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SOME EXTENSIONS OF THE ARITHMETIC-MEAN 
THEORY OF ROBIN'S INTEGRAL EQUATION 

FOR BODIES WITH VERTICES 

R. CADE 

ABSTRACT. A form of Neumann's method of the arith
metic mean was used previously to obtain an existence theo
rem for the homogeneous case of Robin's integral equation in 
E2 for a convex closed curve with the vertex. In the present 
paper, this theory is developed to provide two further results, 
one of them uniqueness, and it is then shown how both ex
istence and uniqueness follow for the non-homogeneous case 
(relevant to the Neumann problem). Finally, it is shown how 
a parallel theory can be given, embracing both the homoge
neous and non-homogeneous cases, for E3

t that is to say, for 
Robin's integral equation for a convex closed surface with a 
vertex. 

1. Introduction. Robin's integral equation in E2 for a function a 
on a simple closed curve C, is a Fredholm equation whose homogeneous 
case is 

(1) o(A) = - I<r{A')^^ds' (A,A' eC,T = 7' A), 
IT J T 

C being conveniently parametrized by arc-length s, and where x is the 
angle between the r-direction and the outward-normal one to C at A. 

Along with (1), we consider the integral equation of the first kind, 

(2) K + 2<f(T{A,)\ozTds' = 0) 

where K is a constant. 

Physically, in the context of electrostatics, (2) represents the fact that 
the potential due to the charge density cr on a cylindrical conductor with 
cross section C, takes the constant value K on the cylinder, and for 
a continuous solution, (l) follows from the constancy of the potential 
throughout the interior of C. 
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The theory of these equations is well known when C is globally twice 
continuously diffèrentiable. For example, existence for (l) follows from 
the Fredholm theory [6] and, for solutions within the class of continuous 
functions, (l) and (2) are shown to be equivalent. Recently, however 
[3], an existence theorem has been given for (l) when C fails to be twice 
continuously differentiable through having one exceptional point which 
is a vertex. Under these conditions, the Fredholm theory, even in its 
extension to weakly singular kernels, is inapplicable, and the method 
used was a sequence one with an adaptation of Neuman's method of the 
arithmetric mean. As always with Neumann's method, the additional 
condition is required that C be convex, and within this restriction, the 
theorem can be generalized for any finite number of vertices. 

Nowadays it would be presumptuous to describe the result as "new", 
in view of the very powerful and general methods of functional analysis 
that are available. However, it often happens that methods belonging 
to classical "hard" analysis yield more. In the present case, we were 
able to majorize the growth rate of the solution with approach to the 
vertex, findings, remarkably, conforming with the Schwarz-ChristofFel 
theory of complex analysis [8]. 

The purpose of this paper is threefold: (a) to prove uniqueness for 
the homogeneous case and equivalence of (1) and (2); (b) to extend 
existence and uniqueness to the general non-homogeneous case; (c) to 
show how a parallel theory (if a little less complete) can be given for the 
homogeneous and non-homogeneous cases in E3, that is, for a convex 
simple closed surface with a vertex (or finite number of vertices). 

As regards (c), it was not seen at the time of the first paper [3] how 
to obtain the three-dimensional existence theorem, certain points in 
the theory for E3 being distinctly more difficult. These difficulties are 
now largely resolved. Again, we can majorize the growth rate of the 
solution, and the result in this case might be quite new inasmuch as 
there is no three-dimensional analogue of the Schwarz-Christ offe 1 result 
with which to compare it. 

2. Preliminary considerations. We take as equations for C, x = 
x(s),y = y(s), s G [0, c], (arc-length), where x(s),t/(s) are twice 
continuously differentiable on [0, c], and the end-points 0 and c of the 
interval give the same point P 6 C, the only double point, which is the 



ROBIN'S INTEGRAL EQUATION 149 

vertex. The approach of the existence proof for (1) is, starting with 
any positive continuous function /o(s), to define a sequence {fn(s)} by 

(3) fn+1(s) = ±njfn(s')c-^ds>, 
IT J T 

where, for any positive z < | i , fiz is the linear operator defined by 

fn / H S Ì - / ^ + ° ' S&[z,e-z], 
(üzf)(S)-^ 5 e [ 0 , . ) u ( e - . , c ] , 

a=-A + )*(S)d>. 
c JO Jc-z 

The fn are all positive, bounded and, except at z and c — z, continuous, 
and their integrals on C have all the same value Q > 0. 

By a quasi-solution of (1) we mean a function r(s) which satisfies 

(5) r{s) = ^nz IT{S')^ds'. 

The existence proof is in two main parts. The first is where the adap
tation of the arithmetic-mean argument to simple-layer kernels occurs, 
being used in the process of showing that a subsequence of {/n} con
verges uniformly to a quasi-solution r. Thereafter, a sequence {zm} 
of values of z is taken which converges monotonically to zero, and the 
corresponding sequence {rm} of quasi-solutions. The second part of the 
proof consists in showing that a subsequence of {rm} converges point-
wise to a solution a of (1). We refer the reader to the paper concerned 
[3] for the details of the proof, details to which we shall have to make 
frequent reference in what follows. 

REMARK 1. This definition is a slightly tighter one than that given 
previously [3], but it is easy to show that the quasi-solutions actually 
found satisfy the present condition. 

Two fundamental lemmas uniformly majorize the / n , then in turn 
the rm, and have as their final consequence the majorizing condition 
on cr. This can be expressed as 

(6) * = 0(rp-% ß>ßo = ^ , 
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where rp is the distance from (x, y) G S to P and 2a is the angle of 
the vertex (the angle made at P by the limiting half-tangents having 
C between them). In (6), ß is any number greater than ßo, and since 
ßo is certainly less than | , we can take, instead of (6), the blunter but 
simpler condition 

(7) * = 0(r>*),. 
holding independently of a. 

It will abbreviate discussion to say that a function f(s),s G [0, c], 
which is continuous on (0, c) and 0(r~^)} is of class C ^ . It is a tidy 
convention to take cosx/r as zero when A in (1) is the vertex and the 
symbolism is of itself meaningless since C has no normal. Thus (1) has 
the solution 0 there, so that any solution cr(s)is defined on the whole 
of [0, c]. We always understand Lebesgue-integrability of functions, so 
the aintegrable,> implies absolute integrability. 

3. Two lemmas. The theorems of the two sections that follow 
depend upon, in addition to the existence theorem [3], the following 
simple but fundamental results. 

LEMMA 1. If a sequence {</>n{3)} *5 defined according to (3), starting 
with any positive integrable <j>o{s) whose integral on C is Q, it converges 
uniformly to the quasi-solution r(s) of the existence theorem. 

For the argument, which in the existence theorem is applied to 
{/n/ /n+i} [3], holds equally for {<f>n/r}{n — 1>2,...) showing now 
that <t>nl^ —* 1 uniformly, and since r is bounded, the result follows. 

LEMMA 2. Any integrable solution a of (1) is either non-negative or 
non-positive. 

It follows by (1) and the continuity of cosx/r (away from P), that 
cr is continuous on (0, c), and assuming that for the a we take, the 
proposition is untrue, we study the inequality 

(8) k(A)|<i/MA')||^|da'. 
TT J i r i 
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Then 

(i) By convexity, | cos x/r\ = cos x/r; 

(ii) By the continuity of a (on (0, c)), and convexity again, there are 
points A G C at which the inequality is strict; 

(iii) By the continuity again, strict inequality holds when we integrate 
(8) on C; and 

(iv) The integral of cos x/r with respect to A, is TT, except if A' is P . 
It follows, making a legitimate change of order of integration, that 

<f> \cr(s)\ds < — 6 ds é \a 

an absurdity which proves the point. 

For any real number Q, there is a solution of (1) whose integral on 
C is Q. For one is a = Qa/Q, where a is the solution by the existence 
theorem. By this remark and Lemma 2, we shall find it sufficient, where 
we need to be specific, to work only with non-negative solutions of (1). 

4. Further theorems on the homogeneous equation in E2. 

THEOREM 1. (uniqueness). A solution of (l) whose integral on C 
is Q, is the only one in the class of integrable functions whose integral 
has this value. 

As we have said, an integrable solution is continuous. Let a be one 
whose integral on C has the same value as that of a given by the exis
tence theorem. Then a — â is a solution whose integral is zero, and by 
Lemma 2 and continuity, this is only possible if a and a coincide. 

THEOREM 2. (equivalence of the integral equations). A solution of 
(2) of class CpP(ß < 1) and zero at P, is a solution of Robin's equation 
(1), and any solution of (l) is a solution of (2). 

f cr(s')|ds 
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The equivalence is imperfect, but perfection is impossible since (2), 
as an equation of the first kind, does not have uniqueness. For example, 
the second statement asserts that a solution exists, but any function 
differing from it, say only on a non-empty set of measure zero, is also 
a solution but is not a solution of (1). 

We shall prove the theorem in some detail, for we consider the result 
to be of significance, while the analysis is delicate and does not extend 
to give the equivalence in the other cases (non-homogeneous in E2, 
either in E3). 

If cr(s) is a solution of (2) of class Cp^(ß < 1), minus the integral 
in (2), A being now understood as any point of the plane, defines a 
potential V(x} y) which is everywhere continuous. The justification of 
this statement is identical with the classical one for a smooth curve 
(Kellogg [5]) except at the vertex itself, while at the vertex, the fact of 
a being O(r~0) does not, since ß < 1, spoil the argument. 

Having that V takes the constant value K on C, the well-known 
classical derivation of Robin's equation (constancy of V" throughout the 
interior of C and the limiting value of the normal derivative, Kellogg 
[5]), gives us the first part of the theorem, except at the vertex itself, 
where it is taken care of by the convention cos x/r = 0 (§2). 

Turning to the converse, which is more difficult, the existence and 
uniqueness theorems tell us that any solution of (l) will be of class 
Cpß where, by (7), ß can be taken as 1/2. Thus just as before, a 
provides a simple-layer potential V(x, y) defined and continuous on the 
whole of E2. Clearly, we shall suffer no loss of generality by assuming 
that a is non-negative. 

Inside C, we take a simple closed curve with vertex, C (Figure 1(a)). 
We require that it be continuously differentiable except at the vertex, 
and be any one of a family of curves whose interiors are a nested 
sequence approximating to the interior of C. These conditions are 
realized very easily under the convexity of C by taking the origin of 
coordinates inside the curve, and C as any one of the geometrically 
similar curves x = r)x(s), y = iy(s), s G [0, c], 7 G (0,1). 

We divide C into two parts by a line L (Figure 1(a)), imagining L 
as any one of a family of parallel lines approaching the vertex P G C. 
Each of the two arcs of C , we join by the segment T of L inside, to 
form two simple closed curves, C, towards P and C, away. 
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We next enclose the part of C above £ in a "box" B whose base 
contains T (Figure 1(b)), and study the contribution V* to V coming 
from on the arc of C inside JB. If g is the integral of a on this arc (the 
"total charge" inside 5 ) , we have by Gauss' flux theorem, 

/.£ ds = 27rq 

(inward-normal derivative). Since the arc is arbitrarily small according 
to the closeness of L to P, we can arrange that 

l/.£ ds 
1 

say. But since a is non-negative in the arc, dV*/du is around B, so 
that the integral in (10) is non-negative and dominates on just the 
segment T. In fact, 

(11) 0 < / —— ds < -€. 
v ' JT du 3 

On the whole of C2, Gauss' theorem gives 

r dV f dV f dV 
12 i —ds= / °—ds+ / — ds = 0, 

all the "charge" being outside. With L fixed to satisfy (11) (a prescrip
tion which is independent of C"), we find, by taking C" close enough 
to C, that the last integral in (12) is arbitrarily small. For, Robin's 
equation being satisfied, the limiting value of dV/du is 0, and below i , 
this limit is approached uniformly (Kellogg [5]). Thus if V + = V — V* 
is the potential due to a (non-negative) on the arc of C outside B, so 
that dV^/du on T [u reckoned into B) is non-positive, the right-hand 
equality in (12), with (11), gives us 

/ 1 0 , f IW+K ^ I f dV i f dV* j 2 
13 / bH d Ä - / irds\ + / -5—ds < *e-

JTI ou I IJT ou I JT ou 3 
We could easily have shown that the total flux across T is arbitrarily 

small, but this is not enough for our purposes, and what the analysis 
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above effectively affirms is that the positive and negative contributions 
are separately arbitrarily small. 

Suppose that there is a point inside C at which the gradient of V is 
non-zero. Then since it is continuous, we shall have for some number 
e > 0, and C and L respectively sufficiently close to C and P, 

<") *w-//.{(£)'+(£)>*>•• 
where R is the closed interior of C2. By the harmonicity of V inside 
C, the integrand here is div(VgradVr), and transforming by Green's 
theorem, 

r dV r dV f dV 

M im - £_ v-ä, - fr-*+/^ „_* >, 
Through its continuity, |V| has a positive upper bound M on C and 
its interior. Hence, using again the fact that, below L, dV /du tends 
uniformly to zero as C approaches C, we find from (15) that if this 
approach is close enough, 

<»> IM . e 
ds > —. 

M 

But if e < e/M and the closeness of L and C is chosen for the 
satisfaction of (11) and (13), the integral here is less than e/Af. 

Thus the supposition before (14) is wrong, whence V has a constant 
value, let us say Ä", throughout C and its interior. Since it is expressed 
on C by minus the integral in (2), the theorem is proved. 

5. Theorems for the non-homogeneous equation in E2. The 
general nonhomogeneous form Robin's equation in E2 is 

(") .(ii-j/^i^-i© A9 

where U(x) y) is a function harmonic on a region containing C and its 
interior (an "applied field" in the physical context), and the derivative 
is the outward-normal one to C at A (zero conventionally if A is P). 
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This derivative satisfies the condition 

(18) / ! £ * = 0 ' 

the only way the fact that U is given and harmonic on a set larger than 
C enters. If, instead of dU/dv, we have any continuous function <f>(s) 
whose integral on C is zero, the theory of (17) will be the same and 
will provide a solution of the interior Neumann problem for the curve 
C with vertex and boundary data </>(s), for (17) will be the integral-
equation formulation of this problem. 

We extend the existence theorem for (l) to (17), noting that, because 
of the non-homogeneity and the possibility of a solution having non
uniform sign, arithmetic-mean analysis is not applicable directly. 

We define a sequence {fn} by (3), except that Qz operates addition
ally on the last term of (17). By virtue of (18), the integral of each fn 

on C is, again, Q, the value of the integral of /o. We now define {gn} 
by gn = /n+i — fn» The terms of this sequence satisfy (3) precisely, 
and the integral of each of them on C is zero. 

For the same z < | c , we take the quasi-solution f given by the first 
part of the homogeneous existence theorem [3] through a sequence {fn} 
with positive first function /o. Then f > 0 on [0, c], and we choose a 
number M large enough so that Mr -f g0 also is positive. But Mr is 
the quasi-solution for { M / n } , while {Mr -f gn} also satisfies (3), with 
the terms of both sequences having on C the same integral MQ. It 
follows by Lemma 1 (§3) that {Mr + gn} converges uniformly to Mr, 
whence {gn} converges uniformly to zero. 

We now define another sequence, {/in}j by hn — MT H- / n , so that, 
like the relationship of fn+i to / n , 

(i9) hn+l{s) = nz{yhn(s^ds'-ld£}, 

and we choose M' large enough so that both h0 and hi are positive. 
The proof in the homogeneous case [3] has (in different order) the steps 
(i) that {fn} is uniformly bounded away from zero, and (ii) that {/n}is 
uniformly bounded and equicontinuous. Now, with a possible further 
increase of M', a modified form of the proof of (i) shows easily that 
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the whole of {hn} is positive, and with this knowledge, the extension of 
(ii) is immediate. Hence, by the Ascoli-Arzelà theorem, a subsequence 
{hnp} converges uniformly to a limit function A(5). But (19) with / 
instead of h and attaching the suffix np , can be written as 

whence, since gHp —> 0, A(s) is a quasi-solution of (17) by the definition 
for the non-homogeneous case that corresponds to (5). 

The fundamental lemmas for the homogeneous case [3] are easily 
verified to hold equally for the non-homogeneous case, whereby the 
proof of the theorem proceeds in the same way in this case to show 
that a sequence {Am(s)} of quasi-solutions defines a solution a. We 
obtain the same majorizing condition (6) upon its growth rate. 

Theorem 1 (uniqueness) can be extended at once. In fact, since a — £, 
where a is a second solution with same integral on C, satisfies the ho
mogeneous equation, the proof is identical. 

6. Robin's equation in E3\ geometrical preliminaries. Robin 
himself [7j appears to have been the first to apply arithmetic-mean 
analysis to the equation bearing his name, showing in the case of 
the homogeneous equation for a convex smooth surface in E3, that 
an interatively-defined sequence of the usual kind converges to the 
solution, which is assumed to exist. The idea of using this type of 
analysis to prove existence itself was proposed by the present author [2]. 
Again, proof was for a surface both convex and smooth, and interest 
could hardly have been said to extend beyond the method as such, 
in view of freedom from the convexity and single-surface restrictions 
which is enjoyed with the Predholm method. Much more interesting 
is its application to situations without the smoothness condition, as 
discussed in §1, but, while this has been done for E2, it is only now 
that we are able to do it for E3. 

Robin's equation in the homogeneous case for a simple closed surface 
5 , the three-dimensional analogue of (1), is 

(20) aM^l.J^A'^dS', 
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and there is an analogue of (2) which we shall not write down as we 
shall bot be needing it. We suppose that S is a regular surface (Kellogg 
[5]), convex, and twice continuously diffèrentiable except at a point P 
which is to be the one and only vertex. 

We take P as the origin of a Cartesian coordinate frame with positive 
2r-axis directed into 5. By simple but tedious considerations of surface 
theory which we bypass here, S in the neighbourhood of P can be 
shown to have a representative of the form x = f[ui(f>)cos<j>}y = 
/ (u , <j>) sin <f>) z = u cos[7, (< )̂], u € [0, S]} <f> G [0, 2TT]. We write this as 

x= {usm.[i{<t>)] + il>[u,<t>)}cos<f>, y = {usin[7(<^)] + ip(u, <£)}sin<£, 

(21) Z = UCOB[I{4>)], u €[<>,*], ^G[0 ,2TT] , 

and the continuity of S requires that if>(u,<f>) —• ip(0,<f>) = 0 as 
u —* 0,V<̂ . But additionally, we shall assume for partial derivatives 
of*, 

(22a) lim rpu(u, </>) = lim *^>(u, <j>) = 0, 

(226) |*uu(u,(^)| < Af, |*u*(t*,^)| < uM' (Af,M'constants). 

In fact, (22a) simply assures that S have a tangent cone at the ver
tex P, a representation of this being (21) with * replaced by 0, while 
(22b) provides that this cone have the "first-order contact" property 
characteristic of the tangent definitions of differential geometry. The 
assumptions should not be seen as restricting the generality of the the
ory; they merely formalize the geometrical quality that we intuitively 
associate with a vertex, something which, typically, is achieved much 
more easily in the two-dimensional theory. 

Consider any point (uo, <f>o) G (o, 8} X [0, 27r], and the generator L 
of the tangent cone which passes through the corresponding point 
(so* 2/0, ZQ) of the cone. For a number 7 not too large, there is a right 
circular cone which does not pass outside the tangent cone and shares 
the same generator L, 7 being its half-angle (angle between L and its 
axis) which is independent of the choice of (uo,^o)- Clearly, the two 
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cones are mutually tangent along L (v, Figure 2). With the same origin 
P , we may take the axis of the new cone as new positive 2-axis, and 
(21), (22a,b) as relative to a new Cartesian frame with this new z-axis, 
measuring <f> from the plane through L so that (u, <f>o) becomes (u, 0), 
and 7(0), 7. With respect to this set of transformations, corresponding 
to all initial choices of the old <f>c, the 5 M and M1 in (22b) can be 
chosen so as to hold uniformly. The justification of these assertions 
is again a matter of tedious surface theory; they are adding no new 
postulate. 

The set of possible values of 7 has a greatest, rj, and 7 will be 
taken as rj henceforth. As regards (21) and (22a,b) in any of the new 
representations, we shall have the inequality 

(23) -y(^) > 7(0) = r,, 

which is vital for our purposes. In fact, if the tangent cone itself is 
right-circular (as, for example, if 5 is a surface of revolution), rj is the 
half-angle of this cone; with the positive z-axis the axis of the cone, 
the original representation (21) and all the new ones coincide, with 
nr(*) = »?,#€ [0,2*]. 

For any of the representations discussed, we write the element of 
area as dS = j(u, <f>)dud<f>, and call the function j the area factor of the 
representation. For each of the new representations, we consider the 
ratio j(u,<f>)/j(u,0), preferring to write it as j(u,<f> : <t>o)/j{uyO : <f>o) to 
indicate that it is for the representation defined for the angle <j>o of the 
original representation (21). Although the function j changes with <£o> 
nevertheless we can think of the ratio as a function of three variables, 
and we call 

(24) A = l i m s u p^lÌiM_ 1 
V ' u -o j(u,0:<£o) 

the index of asymmetry of the vertex P . It is unique and non-negative, 
and is zero for a surface of revolution, or any surface which tends to be 
so in the limiting sense that its tangent cone is right-circular. 

7. Majorizing lemmas for the homogeneous existence p rob 
lem in E3. We mentioned before (6) two fundamental lemmas used 
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for the existence theorem in E2 [3], and one of two obstacles hitherto 
to giving an existence theorem for E3 was to obtain analogues of these 
lemmas. We show now how this is done. 

We consider S to be represented by parameters (u, v) on a closed set 
T which is the union of a finite family of closed regular regions, and by a 
function <f> on 5, we mean <f>[u, v), (u, v) G T. One of the closed regions 
is the rectangle [0,, 6] x [0, 2TT] of the last section, where we denoted 
(u, v) by (u, </>). The area factor j is given by [j2 + j 2 + J2)1 /2 , where 
jxijyy jz are the Jacobians of x, y, z with respect to u and v. We denote 
by rp the distance from P to the point (x, y,z) E S corresponding to 
(u, v) E T. Then we have 

LEMMA A. If <̂ (u, v) is integrable on S and for some constant K 
satisfies 

(25) mUìV)\<—ì r p >o, 
rp 

then there is a constant K1 such that \^(u, v), defined by 

(26) *( U ) V ) = ±^${uV)^dS', 

satisfies 

(27) | t f (u , t ; )<—, r „ > 0 . 

To indicate in outline how this is proved, we refer to (21) and (22a,b) 
as they were before the subsequent discussion. The lemma will clearly 
be true if we can prove it for the integral 

1 f2n f6 cosx 
(28) I{u0i<f>o)=—J d<t> j $ ( u , 0 ) — y ( u , 0 ) d u , 

uo£(0,£' ] , 0<8'<6. 

Let us now change to the representation described in that subsequent 
discussion, in which (uo,<£o) becomes (uo,0). We evaluate cosx/r2 in 
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terms of the representation (21), as now in terms of the new <j> and 
7(<£). Then, with the use of (22b) (in which, we recall, M and M1 

hold uniformly), we find that the integral changes in value as little as 
we please, uniformly with respect to how we had chosen (uo, <f>o), h° we 
take, instead of (x, y,z) G 5, (x, y, z) as the point of the tangent cone 
for the same (u, <f>). This can be summed up by our writing 

(29) | / («o,0) |<^y d<t>j |*(u,*)|—/(«,*)<&, 

where G\ is as close as we please to 1 (uniformly with respect to the 
previous (u,? <£o))j with the smallness of 5, and cos x/r2 and j(u, <f>) are 
evaluated from (21) with rp = 0. 

The latter is found to be 

(30) / (« ,*) = u { S i n 2 [ ^ ) ] + [7'fo)]3}*. 

and using a bound B for j/u, we obtain with the evaluation of cos x/r2 , 
(31) 

BG f2n 

| / (u 0 ,0) | < - ^ I {sinr7cos[7(0)] 

fs u2 

- cos rj sin[7{(/>)} cos <f>}d<f> / | $ K < £ ) I T W — T T ^ U , 

D(uy <f>) = {u2 + u 2 — 2u0u[sin rç sin[7(<£)] cos <f> 4- cos rç cos[7(<£)]]}3'2 

We now use our condition (25), being able to replace rp by u if we 
replace G\ by another constant G^ as close as we please to 1 with 
the smallness of 6, Instead of rp —• u, however, let us assume for a 
moment, with a purpose, that we have r& —> u&, corresponding to the 
same generality as with the lemma in E2 [3]. Then with the change of 
variable u/uo —» x and replacement of the resulting inner integral by 
the dominant one on [0, oo), the inner integral that we study is 

1 f°° x2~ßdx 
( 3 2 ) ^ i o { l - 2 s a M + *2}3/2' 

where we have written a((f>)for the square-bracketed function in (31). 
But we cannot evaluate this integral unless ß = 1 or 2, in which cases 



ROBIN'S INTEGRAL EQUATION 161 

it is elementary. When ß — 1, its value is 1/{1 — a(<f>)}. 

REMARK 2. A value in the general case is obtainable by specializing 
a still more general result given by Erdlyi et al [4] (p. 310, formula 
22). This result appears to be wrong, however, as it does not reduce 
correctly in our simple elementary case. Anyhow, it is too complicated 
to be of use for present purposes. 

Now, with this value and some manipulation of the resulting function 
of <£, we reach the stage 
(33) 

BKG ( f27r 

| 7 ( u o , 0 ) | <"2^ric o t r 7y d* 
+ cosec f2n cos[7(^)]-cosry i 

J0 1 — sin r} sulfa(<j>)\ cos <j> — cos rj cos[i(</>)] ) ' 

But because of (23), the second integral here is non-positive. Therefore, 
when we replace UQ by u, then u by rp and G^ by a new positive constant 
C?3 arbitrarily close to 1 with the smallness of 8, we obtain 

(34) \I(u,0)\<BKG>COt\ ue(0,6>], 
rP 

which is sufficient to prove the lemma. 

The second lemma involves the index of asymmetry A, defined by 
(24). 

LEMMA B. If we are concerned with ^ only in an arbitrarily small 
neighbourhood of P, and 

(35) A < s e c r 7 - 1 , 

we can, for a neighbourhood which is sufficiently small, take the con
stant K' of Lemma A as uK, where v < 1. 

For, with y(u, <t>) given by (30) and taking for the upper bound B of 
y(u, <f>)/u, the least upper bound (supremum), it is easy to see that 

(36) lim = 1 + A. 
6-*o sin rj 
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Thus if, firstly, 6 is small enough, we shall have, from (34) and (35), 

(37) | / ( t t > 0 ) < ^ i > « 6 ( 0 , * ' ] , 

G4 replacing G3 and although larger, less than 1. Secondly, if we take 
81 small enough relative to 8 to take care of the bounded contribution 
to (26) coming from S outside the portion given by(21), we shall have 
(27) with K' = vK> where v is greater than G4 but still less than 1. 

The condition (35), without counterpart in E2, restricts the general
ity of the theory in E3. It certainly holds for a surface of revolution (A 
being zero), and much more broadly, but that it is a real restriction (at 
least as regards Lemma B) is shown by specific examples on surfaces 
departing widely from Axial symmetry about the vertex. 

8. Existence for the homogeneous equation in E3. The 
remaining obstacle to proving existence for (20) is, when we define 
a positive sequence {/n(u, v)} by appropriate analogues of (3) and (4), 
to prove the first step, namely, that this sequence is uniformly bounded 
and equicontinuous. 

We now make it the second step, the first, proved independently 
and as easily as in E2, being that {Zrn} and {^n}» where Ln — 
in f ( / n / / n + i ) ,C / n = s u p ( / n / / n + i ) , are, respectively, monotonically 
non-decreasing and non-increasing. In place of the set [0, z) U (c — z, c]in 
E2

i we have the rectangle R$ = [0, ç) X [0, 2ir], the remaining set on 
which the functions on (u, v) representing S are specified being the 
union Tç of a finite family of closed regular regions. 

Let Z be the area of S. By the analogues of (3) and (4), fn{ut v) < 
Q/Zy (u, v) G RçyQ being the surface integral of each fn on 5 . So, if 
Vn = sup/ n (u , v) > Q/Z, it is taken at some (u n ,v n ) G Tç to which 
corresponds An G S. We choose a spatial neighbourhood N(e] An) so 
small that, within, cosx/r has a supremum X which is independent 
of the location of (un ,vn) in T$ (if N{e\ An) contains P,cosx/r is 
unbounded). 

Now, with M = S PI N(e;An), and remembering the definition of 



ROBIN'S INTEGRAL EQUATION 163 

{Un}, 
(38) 

Vn = fn(un,Vn) = ^ 0 « / /„_!(«', « ' ) ^ d S ' 

^ C ^ i V ^ X . f dS' X f 

The results of Qç operating onto the last two integrals are, respectively, 
bounded by He and Q(l-\-a/Z)1 where for the former, H is independent 
of the location of (un ,vn) , and for the latter, we first extended the 
integral over the whole of Sf and use a to denote the area of the 
subsurface corresponding to Rç. Hence, since Un < Uo, we have from 
(38) that 

and with e small enough for the left member to be positive, the uniform 
boundedness is proved. Having this, equicontinuity on T?, although a 
little harder than for the theorem in E2, presents no essential difficulty 
and is proved as in the case of a smooth surface [2]. 

In the latter part of the existence proof, we use a sequence {£m} 
decreasing monotonically to zero, and correspondingìy, a sequence of 
sequences, {/nm(w> *>)}, m = 1,2, We need to know that, for any 
sufficiently small £', these sequences are equi-uniformly bounded on 

We choose any £, Ç" such that Ç" < £' < 6', where 81 is a number by 
which Lemma B is satisfied; clearly, if we obtain the result for such a 
f', it will be true for any (' > 6'. If 6' is small enough, the said lemma 
applies recursively to show that fnm < Kjç" + Q/Z for ç" < u < $'. 
Hence if, for TçnVnrn = s u p / n m > K/ç" -f Q/Z, it is taken at a point 
(un ,vn) G Tçi and not anywhere in Tf//\Tf/. We choose N(e\ An) so 
that independently of where (un, vn) is in Tc/, it excludes the subsurface 
of S corresponding to the rectangle Rçn. Then, with the easily-shown 
fact that {Uim} (the sequence of values of U\ corresponding to {çm}) is 
bounded, the argument leading to (39) (Uim now replacing UQ) holds 
again to establish the point in question. With this information, we are 
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able to complete the existence proof in analogy with the proof in E2. 

REMARK 3. In fact, the present argument bears close relationship to 
the one previously given for a smooth surface [2], but is more refined 
as (39) gives an explicit bound for {Vn}. The previous method showed 
by contradiction that {Vn} could not be unbounded, and even under 
its extension to the present situation, would not suffice, as it would not 
show that, on Tçi, the double sequence {Vnm} is bounded. 

9. Discussion and farther results for E3. The assertion (27) 
of Lemma A with the refinement of Lemma B, follows through to the 
end of the existence proof to give us the majorizing condition on the 
solution a: 

(40) a = 0 ( r ; 1 ) . 

This corresponds to the coarse result (7) of the theory in E2\ our 
inability to treat the integral (32) for general ß has precluded our 
obtaining an analogue of the fine inequality (6). This failure has the 
non-trivial consequence of leaving us unable to obtain an analogue of 
Theorem 2; ironically, the same failure in E2 would not have had that 
consequence. 

The homogeneous existence theorem can be extended to the non-
homogeneous case exactly as in E2 (§5), giving the same majorizing 
condition (40). 

The essential difficulty of E3 is the unboundedness of the kernel 
cosz/r 2 , generally, not just about the vertex, and this has more 
implications than we have encountered. Another is that, while we can 
prove uniqueness just as in E2 (§4 and §5), we can only do so within a 
less general framework. If, by the class / ( r ) , we mean functions f(A) 
such that rf(A), where r is the distance from arbitrary Ao to A, is 
integrable, we prove uniqueness within the class T(r). We know that 
a solution of (20) tends absolutely to infinity as A —• P [l], and the 
existence and uniqueness theorems now tell us that, if it is of class / ( r ) , 
it is nevertheless subject to (40). 

Aside from our having no majorizing condition more refined than 
(40), the other disappointing feature of the theory in E3 is of course 
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the restriction (35). Whether either or both would be obviated by a 
more sophisticated treatment of (32), and hence of (31), is a matter of 
speculation at this time. 
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