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INVERSE SCATTERING FOR SCATTERING DATA 
WITH POOR REGULARITY OR SLOW DECAY 

TH. RAPPELER 

1. Introduction. Motivation to study the inverse scattering 
problem for scattering data with poor regularity or slow decay is 
an application which will be given in two subsequent papers [7, 21] 
for the Cauchy problem of the Korteweg-deVries equation (KdV) 
ut — 6uux + uxxx = 0 with irregular initial profile as, e.g., a smooth 
enough box shaped potential or a steplike a smoothed Heavyside 
function [4,5]. 

If we consider u(x) as a potential for the Schrodinger equation 
—y"(x) -f u(x)y(x) — k2y(x) we can associate to u, by a well known 
procedure [8,9], the scattering data of which a part is given by the so 
called scattering matrix (T+, i?+, T_, fi_). To find a solution u(x, t) of 
the KdV (t > 0) it is enough to study the evolution of the scattering 
in time and to construct u(x, t) by the inverse problem [3, 4, 5, 7, 
10, 11, 12, 13]. Often, however, the evolution of the scattering data, 
especially R-, does not stay within the set where the inverse problem 
was known to be solvable [4, 5]. 

Let us briefly outline the organization of the paper. In §2 we 
discuss the Marchenko equation in ^ ( i ? - ) . In §3 we study the inverse 
scattering problem under weaker decay and regularity properties of R-
and its Fourier transform than in [8, 9]. 

Let us introduce the following notation. Let / be a complex valued 
function defined on R. By rxf we denote the translated function 
Txf(y) := f(x + y) {x and y in R). If h ^ 0 we denote by Ahf 
the differential quotient (Ahf)(x) := (/(*+^-/(*)). 

Let / be in L2ÇR,). By / we denote the Fourier transform f(k) := 
f^oo f{x)e2lkxdx. By rxf we define the operator on L 2 ( R - ) defined by 

rxf{g){y) := / rzf(x + z)g(z)dz (g in L2(R_)). 

By ; or dx we denote the derivation with respect to x. For a complex 
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number a we denote by a* its complex conjugate. By H^ we denote 
the Hardy space of all functions which are analytic in the upper half 
plane such that the supremum of the Z/2-norms over lines of constant 
imaginary part is finite. By i>2(—oo) we denote the Fréchet space 
consisting of functions / : R —• R with / in Ì2((—oo,a)) for all a in 
R. 

Finally let us remark that this paper is closely related to [6]. There, 
correcting results of [2], a characterization of a certain class of steplike 
potentials in terms of the corresponding scattering data is given. As 
in [6] we follow an approach to the inverse problem which is due to 
Faddeev [1, 9]. 

2. The Marchenko equation in L^iTl-). Let us first restate a 
result due to Agranovich and Marchenko [1; Lemma 3.3.3, p. 73]. 

LEMMA 2.1. (AGRANOVICH and MARCHENKO). Let n > 0 be given. 
Let f be a real valued function in L2(R) such that its Fourier transform 
f is continuous, (2k)nf is in L2{K) and\m\\k\_00{2k)nf{k) = 0. Then 

1) Tx{f^) is a compact operator from i>2(R-) to L2CR-) for 0 < 
£<n. 

2) l im/ l_+ 0^(A/ l /^~1)) = Txf (*)(! < I < n) in operator norm. 

The following result can be proved by standard methods. 

LEMMA 2.2. Let n > 1 be given. Let f be a real-valued func
tion in L2 (R) such that üs Fourier transform f(k) is continuous and 
limifci^oo/(ifc) = 0. If f{e){x) and ^ l 2 f^\x) are in L2{-oo) for 
1 < £ < n, then 

1) Txf(
£i is a compact operator from L2(R_) to L2(R-) for 0 < £ < 

n, and 

2) l im/ i -^o^A/ i /^ - 1 ^) = rxf(
e)(l < £ < n) in operator norm. 

Let / be in Z,2(R). / is said to have property Pjy (N in N) if the 
following conditions are satisfied: 
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There exists a decomposition / = f\ -f fi of / in L2ÇR) such that 

1) for i — 1,2, /t is in L2(R), /i is continuous and limi^i^oo f%{k) — 0; 

2) fc^/i is in Ì2(R) and lim^i^oo kNf\{k) = 0; and 

3) /2
(n) and |x|1 / 2 /2

( n )(z) are in L2(-oo)(n = 1 , . . . , N). 

Let F- be an element in / ^ (R) w ^ h property PN where N > 1 
such that its Fourier transform i?_(fc) := J<^>

ooF-{x)e2lkxdx satisfies 
\R-{k)\ < 1 and R-{k) = 0(£) as |fc| - • 00. Let (c-j)jeJ be real 
numbers where J is a finite set. Now let us introduce the function 

n_(a) := F_(s) + 2 ] T c_,e2*' s . 
je J 

Then r^Q- is a compact operator from L 2(R_) to / ^ ( R - ) - For any a: 
in R and y < 0 let us consider the Marchenko equation 

0 = B-(x,y) + n_(z + y) + / B_(x,*)fi_(z + y + *)<fe. 
«/—00 

In operator form this equation can be written as an equation in L 2 (R- ) 
in the following way: -

(id +rgn-)jg-(s,-) = Tg.n._, 

where Id denotes the identity operator. 

In the same way as Faddeev [9] did, one proves 

PROPOSITION 2.3. The homogeneous equation (Id +TxQ„)h = 0 in 
^2 (R- ) has only the trivial solution h = 0. 

From Proposition 2.3 and from the compactness of r^Q-, it follows 
that, for any x in R, the Marchenko equation has a unique solution' 
B-(x,-) in L 2 (R_) . To derive some properties for B-(x,-) we need 
the following lemma which can be easily proved. 
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LEMMA 2.4. rxQ- and thus (Id + r x Q _ ) _ 1 is a family of operators 
from Z/2(R-) toT^R-) which depends continuously on the parameter 
x. Moreover there exists a nondecreasing constant C(x) such that, in 
operator norm ||(Id + r^Q-) - 1 ! ! < C(x) and limx_,_oo Hr^Q-H = 0. 

From Lemma 2.4 it follows that there exists a non decreasing function 
C(x) such that 

\\B-{*,')\\L2(K-)<C{X). 

PROPOSITION 2.5. Let N > 1 be given. Let F- have property PN for 
some N > 1. Then 3 £ £ - ( z , •) is in L 2(R_) forO<n<N. Further 
there exists a non decreasing function C(x) such that 

| |d£fl_0r,-)||La(R_)<C7(*) 0<n<N. 

PROOF. Clearly B-(x, •) is in Z/2(R-). We prove the statement only 
for N = 1. An inductive argument gives easily the conclusion for 
arbitrary N. 

Let us start from the Marchenko equation 

0 = £_ (x ,2 / )+n_(x + 2/)+ / B-(x,z)n-(x + y + z)dz. 
J — oo 

For / i ^ O w e have, in L2(R_), 

, T , , n . B-{x + h,-)-B{x,-) _ , . 
(Id + rx+hQ-) i ^ i—J- = $h{x, •), 

where 

_n_(x + 2/ + ft)-n_(a: + 2/) 
9h(x,y) :=-

h 

/ B-(x,z)-
J —oo -oo h 

Let us define 

,o 
*Q{x,y):=tf_{x + y) + / B-(x,z)n'_(x + y + z)dz. 

J — oo 



INVERSE SCATTERING 127 

By Lemma 2.1 and Lemma 2.2 one concludes that 

lim $Ä(z, •) = *o(s> •) in L 2 (R_) . 
h—•O 

Together with Lemma 2.4 we get 

dxB_{x,) = ^ë^±hAz^M 
h—•O h 

= lim (Id +r x + / l Q_)~ 1 $ / l ( z , •) 
/ i — • ( ) 

^ ( I d + r ^ n - ) - 1 ^ » , - ) . 

Clearly there exists a non decreasing function C(x) such that 

| |dXJB_(z>-)IU2(R_)<C(z). 

In a similar way one can prove 

PROPOSITION 2.6. Let N > 1 be given. If F_ has property PN for 
some N > 1, Men d£R_(z, •) w m / f A r _ n (R_) wAere 0 < n < N (i.e., 
d |d££_(x , •) E L2{R-) for 0 < k < N - n). 

PROPOSITION 2.7. Let F- have property Plm Let a > 1/2 be given 
such that, for all a in R 

< oo. 

Then 

r {a-x)2a\n'_{x)\2dx-
J — oo 

f (a-x)2a\dxB-(x,0)\2dx<oo. 
J —OO 

PROOF. For the sake of convenience let us drop all subscripts "—". 
From the Marchenko equation it follows that, for y < 0 a.e., 

(*) 

r° 
dxB(x, y) = - n'(x + y)- dxB{x, z)Q(x + y + z)dz 

J —OO 

- / B(x,z)Q'(x + y + z)dz. 
J—oo 



128 TH. RAPPELER 

For x in R we have the estimate 

|n(x)l2 < r \n'{u)\2du. 
J—oo 

There exists a non decreasing function C(x) such that 

l|£(*,-)IUa(R-) <<?(*). 

Using the Marchenko equation we estimate |B(x,z) |2 by 

\B{x,z)\2<2 f* 2 |fi '(u)|2du 
J — OO 

+ 2(sup |fi(z + z)\2) / |B(x, ̂ ) | 2 ^ 
z<0 «/-oo 

<2(1 + C(a;)) /* |n'(u)|2dn. 
./—oo 

Now let us estimate \\dxB(xi • ) I IL 2 (R-) - There exists a non decreasing 
function C(x) such that 

II^0V)I|2MR_) 

< C ( x ) ( | | r x n ' | | 2
L 2 ( R _ ) + S U p | ß ( x , 2 ) | 2 / dy f \Q'{x + y + z)\2dz) 

z<0 J — oo J— oo 

<C{x) I \W(u)\2du{l + C{x) f dy f \ü'(x + y + z)\2dz). 
J—oo J—oo J—oo 

This estimate can be used to get 

/ dxB(x, z)Q(x + z)dz 
J —oo 

f° 
< sup |fi(x + z)\2 / \dxB{x,z)\2dz 

z<0 J-oo 

<c{x)(^r |n>)|2du)2, 
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where again C(x) is a non decreasing function. Finally let us give the 
estimate 

I f° I2 

/ B{x,z)n'(x + z)dz\ 
' J—oo ' 

<sup|B(x,;z) |2 f \n'(x + z)\2dz<C{x)( I {ü'{x + z)\2dz)2. 
z<0 J-oo W-oo ' 

Using (*) and the derived estimates, we conclude that there exists a 
non decreasing function C(x) such that 

\dxB{x,0)\2 < C(s ) ( r \n'(z)\2dzy. 

So, for x < —1, we get 

r \s\2a\dsB{Si0)\2ds 
J—oo 

< c(x) r ds\ s \2a r | n'(z) |2 dz f \n'(z) |2 dz 
J—oo J—oo J—oo 

< c{x) r |z\2a\n'{z)\2dz r ds f |n'(^)\2dz 
J—oo J— oo J—oo 

and the statement follows. D 

Let us now introduce, for Imfc > 0, the functions 

h-{x,k):l+ / B-(x,y)e-2ikydy 
J — oo 

and 
f-{x,k) :=e-ikxh-{x,k). 

One proves, in a similar way to what Faddeev [9] has done, the follow
ing two propositions. 

PROPOSITION 2.8. Let F- have property P i . Then 

1) /_(a:,fc) is analytic in Imfc > 0. 
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2) In Imfc > 0,/_(#, fc) is continuously differentiable with respect to 
x. 

3) liniz-.-oo /_(x,fc)eîA:a; = 1 andlïmx-+-00dxf-(x,k)elkx = —ik in 
Im fc > 0. 

4) h-(x1k) — 1 = 0{\) for x in R andlmk > 0, |fc| —• oo. The decay 
is uniform for Im fc > e, where e > 0 is arbitrarily small. 

PROPOSITION 2.9. Let F_ have property Px. Then f-[x,k) is, for 
Imfc > 0, a solution of the Shrödinger equation —y"{x) + q(x)y(x) = 
k2y(x), where q(x) := dxB-(x,0). 

3. Inverse Scattering in /^(R)- Let F - have a property Pi and 
fi_ be given as in the last section. Let T_ as well as R- be functions 
which fulfill the conditions of the following theorem. With the notation 
of the last section let us introduce the following function defined a.e., 
in Im fc = 0: 

g-(x,k) := {h*_{x,k) + R-(k)e-2ikxh-{x,k)}1r^. 

Then T-(k)g-(x, fc) can be represented by 

/»OO 

T_(%_(x,fc) = l + / {F_(x + y) 
Jo 
f° 

+ B_(x,z)F-{x + y + z)dz}e2lkydy 
J — oo 

+ i ^ c . / ^ L ( i , t « i ) ] f - : T ? : . 
je J 3 

As T_(fc) has simple poles at fc = ÌKJ and T_(fc) ^ 0 in Imfc > 0 one 
concludes that g-(x,k) is analytic in Imfc > 0 and that YljeJ{{k — 
ÌKJ)/{k + ÌK,j)){T-{k)g-{x,k) - 1) is in H%. 

THEOREM 3.1. (Uniqueness). Let the following conditions be met: 

XI) i?_ is a continuous complex valued function defined on the whole 
of R with the following properties: 
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(i) R*_{k) = R-{-k), 

(ii) iL.(fc) = 0 (£ ) a s | f c | ^ o o , 

(iii) F_(x) := £ X!^ R-(k)e-2ikxdx has property Px. 

X2) T_ 25 meromorphic in Im À; > 0, /ms on/?/ simple poles, of the 
form all k = ÌKJ where KJ > 0 and j is in the finite set J. T- is 
continuous in {Imfc > 0}\{0}, and, for k ^ 0,T_(fc) ^ 0. 

Then any pair of functions (/i, g) which satisfies 1) to 5) as stated 
below must be identical with (/i_,o_), i.e., for x in R and Imfc > 0, 

h(x,k) = ft_(x,fc) and g(x,fc) = g~(x,fc). 

The conditions 1) to 5) are: 

1) ft(x, •) — 1 is in H^ix in R) . 

2) g(x, fc) is analytic in Imfc > 0 and (T^(k)g(xi /c) — 1) Yljej k+Ù 

is in H2 . 

3) g(x,k) = 1 + 0 ( | ) /or |fc| —• oo with Imfc > 0 and the decay is 
uniform in Im fc > e for any e > 0. 

4) Res (T-(k)g(x,k);ÌKj) = ic-je2K3xh(x,ÌKj) (j in J ) . 

5) For any fixed x in R, T-(k)g(x,fc) — 1 and /i(a;, — fc) — 1 + 
R-{k)e~2lkxh(x,k) are in I/2(R) as functions of the real variable k 
and are equal. 

PROOF. Let (ft, g) be such a pair. By 1) there exists A(x, •) in Z,2(R-) 
such that h(x,k) -1 = j_00A{x,y)e~2lkydy (for Imfc > 0 pointwise 
and for Im fc = 0 for Z,2(R)). Then 5) can be written as an equation in 
1,2 (R) in the following way: 

T_ (fc)o(x, fc) - 1 = H {A(x, y) + F. (x + y) 
J—oo 

+ / A{x, z)F- {x + y + z)dz}e2lkydy. 
J — oo 

Take w < 0. By 2), (T-{k)g(x,k) - l)e~2ikw is in L2(R) as a 
function of k (in R) and is meromorphic in ImÄ; > 0. By 2) we 
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have in L2(R), with k := fci 4- ik<i and k<i > 0 sufficiently small, 
limfc2i0(T_(fc)^(a:,Ä:) - 1) = T-(*i)g(x,fci) - 1. 

Since the Fourier transform is continuous on £2(R) we get (in L2(R)) 

/

oo 
{T-{k)g{xyk)-l)e-2ikiydk1 

-oo 
/ o o 

(r_(fc1)?(*,*i)-l)c_ 3 '*1 'dfci. 
-oo 

Thus, for w < 0, the residue formula furnishes the following equality 
in L 2 (R_): 

^-.j_ (T_(%(x , fc ) - l ) e - 2 i t o dA: 

= ^Rea(T-{k)g(x,ky,iKj)e2K'w. 
je J 

By 5) one gets 

- 2« ] T Res (T_(fc)^(x, fc); ÌKj)e2^w 

jeJ 

je J 

r° 
= 2Y^C-je2K^x+wi+2 ^2c-je

2K^x^w+z)A{x,z)dz. 
jeJ J-oojeJ 

Using the inverse formula of the Fourier transform in ^ ( R ) , w e Set, 
for w < 0 i n L 2 ( R - ) , 

0 = A(x, w) + fi_ (X + w) + / A(x, z)Q- (x + w 4- s)ck. 
•/ — oo 

So A(x, •) is a solution of the Marchenko equation in Z ^ R - ) - But 
this solution is unique, so A(x, •) = -#-(x, •) (in L 2 (R- ) ) and ft(x, •) = 
M s , - ) i n ^2~- I nL 2 (R ) we get T_(-)g(x, •) - 1 = T_(-)^-(x, •) - 1. 
By 2) and the same property for g-{x,k) we conclude that g(x,k) = 
g-(x,k) in Imfc > 0.D 



INVERSE SCATTERING 133 

Let R+(£) be a continuous function on R in Z/2(R) s u c n that 
|Ä+(*)I < 1 and l i m | € H o o Ä + ^ ) = 0. Define F+(x) := i / Ü ^ Ä + W 
e2l'tectf and 

n + (x ) :=F+(x) + 2 ])T c + i exp{-2xyjKJ + c2} 

+ - / | T - ( 0 | 2 e x p ( - 2 x \ / c 2 - t 2 ) A , 
*" Jo 

where ( c + J ) j € j are numbers in R, different from 0 and T_ is a complex 
valued function such that |T_(>/c2 - £ 2 ) | 2 / V c 2 - *2 is in £i([0,c]). 
Assume that, for all x in R, 

/»OO 

/ (s-x) |n '+(s) |ds<oo. 
J X 

Then, for any x in R, there exists a unique solution B+(x, •) in 
Li(R+)niy2(R+) of the Marchenko equation 0 = B+(x,y) + Q+(x + y) 
+ f£° B+(x,z)Q+(x + y + 2)d2. Set B+(x,y) = 0 for y < 0 and 
let us introduce h+(x,£) := 1 + J0°° B+(x,y)e2liydy, and, for ^ in 
R\{0}, g+(x,£) := (A+(x,-f) + i ? 4 ^ f t + ( x , < ) ) ! ^ , where 
T+(fc) is a complex valued function defined on {Imfc > 0}\{0} such 
that T+(fc) / 0 for fc / ±c and k(£) = y/P + c2 is the inverse map of 
£ = £(fc) = Vfc2 - c2, defined for {Im^ > 0}\{iA : 0 < A < c}. Using 
the definition of ft+(x,^), T+(£)(7+(x,£) can be written as 

T+(t)g+(x,t) 

= 1+J {B+(X,y) + F+(x + y)+ J°B+(x,z)F+(x + y + z)dz}e-2U»dy 

= 1 + f (F+{x + y)+ f B+{x,z)F+(x + y + z)dzj e~2itydy 

+ i £ c+je-2X'xh+ {x, iXj) j-jj-
J€J 

where by definition Xj := * //Cy -f c2. 
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Assuming the conditions of either of the two next theorems, T+ (k) 
g+(x,£(k)) is analytic in {ImÂ: > 0}\{ÌKJ : j in J } . The following 
result will be stated separately for the case where the step c2 is strictly 
positive and where the step is 0 since, for the later case, we need much 
weaker assumptions. 

THEOREM 3.2. (step c2 > 0) Let the following conditions be satisfied: 

Yl) Let R+(£) be a complex valued function, defined and continuous 
on the whole of R with the following properties: 

(Ï) RX(£) = R+(-£)', 

(ii) |Ä+(*)I < 1 andR+{0) = - 1 ; 

(iii) Ä+(£) = 0{\) for \t\ -+ oo; and 

(iv) F+(x) := ^ / ^ j f i - i - M e 2 ^ ^ is absolutely continuous and 

/x°° \K(s)\{l + \s\)ds < oo for all x in R. 

Y2) Let T+ be a complex valued function defined on {Imk > 0}\{0} 
and meromorphic in Im k > 0 such that the points {ÌK,J : j in J} are 
the only poles ofT+, all of them simple and purely imaginary (KJ > 0). 
Moreover, 

(i) T$(k) = T+{-k) for k in R\{0}, 

(ii) T+(k) / 0 in {Imk > 0}\{±c, 0} and T+{±c) = 0, 

(iii) T+(k) = 14- O(^) as \k\ —• oo in Im k > 0 uniformly, and 

(iv) T+ continuous in {Imk > 0}\{0}. 

Y3) Let R- be a complex valued function defined and continuous on 
the whole o / R such that 

(i) R*_(k) = R-(-k), 

(ii) |Ä-(*0| < 1, andR-{0) = - 1 , 

(iii) R-(k) = O(^) as \k\ —• oo, and 

(iv) F-(x) := \ X!^ R-{k)e~2ikxdx has property P i . 

Y4) T-(Jfc) id »wen 6y {kT+{k))/£{k) in {Imk > 0}\{±c,0}. 
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Y5) (i) For all k in R\ [ -c ,c ] : 

k 
1 
l 

l = j\T+\\k) + \R+\\l{k)) 

l = ^\T-\*(k) + \R-f(£(k)) 

and 
0 = £T-{k)R*_{k) + kTÌ(k)R+(l(k)). 

(ii) i2_(0) = —1 and, for real k with 0 < |fc| < c, 

R ( k ) - ^ 
H-{lc)~Ti(ky 

Further, let (c-j)j^j be given positive numbers and {^ij)j^j numbers 
different from 0 such that Res (T-(k);iKj) = jXjic-j. Moreover let 
us introduce c+j := i& and define fi+ as above. If, in addition, 
e~lixelkxg+(x,t(k)) is in H% , then, for any x in R and Imfc > 0, 

e-iixg+(x,t(k)) = e~ikxh-(x,k) 

and 
eikxg-(x,k) = eiexh+(x,£{k)). 

Moreover, e~texe'lkxg^(x,£(k)) is an element in H£ for any fixed x in 
R if the following conditions are satisfied: 

I) There exists a > 0 such that, for all x in R, 

/•OO 

/ |r+(S)|(l + H1+«)d*<oo 
J x 

and R+(l) is a-Holder continuous in a neighborhood of £ = 0. 

II) a) k/T-{k) is bounded in £/\{0}, where U is a neighborhood ofO 
in Im k > 0 which is sufficiently small. 

b) \T-(\/c2 — t2\2t/\/c2 — t2 is 7 Holder continuous in [0, c] for some 
7 > 0 . 
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REMARK. It is shown in Lemma 3.5 that a) and b) hold if there exist 
1/2 < ß < 1 and M, M' > 0 such that T_ is continuously differentiable 
in the open interval (0, c) and 

M't<\T-(t)\<Mtß, 0<t<c, 

\t7'2-ßT'_{\/c2-t*)\<M, 0<t<c/2, 

| ( \ / c 2 - py-PTLiVc2 - t2)\ < M, c/2<t<c. 

PROOF. Let us introduce the functions 

h(x,k) := e-iikeikxg+{k,£) in Imfc > 0 

g{x,k) := eiixe~ikxh+{x,e) in Imfc > 0. 

It suffices to show that (ft, g) satisfies the conditions 1) to 5) of Theorem 
3.1. Clearly g satisfies 2) and 3). 1) follows by assumption. So it 
remains to show 4) and 5). To consider 5) let fc be in R with |fc| > c. 
Then R.{k) = -R\{k)T+{k)/Tl{k), and we get 

-2ikx h{x,-k) + R-(k)h(x,k)e 

= e^e'ik'1+^)ì\+{xìt{k)) = T-(*M*,*), 

where we used Y5 (i). For 0 < |fc| < c, we have R-(k) = 
T-{k)/Tl{k) = -T+(fc)/r;(fc), and with k := kt +ik2{k2 > 0) obtain 

h*{x, fci) + fi_(ifci)/i(x, k!)e-2iklX 

= e " t f ( * l ) , e t t , , r ^ I m ( T + ( f c l ) G + ( ! C , ^ l ) ) ) 

-it(k\)x eikix 

r+(*i) 
ümß f \T - (t) |2 exp(-2^^^*)h+ <*' Wf~ ' > d t ) . 
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It suffices to show that 

Imf̂ - r \T.(t)\^xP(-2V^T^)^ß^Efldt) 
\2wJ0 I Wl FV V ) ^—J2+H J 

= YT+(ki)T-(k1)e
2ie^xh+(x,£(k1)) 

= _lJ£M|T_(fcl)|V^)«Ä+(«^(ifc1)). 

This follows from Lemma 3.6, and 5) is proved. Now let us come to 4). 
By the definition of g, Res(T-(k)g(x,k);iKj) = Res(T_(fc);z"/cy)e~Aj 

eKixh+{x,i\j) where as usual Â  := Jc2 + AC?. On the other hand 

ic-je2K>xh(xiiK,j) 

= - c _ ^ x e ^ x c ^ ( x ^ 

=Res(T-{k)]wj)h+{x,i\j)e
K*xe-xix, 

where we used that (Res(T_(fc);i/cJ))
2 = —c+jC-j, and so 4) follows. 

The last part of the theorem will be proved in the following lemmas. 

Let us give immediately the corresponding result for the case where 
there is no step (c2 = 0). Then I = k and T(fc) := T_(fc) = T+(fc) in 
lmfc>0 . 

THEOREM 3.3. (step c2 = 0) Let the following conditions be satisfied: 

Zl) Let fi+ be a complex valued function, defined and continuous on 
the whole of R such that: 

(i) RX(k) = R+(-k); 

(ii) \R+(k)\ < 1; 

(iii) R+(k) = 0(£) as \k\ ->oo; 

(iv) i*+(fc) := ^ f^0
00R^.(k)e2%kxdk is absolutely continuous and 

f™ |*+(*)|(1 + \s\)ds < oo for all x in R. 

Z2) Let T be a complex valued function, defined on {Imk > 0}\{0} 
and meromorphic in Im fc > 0 such that the points {ÌKJ : j in J} are 
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the only poles of T, all of them simple and purely imaginary (K,J > 0) 
such that: 

(i) T*{k) = T(-fc) for k in R\{0}; 

( i i )T ( fc ) /0 m{lmfc>0}\{0}; 

(iii) T{k) = 1-1- 0{\) as \k\ —> oo uniformly in Im A: > 0; and 

(iv) T is continuous in {Imfc > 0}\{0}. 

Z3) Let R- be a complex valued function, defined and continuous on 
the whole of R such that: 

(i) Ä*(fc)=fl-(-Jb), 

(ü) |Ä-(*) | < 1, 

(iii) R-(k) = 0(\) as \k\ —> oo, and 

(iv) F-(x) := ^ f™ R-(k)e~2lkxdx has property P\. 

Z4) For all k in R\{0}, 

l = \T\*{k) + \R+\\k) = \T\\k) + \R-\2{k) 

0 = T{k)R*_(k) +T*(k)R+{k). 

Further let {C-J)JÇ.J be given positive numbers and (/j,j)jej be different 
from 0 such that Res (T;ÌKJ) = jijic-j. Moreover let us introduce 
c+j := fijC-j and define Q+ as above. If in addition g+(x,k) := 
(h+(x,k) + R+(k)h+(x,&))w£y is in H^ for all x in R, where h+ 
is given as above, then, for all x in R and Im k > 0, 

g+(x,k) = h-(x,k) 

and 
g-{x,k) = h+(x,k). 

In either of the following cases #+(x, k) is in H£: 

A) There exists 0 < a < 1/2 and M > 0 such that \k\a/\T(k)\ < M 
in a neighborhood of k = 0 in Im k > 0. 

B) (i) There exist 1 > ß > 1/2 and M > 0 suc/i *Aa*'|fc|0|T(fc)|. < M 
m a neighborhood of k = 0 m Im fc = 0. 

(ii) R+(0) = —1 and there exists ß > a > ß — 1/2 such that i?+ 

is a-Hölder continuous in a neighborhood of k = 0 and J 1^(^)1 
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(1 4- | s | 1 + a )ds < oo for all x in R. 

PROOF. Let us introduce the functions 

Ä(x, k) := g+ (x, k) in {Im k > 0}\{0} 

g(x, k) := /i+(x, A:) i n l m f c > 0 . 

It suffices to show that the pair (h,g) satisfies condition 1) to 5) of 
Theorem 3.1. Clearly g satisfies 2) and 3). 4) and 5) are shown in a 
similar way as in the proof of Theorem 3.2. So let us prove 1). Let us 
start with the representation 

T(k)g+{x,k) = l+ [ {F+(x + y) 
J—oo 

/•OO 

+ / B+(x,z)F+{x + y + z)dz}e~2ikydy 
Jo 

+ iY^C+je-2KiXh+{x,ÌKj)-—r-. 

We conclude that (T(k)g^.(xi k) - 1) Tijej{(k - iKj)/{k + ÎKJ)) is in 
H} (X in R). In case A it follows right away that <7+(x, k) - 1 is in 
H^. In case B,\imk^Qimk=0T(k)g(x,k) = 0 and so it is enough to 
show that T(k)g+(x,k) is a-Hölder continuous in a neighborhood of 
k = 0 in Im A: = 0. Consider T(k)g+(x,k) = h\(x,k) + Ä+(fc)ft+(x, k). 
By Corollary 3.8, ft+(x, fc) and ft+(x, — fc) are a-Hölder continuous in 
Imfc > 0 (x in R). By assumption R+(k) is a-Hölder continuous 
in a neighborhood of k = 0. So there exists C > 0 such that, in a 
neighborhood of k = 0 in {Im/z > 0}\{0}, we have 

\g+(x,k)\<c/\k\P-<*. 

Now we conclude that <7+(x, fc) — 1 is in i ï j" . D 

LEMMA 3.4. Let all the hypothesis of Theorem 3.2 together with I and 
II be fulfilled. Then </+(x, ̂ (fc)) — 1 «s in i J^ as a function ofk(x in R). 
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PROOF. We start with the representation 

e - iXj^ 

je J 

h+(x,iy/c2 — t2 

_ -j-r £ - iX 

je J 
£ + iXj 

•f { F + ( X + </)+/* B+{xiz)F+{x + y + z)dz}e'2iiydy 

+ i ^ c + n e 2XnXh+(x,iXn) JJ £ - iAv 
c + iXj t — iXfi neJ jeJ J 

Clearly the function on the right hand side is in H^ as a function of 
£ (x in R). For sake of convenience only we may assume that R+(l) 
is a-Hölder continuous on the whole of R and that a = 7. The next 
step is to show that the function on the right hand side is a-Hölder 
continuous in Im£ > 0. It suffices to prove that the function on the left 
hand side is a-Hölder continuous on Im^ = 0. 

By Lemma 3.6 ^ /Q
c |T_(*)|2 exp(-2>/c2 - t2x){(h+(x,iy/c2 - t2))/ 

{y/c2 — t2 -f il))dt is a-Hölder continuous in £ for Imi = 0. So let 
us turn to the term T+(k)g+(x,£). For imi = 0,T+(k)g+(x,£) = 
h\(x,l) + R+(£)e2iixh+(x,£). By Corollary 3.8, h+(x,i) is a-Hölder 
continuous. By assumption, R+(£) is a-Hölder continuous and thus 
T+(k)g+(x,£) is a-Hölder continuous for Im^ = 0. Moreover 

lim T+(%+(x,^) = 0 

Im^=o 

and thus Hjejiit-iX^/ii + iXj^T+ityg+fal) is a/2-Hölder contin
uous as a function of k in Im fc > 0. So there exists C > 0 such that, 
for |fc| < 2c, 

C 
\g+(x,t{k))\ < | f c _ c | 1 / 2 _ a / 2 | f c + c |1 /2_CK/25 

where we used kT+(k) = t(k)T-(k) and M'\k\ < \T-{k)\ for some 
M' > 0. These two facts together imply that T+(fc) is bounded away 
from 0 in f/\{0} where U is a neighborhood of k = 0 in Imfc > 0. 
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With this estimate in hand and l/T+(fc) = 1 + 0 ( | ) for |fc| —• oo in 
Imk > 0, one can see that g+(x,l(k)) — 1 is an element in H^. u 

Let us introduce the function 

<t>(t) := iT.iVS^tf-r^lioM*)' t_ 
y/c^t*' 

Here l(o,c) denotes the characteristic function of the open interval (0, c). 

LEMMA 3.5. Let the following conditions be met. 

1) T_ is continuous on the closed interval [0, c] and there exists 
1/2 < ß < 1 and M > 0 such that \T-(t)\ < M\t\ß. 

2) T- is continuously differentiable in the open interval (0, c) such 
that 

and 

\r-{V*=P)\ < ( V c 2
 M

t2y_ß M t in (c/2,c). 

Then (f> is (ß — 1/2) Holder continuous. 

PROOF. Straight-forward verification shows that, for t in (0, c) and 
7 := ß - 1/2, there exists A > 0 such that \(ß'(t)\ < A/t1'1. 
Moreover (0(t) - 0 (0 ) ) /^ = </>{t)/t^ and {(j)(t) - 0(O))/(c - t)^ = 
(f>{t)(t + c)1 /(c2 — t2)1 are bounded in (0, c) and the Holder continuity 
Of (f) follows.D 

Let us introduce the function 

i ' i2 

v(x,t):= - , l e-2txl(0c)(t). jp—p (0,ov ) iT-iVc^-t2) 

By M we denote the Hilbert transformation on Z,2(R). 
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LEMMA 3.6. Let the condition II of Theorem 3.2 be satisfied. If in 
addition f™ | i%(s)|(l + |s|1+^)cfs < oo (x in R), where 7 := ß - 1/2, 
then: 

a) v(x,t)h+(x,jy/c2 —t2) is as a function oft in L2(R) and is 7-
Holder continuous (x in R). 

b) £ £ \T_(t)\2e-2^^x^^^dt defines an analytic fune-

tion in Rei 7̂  0 which is ^-Holder continuous in Rei < 0 as well as in 
Rei>0. 

c) With i := ii + ii2 one has 

X{v{x,t)h+(x,i\/c2 -t2)){i2){ -)iv(x,i2)h+{xiii2) 

i\\l) J° v c -t2 +ii 

h+(x,iy/c2 -t2) 
(d) i / > _ ( < ) ! ' e > p ( - 2 ^ % ) ^ _ , + tf 

is in if^ and 7/2 Holder continuous in Im fc > 0. 

( e ) ^ / o
C | T - W | 2 e x p ( ~ 2 x / ^ ~ ^ x ) 

h^(xiivc2-t2) 

Vc2 -t2+ it 

is 7-Hölder continuous in t with Imi = 0. 

PROOF, a) follows from Corollary 3.8. That implies that the Hilbert 
transform M(v(x, -)h+(x, i\Jc2 — •))(£) is 7-Hölder continuous also. Now 
b) can be deduced from c). d) follows from b) and e) follows from c). 
So it remains to prove c). For t\ ^ 0 we get 

i j° \TAt)? e x p ( - 2 \ / ^ - tH)h+{x,Wc-> - ! 2 ) ^ = _ —di 
<2 + i/ 
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For the imaginary part the convergence follows by a well known prop
erty of the Poisson kernel. The convergence of the real part one gets 
directly by the definition of the Hilbert transformation. D 

LEMMA 3.7. Leta>0. If f™ \F{(s)\{l+ \s\1+a)ds < oo for all x in 
R, then J0°° \B+(x,y)\yocdy < oo (x in K). 

PROOF. There exists a non increasing function C(x) such that 
\B+(x,y)\<C(x)Qy\Q'+(s)\ds. 

By interchanging the order of integration, 

l°° \B+(x,y)\yady <C(x)l°° \n'+(s)\[JS ' yady)ds 

/•OO 

<C(x) \n'+(s)\{s-x)1+ads 
J x 

and the lemma follows. 

Immediately we get 

COROLLARY 3.8. // Jx°° |n'+(s)|(l + \s\1+a)ds < oo for all x in 
R, then ft+(x,£) := 1 + f£° B+(x,y)e2liydy is a-Hölder continuous 
in lm£ > 0 (x in R). 

Let us summarize the main result of this paper in the following 
theorem, recalling that by definition q+(x) := c2 — dxB+(x,0) and 
q.(x) := dxB-{x,0) (in L{oc(R)). 

THEOREM 3.9. Under the hypothesis of Theorem 3.2 or Theorem 3.3, 
q- is in IJ2(—OO), q+ in Li(+oo) and q+ = q~ in L{oc(H). If moreover 
there exists a > 1/2 such that for allx inR / f (a — s)2a\Q-'(s)\2dx < 
oo, then f*^ \s\2oc\q-(s)\2ds < oo for all x in R. 

PROOF. The last statement follows from Proposition 2.7. As concerns 
the equality of the two potentials we remark that elixh^(xi£) is a 
solution of the Schrödinger equation for Im^ > 0: 
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1) -l/'(x)+q+(z)y(z) = (£2+c2)y(x) = k2y{x). 

By Theorem 3.2 or Theorem 3.3, we have for lmk > 0, 

h-{x,k)e~ikx = g+{x,l{k))e-iix. 

The right hand side is continuous in {Imfc > 0}\{|Ä:| < c : k in R} and 
is twice continuously differentiate with respect to x. So h- (x, k) is 
continuously defined in {Irak > 0}\{|Ä;| < c : k in R} and is twice 
continuously differentiate with respect to x there. Because g+ is 
real, e~îixg+(x,£(k)) is a solution of 1) for k in R\[—c,c]. But for 
Imfc > 0,e~ î k xh-(x ik) is a solution of 

2) -y"{x) +q-{x)y{x) = k2y{x). 

Due to the smoothness properties of /i_(x, fc), 2) must hold even for fc 
in R\[—c, c]. We conclude that e~lkxh-(x, fc) satisfies for fc in R\[—c, c) 
both equations 1) and 2). Subtracting them one gets 

{q+ (x) - q. {x))e~ikxh- (x, fc) = 0. 

It follows that q+(x) = q-{x) in L[°C(R). 
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