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E X P O N E N T I A L STABILIZATION 
OF VOLTERRA I N T E G R A L EQUATIONS 

W I T H SINGULAR KERNELS 

WOLFGANG DESCH AND RICHARD K. MILLER 

ABSTRACT. We consider exponential stabilization of me­
chanical systems consisting of rigid and flexible members by 
feedback acting on the rigid parts. The flexible material is 
assumed to be linearly viscoelastic of convolution type with 
a completely monotone kernel. No better decay rate can be 
obtained by stabilization than the essential growth rate of the 
unperturbed system. A formula for the essential growth rate 
is given, in particular it depends only on the convolution ker­
nel. It is negative (i.e. exponential stabilization is possible) if 
and only if the kernel decays exponentially. Two mechanical 
models are discussed. 

1. Int roduct ion. In this paper we treat stabilization problems for 
certain systems of partial-differential integral equations with possible 
singular kernels arising in the theory of linear viscoelasticity. We have 
in mind a mechanical system consisting of one or more rigid bodies 
with flexible members attached to them. To stabilize the motion of the 
system (including the vibrations of the flexible parts), a control force 
or torque is applied to the rigid parts. The control is obtained by a 
linear feedback law from positions and velocities of the rigid parts. 

If the flexible parts are made of perfectly elastic material, the mo­
tion of the uncontrolled system is energy conserving. The fact that 
observations and control act on rigid parts of positive mass, makes the 
feedback a bounded compact perturbation. It is known (e.g. [12]) 
that such perturbations cannot stabilize the system exponentially. In­
tuitively, one may imagine that due to inertial effects the control is 
too slow to compensate high frequency vibrations, in fact most of the 
energy of short waves is reflected at the interfaces between the flexible 
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and the rigid members and goes back to the flexible part. (This is quite 
unlike stabilization by energy dissipating boundary conditions, where 
the wave reflection behavior is influenced directly and very significant 
stabilization is possible.) 

What makes real mechanical systems still stabilizable is the energy 
dissipation in the flexible material, such as internal friction and vis-
coelastic effects. We discuss in this paper how viscoelasticity affects 
the exponential stabilizability of the system. We shall be concerned 
here with removing the principal obstable - i.e., that no compact per­
turbation can stabilize the system. The construction of an efficient 
feedback is a separate problem (and not a trivial one). 

Let the essential growth rate of the system be the least exponential 
growth rate of solutions that can be obtained by compact perturbation. 
Thus a negative essential growth rate means precisely exponential 
stabilizability. We assume that stress a and strain e are related by 
a linear constitutive equation of convolution type with a completely 
monotone kernel a: 

fl d 
a(t) = Ee{t)+ a(t-s)—e(s)ds. 

Jo &s 

It turns out that the essential growth rate is only determined by the 
kernel and that the special structure of the mechanical system has no 
bearing on it. This is no surprise, since here the essential growth rate 
measures how much the physical properties of the material contribute to 
energy dissipation in the system. We derive a formula for the essential 
growth rate in terms of the kernel. Instead of writing down the formula 
here, let us give a rough verbal explanation. First, exponential stability 
can never be obtained at a better rate than that at which the memory of 
the material fades, i.e., the exponential decay of the kernel a is a lower 
bound for the essential growth rate. In particular, fractional derivative 
laws allow no exponential stabilization, as the kernels behave like roots 
of time. If the kernel decays exponentially, the essential growth rate of 
the system is always negative. Besides the decay rate of the kernels, 
the high frequency modes of the elastic system (with memory effects 
ignored) contribute to the essential growth rate in a twofold manner. 
If the kernel has a finite derivative at 0, the system behaves essentially 
like a damped wave equations, i.e., the poles come close to a line 
parallel to the imaginary axis for large imaginary parts. The real part 
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of this line is a lower bound for the essential growth rate and given by 
a'(0)/2(E + a(0)). This is the case for most of the traditional kernels 
for Boltzmann viscoelasticity, in particular, finite sums of exponentials, 
as they arise in more or less complex spring-dashpot models. 

If the derivative of the kernel is unbounded near 0, poles with large 
imaginary parts have real parts tending to — oo, hence there is no 
limitation to stabilizability from this point of view. However, the high 
frequency modes of the elastic system may still allow nonoscillating 
solutions with slow exponential decay, thus causing the essential growth 
rate to be somewhat larger than the growth rate of the kernel a, while 
still negative. This is the typical situation for fractional derivative 
models modified to have exponential decay of the kernel. 

Our paper is strongly motivated by and should be seen in the context 
of a variety of recent investigations of qualitative effects of singular 
kernels in viscoelasticity, all somehow related to the decay of high 
frequency modes. Typical problems of this kind concern stability, 
propagation of singularities, compactness and uniform continuity of 
solution operators. Instead of attempting a detailed discussion of 
existing literature, we refer the reader to the monograph [25], in 
particular to its section on hyperbolicity of Volterra equations and to its 
extensive bibliography. Let us just briefly recall that it has been known 
for a while that kernels with finite derivatives at 0 exhibit a behavior 
resembling frictional damping. (For propagation of singularities see, 
e.g., [1], the problem of essential stability has been treated in [10].) 
Though constitutive equations with singular kernels have been around 
at least since the thirties (see, e.g., the references in [3, 4, 5]), the 
current intense interest in their qualitative properties seems to have 
started with Renardy's paper [24], where it is shown that this type 
of kernel yields wave propagation behavior which is somehow hybrid 
between hyperbolic and parabolic (cf. also [15, 22, 23, 8]). In 
[13] it is proved that such kernels lead to compact solution operators. 
These results all indicate that, for these kernels, the decay rates of 
the modes increase to infinity with increasing frequency. So it is 
reasonable to expect that they yield also exponential stabilizability 
which is only limited by the decay of the kernel. Our paper gives 
the precise formulation and proof for this result. Our problem has 
been treated for the particular case of a viscoelastically modified wave 
equation on interval in [14]. They consider also the case of boundary 
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control without a rigid mass attached to the boundary. This type 
of control shows significant qualitative differences to what we discuss 
below. The essential growth rate is no limit to the stabilizability by 
such methods. Also pure boundary stabilization exhibits extraordinary 
sensitivity to perturbation while control acting on rigid masses does 
not. 

Let us make some remarks on the mathematical techniques of this 
paper. The velocity field and stress field in the flexibile parts are con­
sidered as vectors in suitable Hilbert spaces (reasonably normed by 
kinetic and potential energy). The equation of momentum is rewrit­
ten as an abstract differential equation, while the constitutive equation 
yields an abstract integral equation. The unbounded operators appear­
ing in both equations turn out to be adjoint to each other. No more 
information is required about the shape of the mechanical system. To 
handle this abstract system, we introduce a semigroup setting on a state 
space which includes the history of the system as far as it is relevant 
for future stresses. Semigroup settings for Volterra equations have been 
discussed, e.g., in [6, 19, 7, 29]. (While writing this paper we have 
learned of ongoing work of R. Fabiano and K. Ito using a semigroup 
method to justify numerical techniques for solving integrodifferential 
equations with completely monotone kernels.) It seems that equations 
with singular kernels such as in [7, 29] require state spaces tailored 
to that particular kernel. Our setting makes use of the fact that the 
kernel is the Laplace-St ieltj es transform of a positive measure. We use 
this measure to construct an L2-space. The physical meaning of its 
norm is unknown to us, but it turns out that the estimates that are 
to be expected for the solutions of the Volterra equations carry over 
to the semigroup (in spite of the fact that the state space has been 
augmented by a history part). The concept of an essential growth rate 
indicated in the beginning of our paper admits a precise formulation 
in the framework of semigroups. The use of this notion in applied 
work (namely population dynamics) goes back to [20, 30], where the 
main properties are developed. As a good reference we recommend [2]. 
Existence of the semigroup is proved by standard ra-dissipativity argu­
ments, the estimate of the essential growth rate is done by frequency 
domain methods. A theorem by Gearhart ([11], also [21]) allows us to 
obtain a uniform bound for the semigroup from uniform bounds for its 
Laplace transform. This is somewhat better for our purpose than the 
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usual way of deriving L2-estimates from L2-estimates. Our technique 
can be generalized to treat problems of viscoelasticity with tensor val­
ued kernels and can aslo be applied to discuss the wave propogation 
behavior and analyticity of the solution [9]. 

The paper is organized as follows: §2 starts from the abstract equa­
tions and introduces the state space and the semigroup. §3 proves the 
formula for the essential growth rate. As the proofs in both sections 
require some technical effort, we have stated the results first and delay 
the details of the proofs to the end of each section. §4 takes two model 
problems from [27, 28] to show how the results can be applied to ac­
tual mechanical problems. We discuss also how fractional derivative 
viscoelasticity fits into our framework. 
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2. Existence and uniqueness. We consider the abstract equations 

u'(t) = v(t), 

v'(t) = -Dv(t) + f(t), 

a(t) = ED*u(t) + / a(t- s)D*v(s) ds + h(t), (t > 0), 
Jo 

with given initial data u(0) — UQ, V(0) = fo, and a suitable inhomo-
geneity h. Prime ' denotes derivative with respect to t. The functions u 
and v are supposed to take values in (subspaces of) some Hilbert space 
Y, G takes values in another Hilbert space X. 
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We make the following assumptions: 

Hypothesis D. D is a closed densely defined linear operator mapping 
domD C X into Y. D* : domD* C Y —> X is its adjoint. We assume 
furthermore that the embeddings of dorn D and domD*, endowed with 
the graph norms (||x||2 + ||£>:r||2)1/2, (IMP + ll^*2/||2)1/2, in X or Y, 
respectively, are compact (or equivalently that DD* has discrete point 
spectrum with finite dimensional eigenspaces, and that the kernels of 
D and D* are finite dimensional). To rule out some trivial exceptional 
cases we assume that X and Y have infinite dimension and that D and 
D* are unbounded operators. 

(Notice that this hypothesis and [16, Theorem 3.24, p. 275] imply 
that DD* and D*D are self-adjoint.) 

Hypothesis a. E > 0 is a scalar, and a : (0, oo) —> (0, oo) is completely 
monotone, such that lim^oo a>(i) — 0 and JQ a(t) di < oo. Let Ao 
denote the supremem of all À G R such that eXta(t) is bounded on 
(l,oo). 

The inhomogeneity / will be considered as a control term, obtained 
from u and v by a feedback law 

(2.2) f(t) = CMt) + C2v(t), 

where C± is a bounded linear operator mapping domD* into F , and 
C2 is a bounded linear operator from Y into Y. Moreover we assume 
that the ranges of both operators, C\ and C2, have finite dimension. 

Our results hold as well for a more general type of dynamic feedback, 
such as 

f(t) = ClU(t) + C2v(t) + C3z(t), 

z'(t) = Bxu{t) + B2v(t) + Kz(t) + r(t), (t > 0), 

*(0) = z0. 

Here the control state z(t) is a vector in R n ; r : [0, 00) —> R n is some 
reference signal. The operators involved satisfy 

Hypothesis C. K is an n x n-matrix. The observers B\ : domD* —> 
R n and B2 : Y —> R n are linear and bounded (dorn D* being endowed 
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with the graph norm of D*). C\ : domD* —• Y, C2 : Y —> Y, and 
C3 : R n —> F are bounded linear operators with finite dimensional 
range. 

To prove existence and uniqueness of (generalized) solutions we 
treat the whole system (2.1), (2.2) as an abstract differential equation 
Xf(t) = Ax(t) in some big Hilbert space H. For this purpose, the state 
x(t) has to contain u(t) and v(t), but also all information about the 
history of the system that is forwarded by the convolution with the 
kernel a. 

By Bernstein's Theorem [31, p. 160] there exists a nondecreasing 
function g : [0, oc) —> [0,00) such that for any t > 0, a(t) = 
J0 e~ßtdg(ß). As lim^oo a(t) = 0,# is continuous at 0. We may 
put g(0) = 0. Since e~Xta(t) is integrable on (0, 00) for any À > 0, 
we infer that J0°°(A -f /i)~1dg(ß) < oc. Consequently, for any s > 
0, J ß~ldg(fi) is finite. 

Obviously, the support of g is contained in [Ao,oo). For all À G 
C\(—00, — Ào], the analytic continuation of the Laplace transform of a 
is given by o(A) = J0°°(A + / i ) _ 1^(/x) . 

Using this representation of a, we can rewrite the influence of the 
history of v on a(t) by 

pt /»oo pt 

\ a(t-s)D*v{s)ds= / / e-^t-s)D*v(s)dsdg(ß). 
Jo Jo Jo 

We assume that h (which usually describes the effect of the history 
before t — 0) can be written in the form 

/ •OO 

h(t)= / e-^Mrìdgirì-
Jo 

Then we obtain 

with 

/»OO 

a(t) = ED*u(t) + / <j)(t, fi) dg(ii) 
Jo 

0(*,/x) = e- /1Vo(/z)+ / e-^-s)D*v(s)ds. 
Jo 
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The latter equation is just the variation-of-parameters solution to 

—</>(t,v) = -p<l>(t,tJ,) + D*v(t), 

0(0,//) = 0O(AO-

With this notation, the system (2.1), (2.2) is at least formally 
transformed to an abstract differential equation for the state x(£) = 
(u(t), v(t), </>(t,.)) in the Hilbert space H = dornD*xYxL2

g([0, oc), X), 
where L2 — L^([0, oo),X) denotes the space of X-valued L2-functions 
with respect to the measure dg, and domD* is again equipped with 
the graph norm of D* : 

x'(t) = Ax(t), 
X(0) = (uo,vo,0o), 

with an operator 
A{u,v,(t)) = (p,q,tp), 

where 

p = v, 

q = -D(ED*u+ J 0 ( / x ) d ^ ) ) + C i w + C2V, 

defined on 

dom.4= Uu,v,<j)) G H :v G domD*, -//</> + D*v G L2, 

ED*u+ / <t)(fi) dg(ii) G dom£>}. 

REMARK 2.1. The existence of the integral /0°° 0(/x) dg(n) is guar­
anteed for (u,v,<f)) G dorn A In fact, if ß(ß — x and (f) are in L2, 
then JQ00 (j)(fi)dg(fji) exists and depends continuously on x G I , 0 and 
fief) — x G I/2 . 
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PROOF. 

/»OO 

/ \\<t>(rì\\dg(rì 
JO 

pi— /»oo 

= J \\<Kn)\\dg(p) + j \\<Kn)\\dg(n) 

- t j f d9{pi)'[ I I ^ )H 2 ^(M)] 1 / 2 

/
OO /«OO 

M _ 1 | | ^ (M) - ^II^(M) + / ii^WxWdgdi) 
r f00 l 1 / 2 

<s(i)1/2-iwi + [y M - 2 ^ / * ) ] - I I ^ - ^ I I 

/
oo 

ß~ldg(ß)- \\x\\. 

REMARK 2.2. For the dynamic feedback case (2.3) the state of the 
system also contains z(t), thus Tia — d o m D * x Y x Z^([0, oo) ,X) x 
R n , Ad(u,v,<j>,z) = (p,q,ip,w), where 

p = v, 

q = -D(ED*u + J°° <l>(ii)dg(ii)) 

+ Cxu + C2v + C32, 

w = X z + B i n + Z?2^ 

defined on 

dom^4d = | ( u ,v ,0 ,2 ; ) e Hd'.v e doraD*, - / / 0 + £>*?; G I ^ , 

££>*?/ + / (/)(fi)dg(fi) G d o r a i ) } . 
/o 

The reference signal enters as an inhomogeneity 

x ' W = i d X W + (0,0,0,r(t)). 
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While this operator looks a little more complicated than the previous 
one, the additional terms can all be treated as bounded perturbations, 
so that the equation is decoupled into the equation with A and a linear 
differential equation in R n . Thus all results we obtain for (2.1), (2.2) 
hold also for (2.1), (2.3). 

In this section we prove 

THEOREM 2.3. A is the infinitesimal generator of a Co-semigroup 
S(t) inH, similarly Ad is the infinitesimal generator of a Co-semigroup 
Sd{t) in TLd. 

Before we prove this theorem, we give an interpretation for the system 
(2.1), (2.2). 

COROLLARY 2.4. 

(a) Let uo,vo,h be given such that vo G domD*, h(t) — 
J0°° e~ßt(j)o(ß)dg(ti) with 0O and //0O - D*v0 in L2, and u0 G domD* 
such that ED*u0 + f™ MtiM») (= ED*u0 + ft(0)) G domD. If 

(u{t),v(t), <t>{t,.)) = S(t)(u0, v0,0o), 

then u,v,a(i) = ED*u(t) + f^ (j)(t,ß)dg(ß) yields the unique solu­
tion to (2.1), (2.2) in the sense that u G (^([O, oo), domD*), v G 
C ^ ^ o o ^ F ) , a G C([0, oc), X) and (2.1), (2.2) hold for all t > 0. 

(b) The values u(t) G domD* and V(t) G Y depend continuously 
on UQ G domD*, vo G Y, (ßo G L2, uniformly for t in compact inter­
vals. Hence, if uo,vo,4>o a r e approximated by univn,(j)n satisfying the 
conditions of (a) in domD*,F and L2, respectively, then the. corre­
sponding solutions converge to functions u G C([0,oo),domD*), v G 
C([0, oo),y), which can be regarded as generalized solutions to (2.1), 
(2.2). 

(c) The generalized solutions are solutions in the sense of Laplace 
transforms, i.e., they are exponentially bounded, and for sufficiently 
large A G R their Laplace transforms satisfy 

Aû(A) — uo — #(A), 

Afi(A) -v0 = -D(j(A) + Ciâ(A) + C2ô(A), 
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where <r(A) is defined by 

a(X) = ED*Û(X) + â(X)D*v(X) + h(X). 

(Notice that, though a(X) is defined in some sense, there is no assertion 
about existence of any generalized solution cr(t).) 

P R O O F OF COROLLARY 2.4. 

(a). The conditions on the initial data uo,vo,h are constructed so that 
(no,^o?0o) € domA Thus \ — (n,v,0) is the unique, continuously 
differentiable solution to x'(t) — Ax(t) with these initial data in Ji. 
We put a(t) = ED*u(t) + /0°° e'^^t, fi)dg(fi). The integral exists 
since (u(t),v(t),(f)(t,.)) 6 dom.4, cf. Remark 2.1. The equations 

u'(t) = v(t), v'(t) = -Da(t) + Ciu(t) + C2v(t) 

are obvious from the definition of A. Integrating J^(/>(£,/i) = —//</>(£,/x)+ 
D*v(t) from 0 to t we obtain 

/•OO pt -. 

ff(t) = BD*u(*)+ / e_/ iVo(M)+ / e-^t-8)D*v(s)ds\dg{ß) 
Jo *- Jo * 

= ED*u(t) + h{t)+ I a{t-s)D*v(s)ds. 
Jo 

(b). This is an obvious consequence of the uniform boundedness of 
the operators S(t) for t in compact intervals. 

(c). Let x{t) = {u{t),v(t),0(t,.)) = S(t)(uo,vo,0o). As ||<S(t)|| is 
exponentially bounded, x{t) ls 3^so- The Laplace transform satisfies 

(X-A)x(t) = (uo,i>o,0o). We define <r(A) = ED*u(X)+f™ <t>(\,ti)dg(ii). 

By definition of .4 we immediately have 

Aû(A) — v(A) = u$, 

Aô(A) + D&(\) - du(X) - C2v(X) = v0 

and 
A0(A,/i) + MA,/x) - D*v(X) = 0o(/x). 
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Integrating the last equation, we obtain 

/»OO 

â(A) = ED*u{\) + / 4>(X,n)dg(fi) 
Jo 
f°° 1 f°° 1 

= ED*Û(X) + / ——foMdgin) + / — — dg(ß) • D*v(\) 
JQ A-\- P J0 A-\- fi 

= ED*Û(\) + h(X) + a(A)£>*t)(A). 

Of course, a similar interpretation can be given for the dynamic 
feedback case (2.3). 

The remainder of this section is devoted to the proof of Theorem 2.4. 
The proof is given by several lemmas and organized as follows. Being 
bounded perturbations, the feedback operators Cj can be omitted 
without loss of generality. We may also assume that D* is one-to-
one. Otherwise the finite dimensional kernel may be factored out. 
With these simplifications, we prove that A is densely defined and 
dissipative, moreover we compute (A — . 4 ) - 1 by an explicit formula for 
suitable A. By the Lumer-Phillips-Theorem, A generates a semigroup 
of contractions on Ti. 

LEMMA 2.5. Let Y± be the closure of the range of D in Y. Evidently 
Y = Y1xkerD*, domD* = (dorn£>*HYi)xkerD*. Let Ai'.domA-* 
TC be defined by A\(u,v,(f)) = (p^q^) with 

p = v 

q = -D (ED*U + f °° <t>(p)dg(ii)), 

^(/i) = -/x0(/x) + D*v. 

Then A = A\ -f /C with a compact continuous linear operator K inJi. 
Moreover, in the decomposition 

H = kerZr x (dornD* H Fi) x ker £>* x F i X L2
g, 

the spaces ker D* x ker D* x 0 and Hi = (dorn D* fl Yi) x Y\ x L2
g are 

A\ -invariant subspaces. 
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PROOF. From the definition of A and A\ it is clear that A = A\ +/C, 
where K(u, v, </>) = (0, C\u + C2V, 0) defines a compact linear operator 
on H. For u,v G kerD*, ,Ai(u,t;,0) = (v,0,0) G kerD* x 0 x 0. If 
.Ai(i&,v,0) = (p, g,t/>) with K, and 1; in Yi, then evidently p = v G Yi, 
and g lies in the range of D which is contained in Y\. D 

REMARK 2.6. As dim(kerD* x kerD*) is finite, it is obviously 
sufficient to show that the restriction of A\ to Hi generates a Co-
semigroup. We assume therefore without loss of generality that A = 
Ai, i.e., Cj — 0, and H — Hi, i.e., kerD* is trivial. With the latter 
assumption we may introduce the following scalar product on H: 

/••00 

<(u, v, 0), (p, q, tfi)) = E(D*u, D*p) + (v, q) + / <0(/x), ^))dg{ß). 
Jo 

LEMMA 2.7. Wz£/i £/ie assumptions described in Remark 2.6, A is 
dissipative. 

PROOF. Let {p,q,i)) = A{u,v,<j)). Then 

Re((u,v,(f)),(p,q,ip)) 

= Re [£(D*w, D*v) - /v, D{ED*u + / </>(p)dg(p) 

+ y ,OO(^),Z}*V-M0(/x))d(/(M)] 

= Re [#(£>* u, ZT v) - (D*v, £D*u) - ^D*v, / (t>(ß)dg(ß) 

rOC /»OO 

+ / (4){ß),D*v)dg(fi)- / p(<Kii),<l>(ii))dg(iJL) 
Jo Jo 

- - / /x<0(/i), (f>(ß))dg(ß) < 0. 
</o 

LEMMA 2.8. 4̂ is densely defined in H. 

PROOF. Given (w,v,0) G H and e > 0, we have to find (p,g,^) G 
dorn *4 such that ||(i6, v, 0) — (p, g, VOI I S s. We choose p = u and some 
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q e domD* such that \\q — v\\ < e/3. Next we pick r\ sufficiently large 
so that / ~ ||^(/x)||2rf9(M) < £2/18 and / ~ ^dg(ji) • \\D*q\\ < e*/\%. 
Putting 

v r v [/i LD*q for /x > 77, 

we obtain/0°° \\7r(fi) - (f)(ß)\\dg(fi) < e2/9, and fnr(fjb) — D*v e L2. Now 
choose an arbitrary scalar function a such that JQ a(ß)dg(/i) = 1 and 
J0°° \a(fi)\2dg(/i) as well as J0°° \/jJa(ii)\2dg(fi) are finite. As domD is 
dense in X, there is some h e X with \\h\\2 < e2/(9/0°° \a{^)\2dg(^i)) 
such that ED*u + /0°° i/j(ß)dg(ß) -{-he domD. Defining ip e L2 by 
ip(fi) = 7r(/i) -f a(/x)/i we obtain that /0°° ||V>(AO - 7r(fi)\\2dg(n) < e2/9, 
J0°° Wfiipdi) — /i7r(fi)\\2dg(/i) is finite, and ED*u + /0°° iß(ß)dg(ß) e 
dom£>. Then the triple (p,q,ip) lies in dom^l and \\(u,v,(j)) — 
ip,q,n\2 <\\v- QÏ? + /0°° Mß) - Hß)\\2dg(ß) < e2. • 

In order to show that A is ra-dissipative, it would be sufficient to 
show that (A — A)-1 exists for some large A G R. For later use we 
prove a stronger result: 

LEMMA 2.9. We make the assumptions introduced in Remark 2.6. Let 
A e C\(—00, — Ao] be such that E + Aa(A) ^ 0? and a(X) = - ^ T W Û 
is not contained in the spectrum of DD*. Then (A — A)-1 exists as a 
bounded linear operator on Ti. 

Moreover, putting R(X) = [A2 + (E + Aô(A))£>£>*]-\ 

TI Ai = J ^ + (E + ^à(X))D*D]-1x f o r x i n t h e r a n g e o f ö * A 
[ ,X \ o for x in the kernel of £>*£>, 

extended to a linear operator on X, and 

we obtain the following formula for (u, v, <f>) — (A — A)~1(p, q, ip) : 

u = (A + ô(A)2?D*)A(A)p + A(A)ç - £>T(A)^(A), 

(2 4) v = -EDD*R(\)p + \R(X)q - \DT(\)i>(\), 
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PROOF. TO prove injectivity of A — A assume that (A — A)(u, v, </>) = 0, 
i.e., 

Xu — v — 0 

Xv + D(ED*U + / (j>(ß)dg(fji)\ = 0, 

\<l>(p)+li<l>(ti)-D*v = 0. 

Given u we can solve explicitely for v and (j>: v = Xu, </>(/x) = j^—D*u. 
Hence X2u + D(ED*u + Xâ(X)D*u) = 0, which implies u = 0, since 
[A2 + (E + Aa(A))Z}Z>*] is injective. Now we prove that formula (2.4) 
yields in fact a solution to (A — A)(u,v,(f)) — (p,q,ip). 

Notice first that all expressions in (2.4) make sense, since R(X) maps 
Y into dorn DD* and T(X) maps X into dom D*D. Moreover, as 
p G domD*, we have (E + Xâ(X))DD*R(X)p = p- X2R(X)p G domi)*, 
thus DD*R(X)p G domi}*. We infer that both, u and v, lie in domD*. 
Since A £ (—oo, —Ao], 1/A-f// is bounded and square integrable with 
respect to dg on the support of g. Now it is easy to check that 0 G L2. 
Explicit integration yields 

Jo 
</>(p)dg(fJL) = â(\)D*v + j>(\). 

/o 

Now we evaluate the three components of (A — A)(u, v, 0). 

Xu - v = [A2 + (E + Aa(A))D£>*]#(A)p - p, 

\V + D(ED*U+ f (j){ß)dg(ii)\ 

= Xv + D(ED*u + â(X)D*v + ̂ (A)) 

= -XEDD*R(X)p + A2#(A)g - A2DT(A)^(A) 

+ D[EXD*R(X)p + (£ + Xâ(X))D*R(X)q 

- (E + Aâ(A))D*DT(A)^(A) + ^(A)] 

= <Z-D[A2T(A)^(A) 

+ (E + Aâ(A))D*DT(A)^(A) - ^(A)] 

= q 

In the last line we have utilized the fact that ^(A) — [A2 + (E + 
Xâ(X))D*D}T(X)ijJ(X) G ker£> by definition of T(A). Finally, A^Qx) -
D*v + M A O = ^(/i). Thus (A - .A)(u, v, 0) = (p, q, iß), u 
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Since, for À > 0, the negative number —X2/E + Àâ(À) is never con­
tained in the spectrum of the positive semidefinite operator DD*, (A — 
A)~l exists for positive À. The Lumer-Phillips-Theorem implies now 
tha t A generates a Co-semigroup in H. Thus the proof of Theorem 2.3 
is complete. 

3 . Essent ia l g r o w t h rate . Let {S(t) : t > 0} be a Co-semigroup 
generated by an operator A in a Banach space H. Then, for suitable 
M > 0, uj G R , S(t) satisfies an estimate 

(3.1) | |S( t ) | | <Meut f o r a l H > 0 . 

By the growth rate u)o{$) of S we mean the infimum of all UJ tha t admit 
an estimate of type (3.1). In particular, UJQ(S) < 0 means precisely tha t 
0 is an exponentially stable solution of u'(t) = Au(t). Unlike the finite 
dimensional case, LÜQ can in general not be estimated from the spectrum 
of the generator. 

Suppose for a moment tha t H can be decomposed into the direct sum 
of two <S(£)-invariant closed subspaces Hi and Hs, such tha t H\ is finite 
dimensional and the restriction of S(t) to H2 has a growth rate less than 
some üü G R . If then <x>o(<S) > Ü;, this is due to the finite dimensional 
par t , hence to an eigenvalue À of A with Re À = WQ(S). Moreover, 
a growth rate less than u can be achieved by a finite dimensional 
per turbat ion of A. 

We define the essential growth rate u\ (S) to be the infimum of all u 
such tha t a decomposition as in the preceding paragraph is possible. 
Equivalent definitions and detailed information on the essential growth 
ra te can be found, e.g., in [2]. In particular, the essential growth rate 
has the following properties: 

(a) ui(S) < uo(S). If the inequality is strict, then A has an 
eigenvalue A with finite dimensional generalized eigenspace 

UnGjvker (A — A)n such tha t Re A = UJQ(S). 

(b) (A — A)~l is meromorphic in the open half plane Re A > u)i(S). 
The poles of (A — A)~l are eigenvalues of A with finite dimensional 
generalized eigenspaces. For each u > u;i(<S), there exists at most 
finitely many poles with Re A > UJ. 
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(c) If K : H —> H is a compact (continuous) linear oeprator and T(t) is 
the semigroup generated by A + KL, then u>i(S) = uj\(T). In particular, 
no growth rate less than vi(S) can be achieved by perturbation by 
bounded linear operators of finite rank. 

Thus ÜÜI(S) contains the following information about the stabilization 
problem: 

If coi(S) > 0, then exponential stabilization by a finite rank continu­
ous operator is impossible. 

If iü(S) < 0, then exponential stability of the perturbed problem is 
guaranteed if all eigenvalues of the perturbed generator lie in the open 
left half plane. 

Let us now return to the semigroup S(t) defined in §2. We prove for 
this semigroup: 

THEOREM 3.1. There is at most one solution X to E + Xâ(X) = 0 in 

C\(—oc, — Ao], which is real and negative if it exists. In this case we 

put K = — A, otherwise K — Ao-

The essential growth rate ofS(t) satisfies the following conditions. 

(a) If \imt-^o+ a'(i) = —oo, then ui(S) = —n. 

(b) J/limt—o+a'M = -F>-oo, thenuJi(S) = max(-/c, - 2 ( a ( ^ + £ : ) ) • 

(c) In particular, LJ\(S) < 0 if and only if Ao > 0. 

The proof of this theorem is again performed by several lemmas. As 
bounded perturbations of finite rank have no influence on the essential 
growth rate, we may again make the simplifying assumptions listed in 
Remark 2.6 without loss of generality. 

LEMMA 3.2. Let the assumptions listed in Remark 2.6 be satis­
fied. If A G C \ ( -oc , -A0] is such that E + Aa(A) ^ 0 and a(A) = 
—X2/E + Xâ(X) is contained in the spectrum of DD*, then A is an 
eigenvalue of A with a finite dimensional generalized eigenspace £, and 
there is a decomposition of 7i into invariant closed subspaces £ and T 
such that (A — A)~l exists on T. 
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PROOF. Since a is holomorphic at A and (p — DD*)~l and 
(p — D* D)~l have at most poles at p = a (A), we infer that R(X) and 
T(A) as defined in Lemma 2.9 are meromorphic at A. Hence (A — A)'1 

is also. Using the techniques of [16, p. 178ff] we can decompose H into 
the generalized eigenspace £ and some complement T where (A — A)~x 

exists. To prove that the generalized eigenspace is nontrivial, but fi­
nite dimensional, it is sufficient to show the same for the eigenspace, as 
£ — ker (A — A)m where m is the order of the pole A of (A — A)~l. Thus 
we consider the equation (A — A)(u, v, </>) = 0. Following the lines of the 
proof of Lemma 2.9 we infer that u determines v and <j) uniquely, and u 
solves X2u + D(ED* u + Xa(X)D* u) — 0, i.e., u is an eigenvector of DD* 
with the eigenvalue a(X). As the corresponding eigenspace of DD* is 
nontrivial and finite dimensional, the same holds for the eigenspace of 
A D 

LEMMA 3.3. Assume that the assumptions listed in Remark 2.6 hold. 
For some A G C\(—oo, — Ao] let E + Aâ(A) — 0. Then A is real and 
negative, and (A — A)-1 has an essential singularity at A. Moreover, 
there is at most one such A. 

PROOF. Put A = p + icr. If er ^ 0, then 

I m ( £ + Aa(A)) = Im f°° P + %° dg(p) 
A 0 P + 10- + P 

/»OO 

= / 7—;—^2~;—2d9(rì ^ °-

Thus G = 0. As for positive A, E + Aâ(A) > E, we infer that A is 
negative. On (—Ao,0) ô(A) is decreasing and —E/X is increasing, hence 
there is at most one solution A with — E/X = â(X). If v approaches A 
from the left, a(u) converges to oo along the real line. Thus there is 
a sequence vn converging to A such that a(un) lies in the spectrum of 
DD*. Thus A is a cluster point of poles of (A — A)'1. • 

LEMMA 3.4. With the conditions of Remark 2.6, (A — A)~x is not 
meromorphic in any neighborhood of [—Ao,oo). 

PROOF. By the lemma above, this assertion is clearly true if there 
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exists some A > — Ao with E+\â(\) = 0. Thus assume the contrary and 
let (A — v4)_1 be meromorphic in some neighborhood of — Ao- We take 
an arbitrary eigenvalue £ ^ 0 of DD* and a corresponding eigenvector 
q. Putting p — 0 and ip = 0 in (2.4) (in Lemma 2.9) we infer that 

XR{x)q=x*+(EX
+xä(xmq 

is meromorphic at — Ao, hence a (A) is also. We show that à is even 
analytic. 

Consider first the case Ao = 0. As lim^oo a(t) = 0, we have 
limA-̂ o Aa(A) = 0, thus a(A) has no pole at 0. If Ao ^ 0, we make 
use of the assumption that E + Aâ(A) ^ 0 for A > — Ao- This implies 
E > —Xâ(X) for A > —Ao, which excludes that — Ao is a pole of a. From 
[31, p. 58., Theorem 5b] we infer now that, for each A in a sufficiently 
small neighborhood of — Ao, the integral J0°° e~xta(t)dt is finite. Using 
the boundedness of a' on [l,oo), it is now easy to infer that, for such 
A, e~Xta(t) is bounded on [l,oo), in contradiction to the definition of 
A0. • 

REMARK 3.5. Lemmas 3.3 and 3.4 ensure that the essential growth 
rate of S is not less than n. Intuitively, it is appealing that no better 
decay rate is to be expected than the memory of the kernel decays. It 
is somewhat surprising that the bound obtained in Lemma 3.3 is due 
to the real part of the spectrum. This means that the high-frequency 
modes of DD* also give rise to non-oscillating exponentially decaying 
solutions. 

We begin now to derive estimates for (A — A)~l for A with large 
imaginary parts. 

LEMMA 3.6. Let ip e L2
g, x e X, A G C\R, and let ip be defined as 

in Lemma 2.9. Then the following estimates hold: 

r°° M i (3-2) I l b 

* < " > s j ï^F1 1*1 1 2 ' 

z im a{A).. I l2 

* M = -- i^r i i* i ia ' 

(3.3) 
. \X + u 1>(l*) 
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(3.4) \\m\\2< 2 Ima(A) 2 

Im A 

PROOF. For (3.2): 

f°° 1 

y. ix+^*w 

Im A LJ0 |A + /i 

For (3.3): 

llm^d9M = -îtxlm f°° 1 

7o Ä7^ ( / x ) 

f ° ° l l 1 ii2 /*°° 1 

For (3.4): take an arbitrary x e X with ||x|| < 1. Then 

|/s,^(A)\| = ^°° U ^^( /z ) WM) 

/ 
Jo 

< 

< 

A + /i 

2 -| 1/2 r 

dg(fi) 
/»OO 

/ lh%)ll2 
-,1/2 

dflf(^) 

Imâ(A) 
Im A 

1/2 

LEMMA 3.7. For some A € C \ R swc/i *Aa* a(X) = -X2/E + Aa(A) is 
noi contained in the spectrum of DD*, let i?(A), T(A) be defined as in 
Lemma 2.9. We define the quantities 

1 

7 ( A ) % e i ) |A2 + [£ + Aâ(A)]i/|' 

Then the following estimates hold: 
(3.5) 

||Ä(A)|| = /3(A), ||£>D*Ä(A)|| = 7(A), ||D*Ä(A)|| < \ß(Xh(X)]1/2, 
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(3.6) 

\\T(X)\\ = ß(X), ||£>*DT(A)|| = 7(A), ||DT(A)|| < [ / ^ ( A ) ] 1 

Moreover we have the identities 

(3.7) T(A)L>* = D*R(\), R(X)D = DT(X). 

PROOF. First consider (3.7): For y e domD*, z = T(X)D*y is the 
unique solution to [A2 + (E + Xâ(X))D*D]z = D*y orthogonal to keri). 
Clearly D*R(X)y is orthogonal to kerD, and satisfies 

[A2 + (E + Xâ(X))D*D]D*R(X)y = £>*[A2 + {E + Xâ(X))DD*]R(X)y 

= D*y. 

The second identity is proved similarly. For (3.5) and (3.6): R(X) and 
DD*R(X) are normal operators with eigenvalues 1/A2 + [E + Xa(X)]u 
and v/X2 + [E + Aa(A)]i/, respectively, where i/ takes all values from 
the spectrum of DD*. Therefore the first two estimates in (3.5) are 
obvious. For any y e Y with \\y\\ < 1 we have 

(D*R(X)y, D*R(X)y) = (R(X)y,DD*R(X)y) < /?(A)7(A). 

The proof for the estimates (3.6) is the same. D 

LEMMA 3.8. Let the assumptions listed in Remark 2.6 be satisfied. 
Let 6 > 0 be arbitrary. There is some consant M which satisfies the 
following estimate for all X with |ImA| > 1, |ReA| < 0, such that 
(A — A)'1 exists: 

IKX-A^W^M 

PROOF. Let (X- A){u,v,(j)) = (p,q,ip) where ||J5*p|| < 1, \\q\\ < 1, 
IMI < 1- We have to estimate ||£)*iz||, \\v\\, and ||</>||. Utilizing the 

mx)+yWm\+(-^y"] 
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two previous Lemmas and Equation (2.4) in Lemma 2.9 we obtain 

||D*u|| = ||[A + â(X)D*D]T(X)D*p + D*R(X)q - D*DT(\)i>{\)\\ 
Im ô(A) \ Va 

< \X\ß(\) + |â(A)|7(A) + [ß(Xh(X)}1/2 + 7(A)( - ^ j 1 ) 

lWxJ\' < \X\ß(X) + |â(A)|7(A) + (|A/?(A)7(A)a(A)|—j-y)1/2 

• 7(A)|â(A)| 
\â(\)1m\\V2 

<M1[|A|/3(A) + 7(A)|â(A)|] 

with a suitable constant. Here we have used the fact that Aô(A) is 
bounded away from 0, see Lemma 3.9c below, and that 

|A|=0( | ImA|.) 

IMI = || - EDT{X)D*p + XR(X)q - \DT(\)i>(\)\\ 

< E[ß(Xh(X)}^ + \X\ß(X) + |A|[/3(A)7(A)]1/2( _ i ^ ) ^ 

<M2[|A|/?(A) + 7(A)|â(A)|] 

by the same reasoning. For the estimate on <j> we need also 

||£>*t;|| = || - ED*DT(X)D*p + XD*R(X)q - XD*DT(A)^(A)|| 

< El(X) + \X\[ß(Xh(X)}^ + |A|7(A)( - ^ ^ ) 1 / 2 -

Thus 

< E7(A) + |A|[/3(A)7(A)]1/2 

Im â(A)\ 1/2-1/ I m â ( A ) \ i / 2 1 

|ImA| 
1/2 

,w />x/ imaiAlxv-ä-i / lmalA \ v ^ 
fen,.2lll + WT(A)(--sU) ] ( - - ^ ) + 

. , l W X X I | A I / ImÔ(A)\ 1/21 1 |i/2 
+ l7(A)a(A)|| — ^ ( - ^ i ) | I m A I m â ( A ) 
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(We have again used Lemma 3.9c.) D 

LEMMA 3.9. Putn(X) = |A|Im[Aa(A)]/£ + Re[Aa(Aa(A)]. 

a) If \imt^o+a'(t) = — oo, then lim^^^ hi(p + ia) = oo, uniformly for 
p in compact intervals. 

b) J / l i m ^ o + a ' W = -F > -oo , then \ima^^ K(P -\- ia) = E/a{0), 
uniformly for p in compact intervals. 

c) liminfcr^oo Re[(p + ia)â(p + ia)] > 0, uniformly for p in compact 
intervals. (In particular, alma(p + ia) is bounded away from 0 for p 
in compact intervals and \a\ > 1.) 

P R O O F . 

a) Let a'(0) = —oo, i.e., J0°° pdg(p) — oo. Note that (p -f ia)a(p + 
ia) = Jo°° p2t%f+

+jadg(ß). As l i m ^ l£±izL = 1, it is sufficient to 
show that, for any given TV, the following inequality holds for sufficiently 
large a: 

Since /0°° j-Jjg—tdgfp) = /0°° (p+ß)C/a2+ldg{p) -f oo, the contribu­
tion of NE may be ignored. Now, for any a > 0, 

Assume without loss of generality that N > p, and let er be sufficiently 
large such that a2 > SN p. Then 

fx (p-N)a2-Npp-Np2 , . . f°° pa2/2-pa2/S-pcr2/8J , . 
72JV (/J + / i ) 2 + cr2 J ^ (p + pY + a1 

i r 
4J2N (p + p)2/*2 + l 

thus 

(// - n)a2 - Npp - Np2 

dg(p)-^oo, 

I o (p + p)2 + a2 -dg(p) -^ oo as a —• oo. 
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b) 

aim [(p + ia)a{p + ia)] = / ° —öMß) 
Jo (P + N2 + ^ 

yoo /»oc 

= F, 

and 
Re[(/9 + ia)â(p + ia)] 

/•oo p 2 + + f f 2 

/ • ° ° ( P 2 + P / Z ) / < T 2 + I J r ^ ^ 

=y0 (p+M)v^+id5(M)^y0
 w 

= a(0). 

Thus KW(P + i<r) ->• F / £ + a(0). 

c) Re[(p+ia)â(p+za)] = /0°° g±g+%dg{fi) = / " ^ g ^ d ^ ) * 
Jo (n+ufi+^dg^). The first integral converges to /0°° d#(/x) (whether 
this is finite or infinite) as a —> oo, while the second integral goes to 
zero by dominated convergence. D 

LEMMA 3.10. Let the assumptions listed in Remark 2.6 be satisfied. 

a) lf\imaf(t) = — oo, then limcr^^ ||(p + ia — A)~1\\ = 0, uniformly 
for p in compact intervals. 

b) i/limf_>0+a'W = -F > -oo and p0 > -F/2(E + a(0)), tten 
f/iere ezzste some cr0 > 0 swc/i that \\(p + ia — A)~1\\ is uniformly 
bounded for a > <J0, p > po-

c) j?/limt^o+ Q>'{t) — —F > —oo, then l imsup^^^ \\(p-\- ia — -4 ) - 1 | | 

= oo for p = -F/2(E + a(0)). 

PROOF. By Lemma 3.8, assertions (a) and (b) can be proved by 
finding upper estimates for \p + ia\ß(p-\-ia), \â(p + ia)\^(p-\-ia), and 
-Imâ(p + ia)/a. Using formula (2.4) (for v) and ||fi(A)|| = |A|/?(A), 
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one can prove (c) by deriving a lower estimate for \p + ia\ß(p + 
ia). For simplicity, we will write A for p + ia. It is obvious that 
—lmâ(p + ia)/a converges to 0 if a —* oo, uniformly for p in compact 
intervals. Let us now derive estimates for |A|/3(A). By its definition, 

Thus 

(3.8) 

/3(A) 
>inf„G R |A2(£ + Aâ(A)H 

| £ + Aâ(A)|inf„€R 

Im 

A2 

E + Aô(A) 

A2 

2paRe{E + Aâ(A)) + (a2 - p2)lm (Aâ(A)) 

£ + Aa(A) 

2pa + K(\)(a2-p2)/\\\ 
[1 + ^(A)/|A|2]V2 

\X\ß(X) 
> 

2pa/\X\+H(X)(*2-p2)/\X\2 

[1 + ^ 2 (A)/ |A | 2 ]V2 

In case (a), n(p + ia) goes to infinity if a —> oo. Using \a/X\ —• 1, 
we infer that 1/|A|/?(A) —> oo, thus A/3(A) converges to 0. In case (b), 
K,(p+ia) converges to F/(E + a(0)), thus the denominator in (3.8) goes 
to 1 while the numerator converges to 2p + F/(E + a(0)). Therefore, 
Xß(X) stays bounded. To check (c) put p = -F/2(E + a(0)). Then 
the numerator in (3.8) tends to 0. From the computations leading to 
(3.8) we see that j^rinf^RjA2 + (E + Xâ(X))u\ —• 0. The infimum is 
obtained at 

-Re 
A2 a2-p2 + 2K(X)pa/\X\ 

E + Aâ(A) [1 + K2(A)/|A|2] [E + ReAa(A)] oo. 

Consequently we may pick a sequence an —> oo such that the cor­
responding vn are precisely the eigenvalues of DD*. For these 
<7n, 1/|A|/3(A) = j^MveK\X2 + (E + Xâ(X))iy\ - • 0. Therefore, Xß(X) is 
unbounded. This completes the proof of (c). To finish the proof of (a) 
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and (b) we need similar estimates for |â(A)|-y(À). Proceeding as above 
we obtain 

1 
7(A) > inft/GR 

= |A|2 Im 

\2 
— +E + \â(X) 

E + Xâ(\) 
A2 

(p2 - <72)Im (Aa(A)) - 2paRe(E + Aâ(A)) 

= |Re(£ + AÔ(A))| 

A2 

2pa (a2-p2)K(X) 
|A|2 + |A|3 

By Lemma 3.9 (c) we infer that |Aa(A)| < \E + Aa(A)| for sufficiently 
large a. Thus 

|â(A)| < 
E + Aâ(A) 

|Re(£ + Aâ(A))| (1 + K*M/\M2)1/2 

Hence > 
2p*/\\\+K(\)(*2-p2)/\\\2 

( l + «2(A)/ |A|2) l /2 . Again, in case (a), this |â(A)|7(A) 

expression goes to infinity, and in case (b) it is bounded away from 0. 
Now we have proved all estimates to show that ||(A — ^4) —1|| converges 
to 0 in case (a) and is bounded in case (b). D 

PROOF OF THEOREM 3.1. We may again make the simplifying 
assumptions listed in Remark 2.6. First we estimate the essential 
growth rate of S from above. Choose some po such that po > — ft, 
and in case (b) also po > —F/2(E + a(0)). From Lemma 3.10 we infer 
that, for sufficiently large ero, |\(p+ia — A)-111 is uniformly bounded for 
|p| < IPO, M ^ 0"o- By dissipativity of A, uniform boundedness holds 
generally for p > \po\. On the other hand, (p+ia—A)~x is meromorphic 
for p > —K;, thus there are only finitely many poles in the compact set 
{p + io- : po < p < 0, |cr| < ero}. By Lemma 3.2 we may factor off the 
corresponding generalized eigenspaces, thus decomposing Ti into a finite 
dimensional «S-invariant subspace Hi and an invariant complement H2 
such that the restriction of (p + ia — A)~l to H2 is uniformly bounded 
on {p+ia : p> po}- By Gearhart's Theorem (see, e.g., [21, Proposition 
2] or [2, p. 96]) this implies that the growth rate of S restricted to Hs is 
not greater than po, thus the essential growth rate of S on H does not 
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exceed po- We have proved that wi(S) < — ft in case (a) and LJ\(S) < 
max(—ft, 2(E+a(o))} m c a s e C5)* ^ ° P r o v e the converse inequality, notice 
that (p + ia — A)~l is meromorphic for p > u)i(S), thus, by Lemmas 3.3 
and 3.4, —ft < ui(S). This settles case (a). Moreover, if p > u;i(«S), ft 
can be decomposed into a finite dimensional invariant subspace Hi and 
an invariant complement H2 where the growth rate is less than p. On 
both spaces, linv^oo ||(p + zcr - *4.)-1|| = 0 . Hence by Lemma 3.10 (c), 
p > —F/2(E -f a(0)) in case (b). This completes the proof of Theorem 
3.1. D 

4. Applications. In this section we apply the theory developed 
above to some mechanical stabilization problems. The basic situation 
is that a rigid body is connected to some flexible members, which are 
assumed to be linearly viscoelastic. A feedback law controlling a force 
or torque acting on the rigid part is implemented in order to stabilize 
the vibrations of the system exponentially. Whether this is possible or 
not depends on the constitutive equation of the flexible material, not 
on the particular structure of the system, as our theory shows. We will 
discuss two simple model problems to show how the abstract setting 
can be adapted to mechanical problems. Finally we rewrite constitutive 
equations of fractional derivative type to fit into our assumptions. 

The following two mechanical models are taken from [27, 28]. The 
case of smooth relaxation moduli has been treated in [10]. 

EXAMPLE 4.1. Consider a rigid body glued to the face of a cylindrical 
flexible rod, subject to motion in axial direction only. The other end of 
the rod is supposed to be free (Figure 1). Let ur(t) be the position of 
the rigid mass at time t, uj(t,Ç) the displacement of the cross section 
with (Lagrangian) body coordinates Ç of the flexible rod, vr(t) and 
Vf(tX) the corresponding velocities. cr(t,Ç) denotes the stress at time 
t and Lagrangian coordinates £ in the flexible part. Let / be the length 
of the rod, for simplicity let its cross sectional area equal 1, let m be 
the mass of the rigid body and p the mass density per unit length in 
the stress free reference configuration of the rod. A control force / acts 
on the rigid body, obtained by a feedback law from the position and 
velocity of the rigid part. The equation of momentum is then 
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FIGURE 1. Axially Flexible Appendage 

(4.1) 

(4.2) 

mjtvr(t) = a(t,0) + f(t), 

^ / ( U ) = | ^ , C ) . 

For the flexible material we assume a constitutive equation of the 
following kind 

o ft fl 
(4.3) o{t,Q = E—uf{t,Q + j a(t-s)—vf(s,()ds 
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with a completely monotone kernel a and some E > 0 (E + a is 
the bulk relaxation modulus of the material). The problem fits into 
the abstract setting as follows: Let the velocity state v(t) be the 
pair (vr(t),Vf(t,.)) in R x L2([0,/],R), normed by kinetic energy 
| | (^r,^/) | |2 = mv2. + p f0 v2(Ç)d(. The displacement state is the pair 
u(t) — (ur(t),Uf(t,.)) in a suitable subspace of R x L2([0,/],R) to be 
specified below. a(t) is just the function a(t,.) in £2([0, /], R) with the 
usual L2-norm (which would be proportional to the potential strain 
energy in a purely elastic case). The equation of momentum and the 
free end condition are now translated to 

(4-4) §i(vr,vf) = (±f(t),0) - D*(t), 

where 

defined on 
domD = {aeWh2 : <r(l) = 0}. 

Evidently, 

(4.5) —(ur,uf) = {vr,Vf). 

The constitutive equation yields 

(4.6) a(t) = ED*u(t) + [ a(t - s)D*v{s)ds, 
Jo 

where D*(vr,Vf) = §tVf, defined on domD* = {{vr,Vf) G R x W12 : 

vr = Vf(0)}. It can now be easily checked that with the norms 
introduced above D and D* are in fact adjoint to each other. Equations 
(4.4), (4.5), (4.6) are precisely the abstract equations of system (2.1). 
We see also that the natural space for displacements is {(uf,Uf) G 
R x W12 :ur = Uf{0)}. 

The results of the previous section imply that exponential stabi­
lization is possible if and only if a satisfies an exponential bound 
a(t) < Me" w t with some u > 0 for t > 1. Whether or not the 
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problem is actually exponentially stable in the latter case, depends 
of course on the specified feedback law. If the feedback law is given 
by f(t) — —ciur(t) — C2Vr(t) with Ck > 0, then it can be proved in an 
analogous manner to [10] that the Laplace transform of the solution 
admits no poles in the closed positive half plane, hence the system is 
exponentially stable. 

The same equations arise (in a manner which is more rigorous from 
the viewpoint of continuum mechanics) if one considers torsional mo­
tion of a rod with a rigid mass fixed to its end. This system has been 
investigated in detail in [14]. 

EXAMPLE 4.2. We consider a simple model of a rotating satellite, 
consisting of a rigid hub and four flexible rods attached to it in the 
radial direction (Figure 2). We treat only rotation about the axis of 
the hub. A control torque / is applied to the hub to stabilize the motion 
of the system. The flexible rods are modelled as Euler-Bernoulli beams. 
In particular we assume that the deflections of the spokes are small. 
Let ur(t) and vr(t) be the angular position and velocity of the hub. 
Rj denotes the radius of the hub, Ri — R$ is the length of the spokes. 
y(t, Q denotes the deflection of the spoke from the radial direction at 
time t and distance £ from the axis, a(t, £) denotes the bending moment 
in the rods at distance C from the origin. It is convenient to introduce 
the variable Uf(t,() = Cur(t) + 2/(£>C) a n d its time derivative Vf(t,Ç)-
With suitable physical constants Ijj (moment of inertial of the hub), / 
(cross sectional moment of inertia of the rods), p (mass density per unit 
length of the rods) one obtains the following equations of momentum: 

1 O 

(4.7) J f l - » r ( t ) = -4Ä / —a(* ,Ä/ )+4f f (* ,Ä J )+ /(*), 

(4-8) P | M U ) = - 0 ^ , C ) . 

Assuming a linear viscoelastic constitutive equation as in the previous 
example, we are led to 

(4.9) <T(t,0 = IE^uf(t,Q + J la(t-s)-^vf(s,0ds. 
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y ( t ,p 

FIGURE 2. Rotating Satellite Model 
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The boundary conditions are 

Uf(t, fij) = RlUr(t), TJTM** Rl) - Ur(t), 

(4.10) vf(t,RI) = RIvr(t), £zvf(t,RI) = vr(t), 

a(t,Ro) = 0, —a{t,Ro) = 0. 

(These are the equations [10, (4.15)-(4.17)] rewritten as a first or­
der system.) Again let the velocity state be v — (vr,Vf) G R x 
L2([Ri,fio],R), normed by kinetic energy | | (^r ,^/) | |2 = wvr + 
IR° PV}(0 d(, and u = (n r, Uf) in a suitable subspace (namely domi)* 
to be specified below), a G I/2([fi/,fi0],R) with the norm ||cr||2 = 
JR° a2(()/Id(. Then the equations (4.7)-(4.10) may be rewritten in 
astract form: 

u' = v(t), 

vf(t) = -D*(t)+(j-f(t),0), 

a(t) = ED*u(t)+ J a{t-s)D*v(s)ds 
Jo 

withD(a) = (7 | :(-fi/^cr(fi/)-ho-(fi/)), - y ^ W ) , defined on dornD = 
{a G W22 : a(R0) = ^a(Ro) = 0}, and D*(vr,vf) = - J ^ r V / , de­
fined ondom£>* = {(vr,vf) G R x W 2 ' 2 : Vf^) = Rjvr, ^ v / ( f i / ) = 
vr}. A somewhat lengthy but straightforward computation shows again 
that D and D* are adjoint to each other, so that the results of the pre­
vious sections can be applied. In particular, exponential stabilization 
is possible if and only if the relaxation kernel a decays exponentially. 
A calculation similar to that in [10] yields that in this case a feedback 
of type f(t) = —ciur(t) — C2Vr{t) with c\ > 0 and C2 > 0 stabilizes the 
system exponentially. 

REMARK 4.3. The last example can be criticized on the following 
grounds. This paper concerns the behavior of the high-frequency 
models of the system. It is known that, for short wavelengths, the 
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Euler-Bernoullie model of the beam deviates significantly from reality, 
i.e., to obtain a reasonably realistic model, one has to abandon the 
assumption that the deformation of the beam is orthotropic [17]. Better 
models (e.g. Timoshenko's beam equation) include also shear stresses. 
As a Timoshenko model deals with two different relaxation moduli, 
it does not fit immediately into a theory based on scalar kernels. 
However, the methods of this paper may be extended to operator 
valued kernels with some technical effort [9]. In this generality, one 
can also treat genuine three-dimensional problems without isotropy or 
symmetry properties. 

Fractional derivative laws. The constitutive equation relating strain 
e to stress a in the examples above is always of the form 

[l d 
(4.11) <r(t) = Ee(t)+ a(t - s)—e(s)ds, 

Jo vs 

with a positive constant E and a completely monotone kernel a. For 
example, a(t) could be the usual finite sum of exponential terms. 
It is known that a completely monotone kernel a is also obtained 
from certain fractional derivative models (see, e.g., [3]). For sake of 
completeness we show below how this is accomplished. Equations with 
fractional derivatives have been proposed and successfully fitted to 
experimental data [4,5]. For such models the constitutive equation 
has the form 

(4.12) a(t) + ß^a(t) = E(e(t) + « J ^ W ) . 

with positive constants a and E, 0 < ß < a, 0 < i/ < 1. The fractional 
derivative is defined by the relation 

dv 1 d ff 

^-a(t) = — --£- / (t-s)-"a(s)ds. 
dtv w r(l - v) dt J0

 v ; w 

(This formula is correct for functions a which vanish on (—oo,0]. For 
other functions the integral must be taken from — oo to t. In the 
discussion below we assume that stress and strain vanish for negative 
t.) 
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We show that the constitutive equation (4.12) can be rewritten in 
form (4.11). Inserting the definition of the fractional derivative in (4.12) 
we have 

(413) ' ( " + néììsjf('->-^"b 

= E(£<«+f(r^!i'<i-sr"£(s)4 
If ß = 0, then this equation is simply 

This is (4.11) with a(t) — Ta-u)^~h'- This 1S a s m gu l a r kernel with 
a(0) = oo,a(0) = — oo. However, since a does not decay exponentially, 
exponential stabilization is impossible for systems with this kernel. 

We remark that some authors (e.g., [14]) consider modified fractional 
derivative laws where t~v is multiplied by some exponential factor 
which insures exponential decay. Consider for instance the kernel 
a(t) = Ea(irt)~l/2e~ßt with some /i > 0, which corresponds to a 
modified fractional derivative law with v — 1/2. The derivative of 
a near 0 is unbounded, therefore the real parts of the eigenvalues tend 
to — oo as the imaginary parts tend to oo. The essential growth rate is 
determined by the solution to 

0 = E + «a(«) = E[l + a/c(« + /x)"1 /2], 

i.e., 
(l + 4 a 2 / / ) 1 / 2 - ! 

K~ 2 ^ ' 
In particular, exponential stabilization is possible. 

Some more work is in order if ß =̂ 0. In (4.13) we take convolutions 
with the kernel ßY(1/\^

v~l (which is inverse to ß§^7 with respect to 
convolution) and obtain 

°(t)+ [ 
Jo 

1 -(t~sy-1a(s)ds 
ßv{vy 

Erv Cl E 

(4.14) =T£it) + Jom-){t-sr-^s)ds 

= E[e(t) + j f -J^(t - sr-h(s) ds] + E(Z - l)e(t). 
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Let r be the solution of 

(4.15) ( * _ r ) , ( * + _ l _ ^ - i ) = « . 

(This is convolution notation for 

where 6 denotes the Dirac delta distribution.) Taking convolutions with 
(6 - r) in (4.14) yields 

(4.16) a(t) = ^e{t)-E(^-\) J\(t-s)e(s)ds. 

From [18, p. 221] we get that r is positive and JQ r(s)ds — 1. Putting 
R(t) = Jt r(s)ds — 1 — JQ r(s)ds we can integrate the right hand side 
of (4.16) by parts, thus 

a(t) = ̂ e(t) + E(Z - l ) jf* R(t - s)^e(s) d s - E ^ - l)e(t) 

= Ee(t) + E(^-l)J R(t-s)^e(s)ds 

fl d 
= Es(t)+ a(t-s)—e(s)ds, 

Jo vs 

with a(t) = E(% — l)R(t). Integrating (4.15) from 0 to t we infer that 

i.e., 

m+[im{t 
sy-lR(s)ds = i. 

From [26, Satz 1] we infer that R is completely monotone. One can 
easily derive from (4.15) that r = —R' is unbounded near 0, while R 
of course is bounded. So in this case the kernel is "less singular" than 
in the case ß = 0. STill the singularity is strong enough to push the 
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real parts of poles with large imaginary parts arbitrarily far to the left. 
Again the kernel does not decay exponentially (which can be concluded, 
e.g., from [10, Corollary 2.8]), thus once more exponential stabilization 
is impossible, unless the kernel is modified by an exponential factor. 
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