see e.g., [13], ψ must be
of form (3.9). The requirement that ψ ∈ �2(Z+) enables us to choose
{λj : j ∈ Np} ⊆ U \ {0} in (3.9).

Let ψ be of form (3.9). We would like to associate each element in
�2(Z+) with a function in H2(U) before we solve φ ∈ �2(Z+) from (3.8).
It is known that if h ∈ H(U) is expanded as

h(z) =
∑
n∈Z+

anz
n, z ∈ U,

then h ∈ H2(U) if and only if {an : n ∈ Z+} ∈ �2(Z+), [26]. By
this fact, we define a map HU : �2(Z+) → H2(U) by setting for each
ϕ ∈ �2(Z+)

(3.10) (HUϕ)(z) :=
∑
n∈Z+

ϕ(n)zn, z ∈ U.

Similar arguments as those in the proof of Proposition 2.6 yield our
next result.

Proposition 3.7. If ψ is given by (3.9) with ϕ ≡ 0, cjnj−1 �= 0,
j ∈ Np and |λk| > |λk+1|, k ∈ Np−1, then φ ∈ �2(Z+) satisfies (3.8) if
and only if for each j ∈ Np, λj is the zero of HU (φ) of order nj.

We apply Theorem 3.6 and Proposition 3.7 to give a particular class
of solutions for the circular Bedrosian identity (1.8).

Proposition 3.8. Let p, q ∈ N, {λj : j ∈ Np} ⊆ U \ {0},
{γj : j ∈ Nq} ⊆ U \ {0}, {nj : j ∈ Np} ⊆ Z+, {mj : j ∈ Nq} ⊆ Z+,
{cjk : j ∈ Np, k ∈ Znj} ⊆ C, {c′jk : j ∈ Nq, k ∈ Zmj} ⊆ C be such that∑

j∈Np

cj0 =
∑
j∈Nq

c′j0.

Then the circular Bedrosian identity (1.8) is satisfied if f, g ∈ L2
2π are

given by

cn(f) := u(n)
∑
j∈Np

∑
k∈Znj

cjkn
kλnj + u(−n)

∑
j∈Nq

∑
k∈Zmj

c′jk(−n)kγ−nj ,

n ∈ Z
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and

g(t) := g1(e−it)
∏
j∈Np

(e−it−λj)nj +g2(eit)
∏
j∈Nq

(eit−γj)mj , t ∈ [0, 2π],

where g1, g2 ∈ H2(U) satisfy

g1(0)
∏
j∈Np

(−λj)nj = g2(0)
∏
j∈Nq

(−γj)mj .

We shall use Proposition 3.8 to give an explicit example of functions
satisfying the circular Bedrosian identity (1.8). This example is con-
structed as

(3.11)

f(t) :=
1

1 − 1
2e
it

+
1

1 − 1
3e

−it ,

g(t) := 2
e−it − 1/2

1 − (1/3)e−it
+ 3

eit − 1/3
1 − (1/2)eit

, t ∈ [0, 2π].

That f, g given by (3.11) satisfy identity (1.8) follows directly from
Proposition 3.8. Since supp (F̃ f) = supp (F̃ g) = Z, all the Bedrosian
type sufficient conditions for (1.8) are unnecessary.

3.3. Relations with shift invariant subspaces of �2(Z+). The purpose
of this subsection is to determine for what g ∈ L2

2π would there exist
nonconstant f ∈ L2

2π satisfying (1.8). Our main tool is the Beurling
theorem characterizing the closed shift invariant subspace of H2(U),
[3, 26].

With the inner product (·, ·) on H2(U) defined for all f, g ∈ H2(U)
as

(f, g) :=
1
2π

∫ 2π

0

f(eit)g(eit) dt,

the operator HU defined by (3.10) becomes an isomorphism from
�2(Z+) to H2(U). The shift operator S is turned into a multiplication
operator, which is denoted by S, on H2(U)

(Sh)(z) := zh(z), h ∈ H2(U), z ∈ U.
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The shift operator on �2(Z+) and the multiplication operator on H2(U)
are related through the isomorphism HU as follows

HUS = SHU .

We call a subspace M of H2(U) a shift invariant subspace if S(M) ⊆
M. For each h ∈ H2(U), we denote by S(h) the smallest closed shift
invariant subspace that contains h. It is clear that

S(h) = span {Skh : k ∈ Z+}.
Equations (3.3), (3.4) and (3.5) are transformed into

(3.12) (HU (S∗F̃+f),HU (S∗F̃−g)) = (HU (S∗F̃−f),HU (S∗F̃+g)),

(3.13) HU (S∗F̃+f) ⊥ S(HU (F̃−g))

and

(3.14) HU (S∗F̃−f) ⊥ S(HU (F̃+g)).

There is a celebrated characterization of the closed shift invariant
subspace of H2(U) due to Beurling [3]. We shall make use of some
consequences of this characterization [26, pages 348 350].

Lemma 3.9. Let Mh be the inner factor of a function h ∈ H2(U).
Then S(h) = {Mhϕ : ϕ ∈ H2(U)}, S(h) = H2(U) if and only if h is
an outer function on U . Moreover, for two inner functions h1, h2 on
U , S(h1) = S(h2) if and only if h1 = ch2 for some c ∈ T.

Another observation is needed to prove the main result of this sub-
section. If ϕ is a function on T then ϕ(ei·) is defined on [0, 2π]. For
simplicity, we shall not distinguish between these two functions.

Lemma 3.9. Let h ∈ H2(U). Then S(h)⊥ has exactly one dimension
if and only if the inner factor Mh of h is a Möbius transformation,
namely, there exists λ ∈ U and c ∈ T such that

(3.15) Mh(z) = c
z − λ

1 − λ̄z
, z ∈ U.
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Proof. If Mh has form (3.15), by Lemma 3.9, ϕ ∈ S(h)⊥ if and only
if for each n ∈ Z+

∫ 2π

0

ϕ(eit)
eit − λ

1 − λ̄eit
eint dt = 0.

The equation above has the following form in terms of the Fourier
coefficient of ϕ

(3.16) −λ(F̃ϕ)(n) +
∑
k∈N

(1 − |λ|2)λ̄k−1(F̃ϕ)(n+ k) = 0.

Comparing two consecutive equations of (3.16) yields that

(F̃ϕ)(n+ 1) = λ(F̃ϕ)(n), n ∈ Z+.

Consequently, we have

S(h)⊥ = span
{

1
1 − λ̄z

}
,

which is of one dimension.

On the other hand, suppose that S(h)⊥ is one dimensional. We
first prove that Mh has a zero on U . Let ϕ ∈ H2(U) be such that
S(h)⊥ = span {ϕ}. Since S(h) is shift invariant, S∗F̃ϕ ⊆ span {F̃ϕ}.
By Theorem 3.6, there exists c ∈ C \ {0} and λ ∈ U such that

(F̃ϕ)(n) = cλn, n ∈ Z+,

where we set 00 := 1 if it appears. Since Mh ⊥ ϕ, a simple computation
shows that Mh(λ̄) = 0. Therefore, there exists an inner function ϕ on
U such that Mh = ϕmλ where

mλ(z) :=
z − λ̄

1 − λz
, z ∈ U.

It follows from this equation that S(h) ⊆ S(mλ). Since both S(h)⊥

and S(mλ)⊥ are one dimensional, we have S(h) = S(Mh) = S(mλ).
By Lemma 3.9, Mh is a Möbius transformation.
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Theorem 3.11. Let g ∈ L2
2π. Then there does not exist a noncon-

stant f ∈ L2
2π satisfying the circular Bedrosian identity (1.8) if and

only if one of the following conditions holds:

(1) both HU (F̃+g) and HU (F̃−g) are outer functions on U ,

(2) one of HU (F̃+g) and HU (F̃−g) is an outer function and the inner
factor of the other is a Möbius transformation.

Proof. If condition (1) above is satisfied, then by Lemma 3.9,

S(HU (F̃−g)) = S(HU (F̃+g)) = H2(U).

If f ∈ L2
2π satisfies the circular Bedrosian identity then by equations

(3.13) and (3.14),

S∗F̃+f = S∗F̃−f = 0.

The function f is hence a constant function. Suppose HU (F̃+g) is
an outer function, the inner factor of h := HU (F̃−g) is a Möbius
transformation and f ∈ L2

2π satisfies identity (1.8). By equation (3.14),

S∗F̃−f = 0. Since S(h)⊥ is one dimensional, f is nonconstant if and
only if

HU (S∗F̃−g) ∈ S(h).

The above formula holds if and only if there exists ϕ ∈ H2(U) such
that

QhMh − h(0) = zMhϕ,

where Qh and Mh are the outer factor and inner factor of h, respec-
tively. Since Mh is a Möbius transformation, it has a zero on U . As a
consequence, h(0) = 0, which implies that Qh = zϕ. This is impossible
since Qh has no zeros on U . It is concluded that only constant f ∈ L2

2π

would satisfy (1.8) if condition (1) or (2) holds.

There are two possibilities if neither (1) nor (2) is valid. First, if
neither HU (F̃+g) nor HU (F̃−g) is an outer function, then there exist
nontrivial elements ψ1, ψ2 ∈ �2(Z+) such that

HU (ψ1) ⊥ S(HU (F̃−g)) and HU (ψ2) ⊥ S(HU (F̃+g)).

Let f ∈ L2
2π be defined by

S∗F̃+f = c1ψ1, S∗F̃−f = c2ψ2,
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where c1, c2 are constants chosen to satisfy (3.12), that is,

(3.17) c1(HU (ψ1),HU (S∗F̃−g)) − c2(HU (ψ2),HU (S∗F̃+g)) = 0.

Second, suppose that HU (F̃+g) is an outer function and the inner
factor of HU (F̃−g) is not a Möbius transformation. By Lemma 3.10,
there exist linear independent elements ψ1, ψ2 ∈ �2(Z+) for which
HU (ψ1),HU (ψ2) are orthogonal to S(HU (F̃−g)). Let f ∈ L2

2π be
defined by

S∗F̃+f = c3ψ1 + c4ψ2, S∗F̃−f = 0,

where c3, c4 are constants such that

(3.18) c3(HU (ψ1),HU (S∗F̃−g)) + c4(HU (ψ2),HU (S∗F̃−g)) = 0.

Both (3.17) and (3.18) have a nontrivial solution (c1, c2) or (c3, c4).
We are hence able to find nonconstant f ∈ L2

2π satisfying the circular
Bedrosian identity.

If g ∈ L2
2π does not satisfy condition (1) or (2) in Theorem 3.11, then

the additive positive definite kernels on Z+ can be used to construct
nontrivial f ∈ L2

2π satisfying the circular Bedrosian identity. Also, a
class of functions f ∈ L2

2π for each of which there does not exist a
nontrivial g ∈ L2

2π satisfying the circular Bedrosian identity can be
obtained from additive positive definite kernels on Z+. However, since
these would be trivial extensions of the real line case, we would not
present them.

4. Applications to intrinsic mode functions. Originally, an
intrinsic mode function (IMF) is defined to be a real function such
that the numbers of its zeros and local extrema differ at most by one
and that its local mean is zero, [17]. For a study on IMFs along this
direction, see [28]. As a different approach, it was suggested in [32]
that real functions f ∈ L2(R) such that

(4.1) (f + iHf)(t) = ρ(t)eiθ(t), t ∈ R

where for all t ∈ R

(4.2) ρ(t) ≥ 0,
dθ(t)
dt

≥ 0



THE BEDROSIAN IDENTITY 563

be taken as a basic atom for the Hilbert-Huang transform [17]. Follow-
ing [32], we still refer to functions f satisfying (4.1) and (4.2) as IMFs.
A method of constructing such IMFs is to solve functions ρ ∈ L2(R)
and θ ∈ C1(R) from the nonlinear singular integral equation

(4.3) H(ρ(·) cos θ(·))(t) = ρ(t) sin θ(t), almost everywhere t ∈ R,

with the constraint that ρ, θ satisfy (4.2) for all t ∈ R. In the circular
case, the method is to find ρ ∈ L2

2π and 2π-periodic function θ ∈ C1(R)
such that

(4.4) H̃(ρ(·) cos θ(·))(t) = ρ(t) sin θ(t), almost everywhere t ∈ [0, 2π]

with ρ, θ satisfying (4.2) for all t ∈ [0, 2π].

Functions ρ, θ satisfying (4.3) or (4.4) have been characterized using
the boundary value of functions in Hardy spaces, [24]. Solutions of
(4.3) and (4.4) with explicit expression are desirable in engineering
applications. In the unimodular case ρ ≡ 1, an interesting class of
functions θ satisfying (4.3) or (4.4) is provided in [24] using finite
Blaschke products. Specifically, they are given in the real line case
by

(4.5) eiθ(x) =
ei2 arctan(x) − λ

1 − λei2 arctan(x)
, x ∈ R

and in the circular case by

(4.6) eiθ(t) = eit
eit − λ

1 − λeit
, t ∈ [0, 2π],

where λ ∈ (0, 1). The purpose of this section is to extend the
construction of IMFs by characterizing ρ satisfying (4.3) or (4.4).

Proposition 4.1. Let θ be given in (4.5). Then a nonnegative
function ρ ∈ L2(R) satisfies

(4.7) H(ρ cos θ) = ρ sin θ almost everywhere

if and only if it has the form
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ρ(t) =
c

1 + b2t2
, t ∈ R,

where b := (1 + λ)/(1 − λ), c is an arbitrary nonnegative constant.

Proof. Suppose ρ ∈ L2(R) satisfies (4.7). Set c̃ := cos θ + 1 and
rewrite (4.7) into

(4.8) H(ρc̃) −Hρ = ρ sin θ almost everywhere.

Note the relations that Hc̃ = sin θ [25] and

(F c̃)(ξ) =
2π
b

exp(−|ξ
b
|), ξ ∈ R.

By Lemma 2.2, equation (4.8) holds if and only if∫
R

exp
(
−

∣∣∣∣ηb
∣∣∣∣
)
ρ̂(ξ − η)(sgn(ξ) − sgn(η)) dη(4.9)

= b sgn(ξ)ρ̂(ξ), ξ ∈ R.

We observe from equation (4.9) that (4.8) holds if and only if ρ satisfies
the following two inhomogeneous semi-convolution equations

2
∫
R+

exp
(
− η

b

)
ρ̂(ξ + η) dη = bρ̂(ξ), ξ ∈ R+ \ {0},(4.10)

2
∫
R−

exp
(
−

∣∣∣∣ηb
∣∣∣∣
)
ρ̂(ξ + η) dη = bρ̂(ξ), ξ ∈ R− \ {0}.(4.11)

A change of variables transforms (4.10) into

2 exp
(
ξ

b

) ∫ ∞

ξ

exp
(
− s

b

)
ρ̂(s) ds = bρ̂(ξ), ξ ∈ R+ \ {0}.

This equation shows that ρ̂ ∈ C1(0,∞) and satisfies for each ξ ∈
R+ \ {0} that

bρ̂′(ξ) + sgn(ξ)ρ̂(ξ) = 0.

Likewise, we can obtain the above equation for each ξ ∈ R− \ {0}.
Therefore, if ρ ∈ L2(R) satisfies (4.7), then there exist constants
c1, c2 ∈ C such that

(4.12) ρ̂(ξ) = c1u(ξ) exp
(
− ξ

b

)
+ c2u(−ξ) exp

(
ξ

b

)
, ξ ∈ R \ {0}.
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Conversely, it can be verified directly that if ρ is given above, then
it satisfies equations (4.10) and (4.11). Applying the inverse Fourier
transform yields that ρ̂ has the form (4.12) if and only if there exists
c3, c4 ∈ C such that

ρ(t) =
c3

1 − ibt
+

c4
1 + ibt

, t ∈ R.

Simple computations show that ρ given above is nonnegative if and
only if c3 = c4, Re (c3) ≥ 0 and Im (c3) = 0. This completes the proof.

We next characterize nonnegative ρ ∈ L2
2π satisfying (4.4). Consider-

ing the local symmetry of IMFs, we would like to impose the additional
requirement that

(4.13)
∫ 2π

0

ρ(t) cos θ(t) dt = 0.

Proposition 4.2. Let θ be given by (4.6) with λ ∈ (0, 1). Then a
nonnegative function ρ ∈ L2

2π satisfies (4.4) and (4.13) if and only if it
is given by

ρ(t) = Re
(

c1e
−it

1 − λe−it

)
+ c2, t ∈ [0, 2π],

where c1 ∈ C, c2 ∈ R are constants such that

(4.14) λRe (c1) − |c1| + c2(1 − λ2) ≥ 0.

Proof. It was proved in [24] that

H̃eiθ(·) = −ieiθ(·).

We point out by this fact that a real function ρ ∈ L2
2π satisfies (4.4)

and (4.13) if and only if

(4.15) H̃(ρeiθ(·)) = ρH̃eiθ(·) almost everywhere.
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Note that the following expansion holds

eiθ(t) = −λeit +
∑
n∈N

(λn−1 − λn+1)ei(n+1)t, t ∈ [0, 2π].

By Theorem 3.4, (4.15) holds if and only if for each k ∈ N

(4.16) −λc−k(ρ) +
∑
j∈N

c−k−j(ρ)(λj−1 − λj+1) = 0.

It is then observed that (4.16) holds if and only if there exists the
constant c′1 ∈ C such that

c−k(ρ) = c′1λ
k−1, k ∈ N.

As a consequence, ρ satisfies (4.15) if and only if there exists ϕ ∈ H2(U)
such that

(4.17) ρ(t) =
c′1e

−it

1 − λe−it
+ ϕ(eit), t ∈ [0, 2π].

We next observe that ρ given by (4.17) is a real function if and only if
there exists c2 ∈ R such that

ϕ(eit) =
c̄′1e

it

1 − λ̄eit
+ c2, t ∈ [0, 2π].

Finally, we verify by elementary analysis that

ρ(t) = Re
(

c1e
−it

1 − λe−it

)
+ c2, t ∈ [0, 2π],

where c1 := 2c′1, is nonnegative on [0, 2π] if and only if condition (4.14)
is satisfied.
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