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UNIFORM L' BEHAVIOR IN CLASSES
OF INTEGRODIFFERENTIAL EQUATIONS
WITH CONVEX KERNELS

RICHARD NOREN

Introduction. We consider families R of functions such that each a
in R satisfies

(1.1) /0 a(s)ds < oo,

a is nonconstant, nonegative, nonincreasing, convex, and —a’ is convex.

We will show, for certain such families, that

(1.2) / sup |u(t;a)|dt < oo,
0 a€R

where u(t) = u(t; a) is the solution of the scalar problem
t
(1.3) u'(t) +/ a(t —Tu(r)dr =0, u(0)=1,t>0, a € R.
0

When R = {Aag(t) : 0 < A\p < A < 00}, (1.2) is true. These and similar
results were proved in [1, 2, 4, 5, 10 and 11]. The technique of proof
relies on the methods of Shea and Wainger [13].

The estimate (1.2) was used in [1, 4, 5 and 11] to estimate the
resolvent kernel

U(t) = /}\00 u(t; Aag) dEj,

o]

of the problem

14 S0+ / aolt — 5) Ly(s)ds = (), y(0) = wo,

in a Hilbert space H. The operator L is a densely defined self-adjoint
linear operator with spectrum contained in [Ag,00) (Ao > 0), yo and
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f(t) are prescribed elements of H, and {E\} is the spectral family
corresponding to L.

Since (1.2) implies that

(L5) / U@t < oo,

the resolvent formula

(1.6) y(t) = Ult)o + / Ut - 5)f(s)ds,

for (1.4) gives information about the asymptotic behavior of y(t) as
t — 00.

For more general classes R = {a(t;\) : —oo < A < 00}, (1.2) implies
that (1.5) holds for the resolvent

(1.7) Ut) = /_00 u(t;a(-, N)) dEy

for the problem

18) )+ / L(t — s)y(s)ds = £(t), (0) = yo, t >0,
with

(1.9) L(t) = /OO a(t; \) dEy,

— 00

where {E)} is a fixed resolution of the indentity in H.

Our results for (1.8) include some operators of the form

n

(1.10) L(t) = Zak(t)Lk,

k=0

and generalizes some of the results in [7]. The requirement that the
Ly, k=0,...,n, have spectral decompositions with respect to a com-
mon resolution of the identity { £} greatly restricts the applicability of
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the result (1.5) with L as in (1.10), but see [7] for applications, includ-
ing a linear model for heat flow in a rectangular, orthotropic material
with memory in which the axes of orthotropy are parallel to the edges
of the rectangle.

For families R = {ag(t) +¢: 0 < ¢ < 1}, where aq is a fixed function
satisfying (1.1), Hannsgen and Wheeler show in [6] that ag € L(1,00)
is necessary for (1.2) to hold. They also show that (1.2) does not even
hold for ag(t) = (1—e~*)/t (which behaves like 1/t as t — 00). In [12],
it is shown that the condition

> logu
(1.11) / —BY < oo,
1w Agy(u)
where
(1.12) Ay (u) = / ’a(,(s)ds, u >0,
0

along with (1.1) implies (1.2). In [6], (1.2) is shown to follow when qy is
completely nonotonic ((—1)"a8'l)(t) >0,n=0,1,2,3,..., t >0) and
satisfies a growth condition at oo that is similar to (1.11). Thus (1.11)
and the condition used in [6] both allow functions ag that behave like
(logP t)/t as t — oo, for p > 1 and rule out functions ao that behave
like (logPt)/t ast — oo, for 0 < p < 1. As a corollary to our main
result, Theorem 1, we show that (1.2) holds if ay satisfies (1.1) and

& 1
1.1 _ .
(1.13) /1 uAaO(u)du <

This improvement of the growth condition at oo allows functions ag
that behave like (log? t)/t as ¢ — oo, even for 0 < p < 1.

The conditions on the family R that we will use are

o 1
1.14 / sup ———du < 00,
( ) 1 aeg uAq(u)

there exists a constant L > 0 such that

L

1.1 inf [ ta(t)dt > 10
(1.15) Jof |, a(t)dt > 10,
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and a condition stated in terms of the Fourier transform. FEach a
satisfying (1.1) has a Fourier transform

a(x)

a(r) = ) + /Ooo[a(t) — a(o0)]e™""tdt, T real, T # 0,

T
which we separate into real and imaginary parts as

(1.16) a(T) = P (1) — i10,(7).

By [1, Lemma 4.1], each 6,(7) is nonnegative, continuous and strictly
decreasing, with

1
(1.17) 5Am(r"l) < O,(7) < 1241,(771), 7> 0,
where
(1.18) Arq(u) = / sa(s)ds, u >0, a € R.
0

Note that (1.17) was originally proved for a(t) with a(co) = 0. To see
that (1.17) holds even with a(oo) > 0, define b(t) = a(t) — a(co0). Then
0.(1) = 0p(7) + a(o0)T72, s0

0a(7) < 12A5,(771) + a(00)772 < 12455(771) + 6a(00) T2
=12A1,(r7")

-2

O.(1) > %Alb(T_l) + a(oo)r72 > éAlb(T-l) + L (c0)T

-16(1
= %Ala(T_l).

For each a in R, we define & = &(a) by 6,(«) = 1. Since (1.14) implies
that for each a in R, [~ a(t)dt = oo, it follows that [, ta(t)dt = oo.
Thus (1.17) shows that 6,(0+) = oo and ,(00) = 0, so @ is well defined.
Now define w = w(a) by w = @ for @ > 2¢ and w = 2¢ otherwise, where
€ is the positive constant given in (2.9) below.

Our last condition on the family R can now be given as

1
(1.19) R Galw(@)
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A similar assumption is also used by Hannsgen and Wheeler [7, (2.6)].
Both (1.19) and [7, (2.6)] rule out the family R = {ao(t)+c: 1 <¢
< oo}, where ag satisfies (1.1). That (1.2) does not hold for such
families is shown in [7].

THEOREM 1. If R is a family of functions satisfying (1.14), (1.15)
and (1.19), where each a in R satisfies (1.1), then (1.2) holds.

COROLLARY. If R = {ao(t) + c: 0 < c <1}, where ag satisfies (1.1)
and (1.13), then (1.2) holds.

We give the proofs in §2.

In [7] it is shown that, for certain families R of completely monotonic
functions,

o
(1.20) / p(t) sup |u(t; a)| dt < oo
0 a€ER
where p is a weight function. Theorem 1 generalizes and improves
their results for p(t) = 1. In particular the growth condition that they
use [7, (2.5)] rules out functions a in R that behave like (log?t)/t as
t—o00, 0<p<1.

The condition (1.15) is used to obtain (2.11) below. In its place,
Hannsgen and Wheeler use a similar type of condition [7, (2.10)] (p =
1). Although (1.15) allows for example the function a(t) = 11/(t + 1)?
and (1.14) rules it out, (1.15) does not in general follows from (1.14).
For example, let R = {arp(t) : T > 1}, where

1
(t+1)2’ 0 S t _<_ T»
ap(t) = le(t)v T<t<T+3,
ZW, T+3_<_t,

and by is chosen arbitrarily except that it is required that each ar
satisfies (1.1). Then (1.15) holds as long as L is chosen so large that
log(L+1)+1/(L +1) > 11. Then we have

L L Loy
;2%/0 ttz(z‘,)dtlegfl/0 taT(t)dtz/O (75-|—_1)2dt

1
=log(L +1 — —12>10.
og( +)+L+1 >
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But an easy calculation shows that, for each u > 1

su 1 S 1 _u+ 1
R UAu (u) — ud, (u) w2

I

so (1.14) does not hold. I do not know if (1.2) holds for this family.

For families of the form
R = {inai(t) DN > i:0,1,2,...,n},
i=0

where all a;(t) satisfy (1.1), it is not clear that the assumptions (1.14)
and (1.15) are needed to prove (1.2). Also when n = 0, as already
mentioned, if ag satisfies (1.1), then (1.2) holds (note that (1.1) implies
(1.19) in this case.). Thus we finish the introduction with a conjecture.

CONJECTURE. Even for n > 0, if all a; satisfy (1.1), then (1.2) holds.

2. a. Proof of Theorem 1. Throughout this paper we will use
M to denote a constant that is independent of the functions in R, but
whose value may change each time that it appears. To prove that (1.2)
holds, we will find a constant k£ > 0 and a function h(t) such that

(2.1) lu(t;a)] < h(t), t>k, a€R
and
(2.2) / " h(t) dt < oo

k

To do this we will use the representation

iTt

(2.3) ru(t;a) = / ” Re{ﬁ(-—;—)} dr, t>0, a€R,
0 T;Q

(See (4.29) of [1]) where D(7;a) = a(r) +i7. Then (1.2) will follow by
the estimate

(2.4) lu(t;a)] <1, t>0, a€ R,
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which is due to Levin [9]. (See [3, Theorem 2]. The number /2 appears
in [3, Theorem 2], instead of the number 1 because of an error.) In our
proof we will need the estimates

1
2V/2

(Aq(u) is defined in (1.12)) and

(2.5) A (7Y < la(T)| < 44.(771), T >0,

(2.6) la’(T)| < 40A.,(r7 1Y), 7>0,
from [13, Lemma 1], as well as the estimate

(2.7) %Ba(r"l) < Ga(T) <12 Bo(r71), 7>0

from [8, p. 236], where
(2.8) Bo(u) = / —sd'(s) ds, u>0,a€eR.
0

Note that (2.5) and (2.6) originally were shown for a(t) with a(co) = 0.
An easy check shows that the proofs of (2.5) and (2.6) still are valid
when a(oc0) > 0.

We define € by
(2.9) e=1/L.

Then, for 0 < 7 < ¢, we use (1.17) and (1.15) to obtain
1 1 .
(210) 0,,(7') Z gAla(T ) 2 gAla(E ) Z 2.

This gives us the first inequality in the estimate

IDlrsa)f” = ) +ir” = 637 + 70 (r) =17
(2.11) z¢2<>+ 170, > {lalr)P

2(.—1
_32 ( )’ < S 6,
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where the last inequality follows from (2.5).

Now, for ¢ > 1/¢, we use (2.11) to obtain
(2.12)

1/t z‘rt 1/t dr 1/t dr
<« =
’/ o) 4] < / |D<r;a>|—4‘/§/o A0

>*  du 4+/2
=42 /t AW = AL

Now we integrate by parts to obtain

oo piTt 1 "y oo eiTtDT(T; a)
[ s b [z
(2.13) 1/ D(r;a) t{D(t—l;a) -1 D2(75a) }
1
= Im;{Bl + 1,}.

By (2.11) we have

1 4V2
. B <« Y2
(2.14) i Bl<
Combining (2.12)-(2.14) with (2.3), we obtain
8v2  |Iml;]|
2.1 ;a)| < .
(215) u(tio)| < Vo +

To estimate |Imt~11;|, we first integrate by parts. This yields
(2.16)
D, (t7Ya) >® a"(r)  2D2(r;a)
Im 711y = Re ¢72(S5 0520 | = L% ar)
o ! ¢ D%(t=1;a) + t—le D?%(t;a)  D3(1;a) ’

=Re t (B, +/ J dr)
-1

By (2.11), (2.6), (2.10) and the inequalities t > 1/¢ and A1, (t) <
tAq(t), we have

32(40A,4(t) +1) _ 1280 N 32
t2Ag(t) - tAa(t) tAa(t)Ala(t)

1284

< tAL(t)

[t™2By| <

(2.17)
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To estimate the integral term in (2.16) we begin with
¢ M (¢ 7 A(rTY)  (T+ A2 (r7Y)
-2 < = la la
o L < L g e
M € -1 -1
M T A (7 )dT
t2 Ji- AT

A Lk
<
—t2 t Aa( /eA

where the first inequality follows from (2.11), (2.6) and the inequality

(2.18) <

1/7
(2.19) |a"(7)| < 6000/ r2a(r)dr < 6000 7 A, (7Y, 7> 0,
0

(See [1, Lemma 5.1]; (2 19) holds even when a(co0) < 0), the next two
inequalities use Ay, (77!) < 771A,(771) and (2.10), and the equality
follows by a change of variables. Note that

a1 b du 1 /‘ b Lo
P35 < sup ——du,
ach 2 Jije Aa(u) = 1 Ji/c ack Aa(u)

therefore, by the Fubini theorem (1.14), and (2.18) we have
(2.20)

[y sl [ garta<on [l [ oo o
=, L [ e

</ocsu ! ———du < 00
S P—F= .
1 aERUA()

We will need the inequalities
(2.21) 24,000|D(7;a)| > TA1.(t7Y), e<T< %}, a€R,
and

(2.22) 144,000|D(;a)| > |7 — wl, g <r a€R.
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These are essentially the inequalities in [1; Lemma 5.2]. The proof,
except for very minor changes is identical with the one given in [1] (see
also §8 on [2] for the correction of an error in part of the proof of [1;
Lemma 5.2]), and we will omit it. The main point is that we were
able to choose the constants (24,000 and 144,000) in (2.21) and (2.22)
independently of a in R.

We use (2.19), (2.6), (2.21), (1.17) and the definition of w to obtain

e /
w w/2 7_—1 la T—l %a T—l
/e Jar| < t/ hmi(r(-lnz * fiAﬁa(Tff))i] u

<Mt‘2/“)/2r‘3d7'[ L + 1 ]
- ¢ Apa(w™t) A3 (W)

M
S t—2(a € R)

t_2

(Note that if @ in R is such that e = w/2, then clearly ¢t=2| f:ﬂ Jdr|

< M/t?).
Next we use (2.22), (2.19), (2.6), (1.17) and the definition of w to
obtain
t=2 [ / }J dr
u w+e
<

(e e
S [/ I =
+Mt‘2[ +1 [/we /we]lf—wl:"

oo

IN

= _2+T‘3d‘r<t—, a in R.

(Note that A;,(2z) < 4A1a(z), * > 0, ain R, since sz sa(s) ds
< a(x) [** sds = 3a(x) [T sds < 34,(x).)
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Next we use (2.6), (2.19), Re D(7;a) = ¢4(7), (1.17), the definition
of w and (2.7) to obtain
(2.25)

w+t€
it_z/ Jdr

w+e€ -1 -1 2 -1
<M/ [T Ayo(T )+A1a('r )+1] ir

=2, . o2 (7) 93(7)
< M 1 1
=2 | B ) T Baw iy

<

B I S N Y )
S u@r T awp | S

Thus (2.25), (2.24), (2.23), (2.18), (see (2.20)), (2.17), (2.16), (2.15)
and (2.4) prove that (1.2) holds.

Finally, to see that the corollary follows from Theorem 1, let R =
{ao(t) +¢c: 0 < ¢ < 1} where ag satisfies (1.1) and (1.13). Then clearly
su 1 1
ae?g uAa(u)  uAg,(u) ’
so (1.13) implies (1.14). The assumption (1.15) is used in the proof of
Theorem 1 to obtain inequality (2.11). However (2.11) holds for this
family R, without the additional assumption (1.15) as is proved in [12].
Finally, to show (1.19), we note that

4(7) = 9a(r) = ira(r) = o(r) + —
= oo (T) — iT04, (1) — i7" e
Thus it follows that
1= 04(@) = oy (©) + 02,
or
c=0%(1 = 04y (@))-

Since 6,,(c0) =0, by (1.17), and 0 < ¢ < 1, clearly & is bounded from
above, thus so is w (say w = w(a) < M;). Then, by (2.7) and the fact
that a'(t) = ag(t), we have

1 ) < ) 5

6@ = Balo™) " B0 B
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The corollary now follows by applying Theorem 1.
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