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A NOTE ON QUASI-MONIC POLYNOMIALS
AND EFFICIENT GENERATION OF IDEALS

MD. ALI ZINNA

ABSTRACT. Let A be a commutative Noetherian ring,
and let I be an ideal of A[T ] containing a quasi-monic
polynomial. Assuming that I/I2 is generated by n elements,
where n ≥ dim(A[T ]/I) + 2, then, it is proven that any
given set of n generators of I/I2 can be lifted to a
set of n generators of I. It is also shown that various
types of Horrocks’ type results (previously proven for monic
polynomials) can be generalized to the setting of quasi-monic
polynomials.

1. Introduction. It is well known that monic polynomials played a
significant role in the development of the theory of projective modules
and complete intersections. For instance, the affine Horrocks’ theorem
asserts that if a projective A[T ]-module P is such that Pf is free for
some monic polynomial f ∈ A[T ], then P is free. This result was
perhaps the most crucial step in proving Serre’s conjecture.

Later, Mohan Kumar [10] and Mandal [7] used monic polynomials
beautifully to obtain some significant results on complete intersections.
In the more modern theory of Euler class groups, serious involvement
of monic polynomials can be found in Das’s work.

In this paper, we study “quasi-monic” polynomials (see Definition
2.7, which was introduced in [14]). Quasi-monic polynomials are a gen-
eralization of monic polynomials. In [14], Zhu showed that the Suslin
lemma and Horrocks’ theorem for monic polynomials can be generalized
to the setting of quasi-monic polynomials.

We now recall the theorem of Mandal, previously mentioned.

Theorem 1.1 ([7]). Let A be a commutative Noetherian ring, and let I
be an ideal of A[T ] containing a monic polynomial. Suppose that I/I2
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is generated by n elements, where n ≥ dim(A[T ]/I) + 2. Then, any
given set of n generators of I/I2 can be lifted to a set of n generators
of I.

In the context of quasi-monic polynomials, it is natural to ask the
next question.

Question 1.2. Let A be a commutative Noetherian ring, and let I
be an ideal of A[T ] containing a quasi-monic polynomial. Let I/I2 be
generated by n elements, where n ≥ dim(A[T ]/I)+2. Suppose that I =
(f1, . . . , fn) + I2. Do there exist g1, . . . , gn such that I = (g1, . . . , gn)
with fi − gi ∈ I2?

In Section 3, we give an affirmative answer to the above question
(Theorem 3.2).

Later, we prove the following result (see Theorem 3.6). This gener-
alizes a result of Bhatwadekar and Raja Sridharan [3, Theorem 3.4].

Theorem 1.3. Let A be a commutative Noetherian ring of dimension n
containing an infinite field, and let P be a projective A[T ]-module
of rank n. Suppose that the projective A[T ]f(T )-module Pf(T ) has a
unimodular element for some quasi-monic polynomial f(T ) ∈ A[T ].
Then, P has a unimodular element.

Now we discuss another important application of monic polynomials.

Let A = k[X1, . . . , Xn] be the polynomial ring in n variables over an
algebraically closed field k. Let I be an ideal of A. Then, the famous
Hilbert Nullstellensatz states that V (I) is not empty. One of the proofs
of this via Noether normalisation runs as follows: using a change of
variables we may assume that I contains a monic polynomial in one of
the variables, say, Xn. Let B = k[X1, . . . , Xn−1] be the polynomial ring
in n − 1 variables and J = I ∩ B. Then, by the induction hypothesis,
V (J) is not empty.

In order to complete the proof, we would like to extend a zero of J
to a zero of I. We can do this using the following extension lemma due
to Suslin ([6, page 79, Lemma 1.1]). Let A be a commutative ring and
I ⊂ A[X] be an ideal containing a monic polynomial. Let M ⊂ A be a
maximal ideal containing I ∩A. Then, there exists a maximal ideal N
of A[X] containing I +MA[X].
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Let (a1, . . . , an−1) ∈ V (J). Since I contains a monic polynomial
in Xn, we can apply the extension lemma to the maximal ideal (X1 −
a1, . . . , Xn−1−an−1) and find a maximal ideal N = (X1−a1, . . . , Xn−
an) corresponding to a zero of I.

Note that we can also state the extension lemma in the following
form.

Lemma 1.4. Let A be a commutative ring, and let I ⊂ A[X] be an
ideal containing a monic polynomial. Let M be a maximal ideal of A
such that I +MA[X] = A[X]. Then, (I ∩A) +M = A.

Most proofs of Horrocks’ theorem (other than Horrocks’ own which
uses cohomology) use the extension lemma in some form, in the same
way that proofs of the Hilbert Nullstellensatz use Noether normaliza-
tion. Motivated by the above discussions, we prove the following result
which generalizes the extension lemma to the quasi-monic polynomials
(3.7).

Lemma 1.5. Let A be a commutative ring, and let I ⊂ A[T ] be an
ideal containing a quasi-monic polynomial. Let M be a maximal ideal
of A such that I +MA[T ] = A[T ]. Then, (I ∩A) +M = A.

Another aspect of Horrocks’ theorem is the extendability of vector
bundles from the affine line to the projective line. Let F ∈ C[Y ] be of
degree n. Then, F has n roots. If the leading coefficient of F tends
to zero, then some of the roots of F tend to ∞. Now, let F (X,Y ) be
a polynomial of the form F (X,Y ) = an(X)Y n with additional lower
degree terms in Y . If we substitute any complex value of X, then the
equation F (X,Y ) = 0 has n roots in Y except for those values of X
such that an(X) = 0, in which case, some of those roots are ∞.

Let (F1(X,Y ), . . . , Ft(X,Y )) be a unimodular row in C[X,Y ], i.e.,
F1, . . . , Ft generate the unit ideal. Hence, the polynomials have no
common zero in C2. In particular, if a ∈ C, then F1(a, Y ), . . . , Ft(a, Y )
have no common zero. Let Fi(X,Y ) = ami(X)Y mi with additional
polynomials with lower degree terms in Y . If the leading coefficients of
Fi have no common complex zero in X, then, by what we stated earlier,
the Fi have no common zeros at Y = ∞. Any common zero X = a
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yields a common zero (a,∞) of the polynomials. In particular, if the
leading coefficients of the Fi have no common zero, the polynomials Fi
have no common zero at Y = ∞, and therefore, the unimodular row
(F1, . . . , Ft) extends to a unimodular row at Y = ∞. Thus, we obtain
a vector bundle on P1. For example, if am1(X) = 1, this holds (in other
words, F1(X,Y ) is monic in Y ). This is the reason monic polynomials
are relevant to these questions.

Motivated by the above considerations, we have the following def-
inition: If A is a commutative ring and (F1(Y ), . . . , Ft(Y )) in A[Y ]
is unimodular, we say that this row is unimodular if Y = ∞ if
(L(F1), . . . , L(Ft)) is unimodular in A where L(Fi) is the leading coef-
ficient of Fi.

In this context, Rao proved the next result ([12]).

Theorem 1.6. Let A be a commutative ring and (f1, . . . , fn) ∈
Umn(A[X]), i.e., a unimodular row of length n, with n ≥ 3 such that
(L(f1), . . . , L(fn)) ∈ Umn(A). Then, (f1, . . . , fn) can be transformed
to (L(f1), . . . , L(fn)) via elementary transformations. In particular,
when one of the ai is 1, i.e., when Fi is monic, then the row can be
completed to an elementary matrix.

In the context of quasi-monic polynomials we prove the following
result (3.8).

Theorem 1.7. Let A be a commutative ring, (f1, . . . , fn) ∈ Umn(A[T ])
with n ≥ 3, and let f1 be a quasi-monic polynomial. Then, (f1, . . . , fn)
can be completed to an elementary matrix.

Careful investigation of our methods adapted to prove the above
results reveal that we are essentially taking advantage of decomposing
the given ring A = A0 ⊕ · · · ⊕ Ak+1. The decomposition is induced
by a quasi-monic polynomial. With this observation, we consider the
following set up.

Let A be a commutative Noetherian ring and assume that Spec(A)
is disconnected. Let A = A1 ⊕ · · · ⊕Ak be a decomposition such that

Spec(A) = Spec(A1) ∪ · · · ∪ Spec(Ak)
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with Spec(Ai) is connected. In Section 4, we investigate the relationship
between the top Euler class group of A and the top Euler class groups
of Ai.

In fact, we prove the following result.

Theorem 1.8. Let A be a commutative Noetherian ring of dimen-
sion n ≥ 2 and A = A1 ⊕ · · · ⊕ Ak such a decomposition of A so
that Spec(A1), . . . , Spec(Ak) are the connected components of Spec(A).
Then, E(A) ≃ E(A1)⊕ · · · ⊕ E(Ak).

In order to prove Theorem 1.8, we consider the notion of the

generalized Euler class group of a Noetherian ring R (denoted by Ẽ(R))

from [5]. It is easy to see that the natural map from Ẽ(A) to

Ẽ(A1)⊕ · · · ⊕ Ẽ(Ak)

is well defined. Finally, we show that the natural map is an isomor-

phism. In [5], it was proven that E(R) ≃ Ẽ(R). Therefore, the theorem
follows.

2. Preliminaries.

Notation 2.1. All of the rings considered in this paper are assumed to
be commutative. By dimension of a ringA we mean its Krull dimension,
denoted by dim(A). Modules are assumed to be finitely generated.
Projective modules are assumed to have constant rank.

We begin with the following definition.

Definition 2.2. Let A be a ring. An element a ∈ A is called an
m-idempotent in case am = a for some integers m ≥ 2.

Definition 2.3. Let e1, e2, . . . , en be idempotents of a ring A. Then,
e1, e2, . . . , en are called orthogonal idempotents if eiej = 0 whenever
i ̸= j.

The next lemma is proven in [14].
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Lemma 2.4. Let A be a ring and d0, d1, . . . , dk ∈ A. If each di is an
mi-idempotent, then there exist orthogonal idempotents

s0, s1, . . . , sk, sk+1 ∈ A

with
s0 + s1 + · · ·+ sk+1 = 1,

and there is a ring decomposition of A:

A = As0 ⊕ · · · ⊕Ask+1.

Remark 2.5. In Lemma 2.4 above, the orthogonal idempotents
s0, s1, · · · , sk, sk+1 ∈ A are precisely of the form:

s0 = dm0−1
0 ,

s1 = (1− dm0−1
0 )dm1−1

1 ,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ,

sk = (1− dm0−1
0 ) · · · (1− d

mk−1−1
k−1 )dmk−1

k ,

sk+1 = (1− dm0−1
0 ) · · · (1− d

mk−1−1
k−1 )(1− dmk−1

k ).

Remark 2.6. Let A be a ring and e ∈ A an idempotent element.
Then, A has a decomposition, namely, A = Ae ⊕ A(1 − e). Now,
choose finitely many idempotent elements in A, say, e1, . . . , en. Take
e′1 = e1, e

′
2 = (1 − e1)e2, . . ., e

′
n = (1 − e1) · · · (1 − en−1)en and

e′n+1 = (1 − e1) · · · (1 − en−1)(1 − en). Then, we have n + 1 pairwise
orthogonal idempotents e′1, . . . , e

′
n, e

′
n+1 such that e′1 + · · ·+ e′n+1 = 1.

Thus, the choice of si in Remark 2.5 is the natural generalization of
the e′i.

Definition 2.7. A polynomial f(X) = d0X
n+d1X

n−1+· · ·+dn−1X+
dn with d0 ̸= 0 over a commutative ring A is called a quasi-monic
polynomial if it is monic or there exists an integer k, with 0 ≤ k < n,
such that the coefficients of f(X) satisfy the following conditions:

(i) each di (0 ≤ i ≤ k) is an mi-idempotent;
(ii) sk+1dk+1 = sk+1 (sk+1 ∈ A as in Lemma 2.4), or there exist

t0, . . . , tk+1 ∈ A such that t0d0 + · · ·+ tk+1dk+1 = 1.
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Remark 2.8. The definition of a quasi-monic polynomial over an
arbitrary ring (not necessarily commutative) may be found in [14].

If there is a least integer k ≥ 0 such that the above two conditions
hold, then we say that f(X) is a quasi-monic polynomial of length k+1,
and a monic polynomial is called a quasi-monic polynomial of length 0.

The following facts are well known. Therefore, we state them with-
out proofs.

Lemma 2.9. Let A = A1 ⊕ · · · ⊕An be a finite direct product of rings
and ei := (0, . . . , 0, 1, 0, . . . , 0), where the ith component is 1. Then:

(i) ei
2 = ei;

(ii) eiej = 0 for i ̸= j; and

(iii) Σei = 1.

Theorem 2.10. Let A1, . . . , An be rings and A = A1 ⊕ · · · ⊕ An.
Let e1, . . . , en be the idempotents defined by this splitting, as above.
Then, any A-module M admits the splitting M =M1⊕· · ·⊕Mn where
Mi :=Mei. Note that Mi is an Ai-module in an obvious manner.

Lemma 2.11. Let A = A1 ⊕ · · · ⊕ An be as above. Let I be an ideal
of A. Then, I = I1 ⊕ · · · ⊕ In, where Ij is a suitable ideal of Aj for
j = 1, . . . , n. In this situation, there is a canonical isomorphism

A/I ≃ A1/I1 ⊕ · · · ⊕An/In.

Remark 2.12. Let A1, . . . , An be rings and A = A1⊕· · ·⊕An. Then,
any projective A-module P admits the splitting P = P1 ⊕ · · · ⊕ Pn,
where Pi is a projective Ai-module. In addition, we know that, if

ϕ : R −→ S

is a ring homomorphism and P is a projective R-module of rank n,
then P ⊗R S is also a projective S-module of rank n. Therefore, each
Pi is a projective Ai-module of rank n (where n is rank(P )).

Definition 2.13. Let R be a ring and P a projective R-module. An
element p ∈ P is called unimodular if there is a surjective R-linear map

ϕ : P � R

such that ϕ(p) = 1.
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Definition 2.14. An ideal I of a ring A is said to be efficiently
generated if µ(I) = µ(I/I2), where µ(−) stands for the minimal number
of generators as an A-module.

Let A be a Noetherian ring of dimension n. We recall the definition
of the nth Euler class group En(A) of A with respect to A (from [2]).
For brevity, we shall denote En(A) by E(A). However, we can define
the nth Euler class group En(A,L) of A with respect to any rank 1
projective A-module L.

Definition 2.15 (The Euler class group E(A)). Write F = An. Let
J ⊂ A be an ideal of height n such that J/J2 is generated by n elements.
Two surjections α and β from F/JF to J/J2 are said to be related if
there exists a σ ∈ SL(F/JF ) such that ασ = β. Clearly, this is an
equivalence relation on the set of surjections from F/JF to J/J2. Let
[α] denote the equivalence class of α. Such an equivalence class [α] is
called a local orientation of J . By abuse of notation, we shall identify
an equivalence class [α] with α. A local orientation α is called a global
orientation if α : F/JF � J/J2 can be lifted to a surjection θ : F � J .

Let G be the free abelian group on the set of pairs (n, ωn), where
n is an m-primary ideal for some maximal ideal m of height n such
that n/n2 is generated by n elements and ωn is a local orientation of
n. Let J ⊂ R be an ideal of height n such that J/J2 is generated by
n elements and ωJ is a local orientation of J . Let J = ∩ini be the
(irredundant) primary decomposition of J . We associate to the pair
(J, ωJ) the element ∑

i

(ni, ωni)

of G, where ωni is the local orientation of ni induced by ωJ . By abuse
of notation, we denote

∑
i(ni, ωni) by (J, ωJ ). Let H be the subgroup

of G generated by set of pairs (J, ωJ), where J is an ideal of height n
and ωJ is a global orientation of J . The Euler class group of A with

respect to A is E(A)
def
= G/H.

Now we recall the definition of the generalized Euler class group of
a Noetherian ring [5]. The definition of generalized Euler class group
is very similar to the Euler class group.

Definition 2.16 (The generalized Euler class group Ẽ(A)). Let A be
a Noetherian ring of dimension n ≥ 2. Let G be the free abelian group
on the pairs (J, ωJ), where:
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(1) J is an m-primary ideal for some maximal ideal m of A, not
necessarily of height n;

(2) ωJ is an SLn(A/J)-equivalence class of surjections from (A/J)n �
J/J2, i.e., a local orientation of J .

Given any zero-dimensional ideal I of A, i.e., dim(A/I) = 0, and a
surjection ωI : (A/I)n � I/I2, an element of G may be associated in
an obvious manner; we call it (I, ωI). Let H be the subgroup of G
generated by all elements of the type (I, ωI), where dim(A/I) = 0, and

ωI can be lifted to a surjection from An to I. We define Ẽ(A) = G/H.

The theory of Euler class groups as developed in [2] and adapt
similar methods to prove the following assertion.

Theorem 2.17 ([5]). Let A be a Noetherian ring of dimension n ≥ 2.
Let I ⊂ A be an ideal with dim(A/I) = 0 such that I/I2 is generated
by n elements, and let is isomorphic to the Euler class group E(A).

ωI : (A/I)
n � I/I2

be a local orientation of I. Suppose that the image of (I, ωI) is zero in

the Euler class group Ẽ(A) of A. Then, I is generated by n elements
and ωI is a global orientation of I.

It was proven in [5] that the generalized Euler class group Ẽ(A) is
isomorphic to the Euler class group E(A).

Proposition 2.18. Let A be a Noetherian ring of dimension n ≥ 2.

Then, the canonical map from E(A) to Ẽ(A) is an isomorphism.

Definition 2.19 (The weak Euler class group E0(R)). Let R be a
Noetherian ring of dimension n ≥ 2. Let G0 be the free abelian group
on the set of all ideals n, where n is m-primary for some maximal ideal
m of height n such that there is a surjection

F � n/n2.

Given any ideal J of height n, we take the (irredundant) primary
decomposition J = ∩ini and associate to J the element∑

i

ni
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of G0. We denote this element by (J). Let H0 be the subgroup of G0

generated by all (J) such that J is a surjective image of F . The weak
Euler class group of R with respect to R is defined as E0(R) = G0/H0.

Remark 2.20. It is clear from the above definitions that there is an
obvious canonical surjective group homomorphism

Θ : E(R) � E0(R)

which sends an element (J, ωJ ) of E(R) to (J) in E0(R).

3. Generalizations of Mandal’s theorem. Some results regard-
ing monic polynomials can be generalized to the setting of quasi-monic
polynomials. For monic polynomials, Mandal proved the following.

Theorem 3.1 ([7]). Let A be a Noetherian ring, and let I be an ideal
of A[T ] containing a monic polynomial. Suppose that I/I2 is generated
by n elements, where n ≥ dim(A[T ]/I) + 2. Then, any given set of n
generators of I/I2 can be lifted to a set of n generators of I.

We generalize Mandal’s theorem in the following form.

Theorem 3.2. Let A be a Noetherian ring, and let I be an ideal of A[T ]
containing a quasi-monic polynomial. Suppose that I/I2 is generated
by n elements, where n ≥ dim(A[T ]/I) + 2. Then, any given set of n
generators of I/I2 can be lifted to a set of n generators of I.

Proof. Let g1, g2, . . . , gn ∈ I be such that I = (g1, g2, . . . , gn) + I2.
By hypothesis, I contains a quasi-monic polynomial, say, f . Let

f = d0T
m + · · ·+ dkT

m−k + · · ·+ dm.

We may assume that f is not monic (if f is monic, then it is exactly
Mandal’s theorem). Therefore, let

f = d0T
m + · · ·+ dkT

m−k + · · ·+ dm

be a quasi-monic polynomial of length k + 1 for some k ≥ 0. Then, by
Lemma 2.4, there exists a decomposition of A:

A = A0 ⊕A1 ⊕ · · · ⊕Ak+1,

where Aj = Asj and each sj is as in Lemma 2.4. This yields a
decomposition of f :
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f = f0 + f1 + · · ·+ fk+1,

where

fj = fsj = djsjT
m−j + dj+1sjT

m−j−1 + · · ·+ dmsj ∈ Aj [T ]

for 0 ≤ j ≤ k+1. Suppose that each dj is anmj-idempotent for 0 ≤ j ≤
k. Now, from Remark 2.5, it follows that d

mj−2
j (djsj) = d

mj−1
j sj = sj

for 0 ≤ j ≤ k. In addition, when j = k + 1, it follows from Definition
2.7 (i) that dk+1sk+1 is a unit. Therefore, the leading co-efficient of fj
(= djsj) is invertible for all 0 ≤ j ≤ k+1, and hence, fj (0 ≤ j ≤ k+1)
is a monic polynomial in Aj [T ].

Furthermore, by Lemma 2.11, we have I = I0+I1+ · · ·+Ik+1, where
Ij = Isj and

A[T ]/I ≃ A0[T ]/I0 ⊕A1[T ]/I1 ⊕ · · · ⊕Ak+1[T ]/Ik+1.

Clearly, fj ∈ Ij for each j = 0, 1, . . . , k + 1. Now, dim(A[T ]/I) =
max{dim(A0[T ]/I0), dim(A1[T ]/I1), . . . , dim(Ak+1[T ]/Ik+1)}. Hence,
n ≥ dim(A[T ]/I) + 2 ≥ dim(Aj [T ]/Ij) + 2 for j = 0, 1, . . . , k + 1.

Let gi = gi0 + gi1 + · · · + gik+1, for i = 1, 2, . . . , n, where gij ∈ Ij .
Then, it is easy to verify that

Ij = (g1j , g2j , . . . , gnj) + I2j for j = 0, 1, . . . , k + 1.

However, we have already observed that fj ∈ Ij is a monic polyno-
mial. Therefore, by Theorem 3.1, there exist h1j , h2j , . . . , hnj such that
Ij = (h1j , h2j , . . . , hnj) with gij −hij ∈ I2j for 1 ≤ i ≤ n, 0 ≤ j ≤ k+1.

Now our claim is I = (h1, h2, . . . , hn), where hi = hi0 + hi1 +
· · · + hik+1 for 1 ≤ i ≤ n. Clearly, (h1, h2, . . . , hn) ⊂ I. Therefore,
we will show that I ⊂ (h1, h2, . . . , hn). Let α ∈ I. Then, α =
α0 + α1 + · · · + αk+1, where αj = αsj ∈ Ij for 0 ≤ j ≤ k + 1. Now,
since Ij = (h1j , h1j , . . . , hnj), we therefore have

αj = a1jh1j + a2jh2j + · · ·+ anjhnj ,

where aij ∈ Aj [T ] for 1 ≤ i ≤ n, 0 ≤ j ≤ k + 1. Since sisj = 0 for
i ̸= j, it follows that arihrj = 0 for i ̸= j. Therefore, it is easy to verify
that

α = a1h1 + a2h2 + · · ·+ anhn,

where ai = ai0 + ai1 + · · ·+ aik+1 ∈ A[T ]. Hence, the claim is proven.
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Therefore, we have I = (h1, h2, . . . , hn). Furthermore, it is easy to
verify that gi − hi ∈ I2 for 1 ≤ i ≤ n. �

As a consequence, the following result is derived in terms of the
Euler class group of A[T ] (denoted by E(A[T ])). For the definition of
the Euler class group of A[T ], the reader is referred to [4].

Corollary 3.3. Let A be a Noetherian ring of dimension n ≥ 3,
containing Q. Let (I, ωI) ∈ E(A[T ]). Assume that I contains some
quasi-monic polynomial. Then, (I, ωI) = 0 in E(A[T ]).

Proof. By hypothesis, (I, ωI) ∈ E(A[T ]), where I ⊂ A[T ] is an
ideal of height n and ωI is a local orientation of I induced by, say,
I = (f1, . . . , fn) + I2.

Now, dim(A[T ]/I) ≤ dim(A[T ]) − ht(I) = 1 and n ≥ 3; therefore,
the hypothesis of Theorem 3.2 is satisfied. Furthermore, applying
Theorem 3.2, there exist g1, . . . , gn such that I = (g1, . . . , gn) with
fi − gi ∈ I2, in other words, ωI is a global orientation and (I, ωI) = 0
in E(A[T ]). Hence, the corollary is proven. �

Now, using the same method of Theorem 3.2, we can also gener-
alize a variant of Mandal’s theorem to the setting of the quasi-monic
polynomial.

Theorem 3.4. Let A be a Noetherian ring. Let I ⊂ A[T ] be an ideal
containing a quasi-monic polynomial. Let I = (f1, . . . , fn) + I2, where
n ≥ dim(A[T ]/I) + 2. Suppose that I(0) = (a1, . . . , an) is such that
fi(0)− ai ∈ I(0)2. Then, there exists a set of generators h1, . . . , hn of
I such that hi(0) = ai.

The next theorem was proven by Bhatwadekar and Raja Sridharan
[3].

Theorem 3.5. Let A be a Noetherian ring of dimension n containing
an infinite field and P a projective A[T ]-module of rank n. Suppose
that the projective A[T ]f(T )-module Pf(T ) has a unimodular element
for some monic polynomial f(T ) ∈ A[T ]. Then, P has a unimodular
element.
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Now, we generalize the previous theorem to the setting of the quasi-
monic polynomial.

Theorem 3.6. Let A be a Noetherian ring of dimension n containing
an infinite field and P a projective A[T ]-module of rank n. Suppose
that the projective A[T ]f -module Pf has a unimodular element for some
quasi-monic polynomial f ∈ A[T ]. Then, P has a unimodular element.

Proof. If f is monic, then it is exactly the above theorem. Thus, let

f = d0T
m + · · ·+ dkT

m−k + · · ·+ dm

be a quasi-monic polynomial of length k + 1 for some k ≥ 0. Then, by
Lemma 2.4, there exists a decomposition of A:

A = A0 ⊕A1 ⊕ · · · ⊕Ak+1,

where Aj = Asj and each sj is as in Lemma 2.4. We have a
decomposition of f :

f = f0 + f1 + · · ·+ fk+1,

where fj = fsj = djsjT
m−j + dj+1sjT

m−j−1 + · · · + dmsj ∈ Aj [T ] is
a monic polynomial for 0 ≤ j ≤ k + 1.

Furthermore, by Remark 2.12,

P = P0 ⊕ · · · ⊕ Pk+1,

where Pj is a projective Aj [T ]-module of rank n. Now, it is easy to
verify that

A[T ]f ≃ (A0[T ])f0 ⊕ · · · ⊕ (Ak+1[T ])fk+1

and

Pf ≃ (P0)f0 ⊕ · · · ⊕ (Pk+1)fk+1
.

Since Pf has a unimodular element, it follows that (Pj)fj , 0 ≤ j ≤ k+1,
also has a unimodular element. Now, by Theorem 3.5, each Pj has a
unimodular element. Therefore, P has a unimodular element. Hence,
the theorem follows. �

Next is the proof of the quasi-monic version of the extension lemma
(1.4).
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Lemma 3.7. Let A be a ring and I ⊂ A[T ] an ideal containing a
quasi-monic polynomial. Let M be a maximal ideal of A such that
I +MA[T ] = A[T ]. Then, (I ∩A) +M = A.

Proof. By hypothesis, I contains a quasi-monic polynomial, say, f .
Let

f = d0T
m + · · ·+ dkT

m−k + · · ·+ dm.

We may assume that f is not monic (if f is monic, then it is exactly the
extension lemma). Therefore, let f = d0T

m+ · · ·+ dkT
m−k + · · ·+ dm

be a quasi-monic polynomial of length k + 1 for some k ≥ 0. Then, by
Lemma 2.4, there exists a decomposition of A:

A = A0 ⊕A1 ⊕ · · · ⊕Ak+1,

where Aj = Asj and each sj is as in Lemma 2.4, and we have a
decomposition of f :

f = f0 + f1 + · · ·+ fk+1,

where

fj = fsj = djsjT
m−j + dj+1sjT

m−j−1 + · · ·+ dmsj ∈ Aj [T ]

is a monic polynomial for 0 ≤ j ≤ k + 1. In addition, by Lemma 2.11,
we have

I = I0 + I1 + · · ·+ Ik+1

and
M = A0 +A1 + · · ·+Mj + · · ·+Ak+1 for some j,

where Mj is a maximal ideal of Aj . We have already observed
that fj ∈ Ij is a monic polynomial. By the hypothesis, we have
Ij + MjAj [T ] = Aj [T ]. Therefore, by the extension lemma (1.4),
(Ij ∩ Aj) + Mj = Aj . It is now easy to conclude that (I ∩ A) + M
= A. �

We now prove (1.7), mentioned in the introduction.

Theorem 3.8. Let A be a ring and (f1, . . . , fn) ∈ Umn(A[T ]) with
n ≥ 3. Assume that f1 is a quasi-monic polynomial. Then, (f1, . . . , fn)
can be completed to an elementary matrix.
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Proof. Let f1 = d0T
m + · · · + dkT

m−k + · · · + dm. If f1 is monic,
then we are done. Therefore, let f1 = d0T

m+ · · ·+ dkT
m−k + · · ·+ dm

be a quasi-monic polynomial of length k + 1 for some k ≥ 0. Then, by
Lemma 2.4, there exists a decomposition of A:

A = A0 ⊕A1 ⊕ · · · ⊕Ak+1,

where Aj = Asj , and each sj is as in Lemma 2.4, and we have a
decomposition of f1:

f1 = f01 + f11 + · · ·+ f(k+1)1,

where

fj1 = f1sj = djsjT
m−j + dj+1sjT

m−j−1 + · · ·+ dmsj ∈ Aj [T ]

is a monic polynomial for 0 ≤ j ≤ k + 1.

It is easy to see thatGLn(A[T ]) = GLn(A0[T ])⊕· · ·⊕GLn(Ak+1[T ]),
i.e., any σ ∈ GLn(A[T ]) is of the form (σ0, . . . , σk+1) ∈ GLn(A0[T ])⊕
· · ·⊕GLn(Ak+1[T ]). It may also be observed that, if σ ∈ En(A[T ]), then
σj ∈ En(Aj [T ]) for 0 ≤ j ≤ k+1. On the other hand, if σj ∈ En(Aj [T ]),
then σj =

∏
σjkj , where σjkj = εil(λ) for some i, l, i.e., the ilth entry

is λ for the matrix whose diagonal entries are 1, and other entries are
0. Then, clearly, we have

σ =
∏

τjk,

where τjk = (In, . . . , σjk, · · · , In) and σjk is at the jth position.
Therefore, σ ∈ En(A[T ]).

Now, (f1, . . . , fn) ∈ Umn(A[T ]) is of the form ((f01, . . . , f0n), . . . ,
(f(k+1)1, . . . , f(k+1)n), where (fj1, . . . , fjn) ∈ Umn(Aj [T ])) with fj1 is
monic for 0 ≤ j ≤ k + 1. By Rao’s result [12], there exist σj ∈
En(Aj [T ]) such that (fj1, . . . , fjn)σj = (1, 0, . . . , 0) for 0 ≤ j ≤ k + 1.
If we consider σ = (σ0, . . . , σk+1), then σ ∈ En(A[T ]). In addition,
note that (f1, . . . , fn)σ = (1, 0, . . . , 0). We are done. �

We conclude this section by generalizing a result on set-theoretic
generation of ideals to the setting of quasi-monic polynomial. The
following is a result due to Mandal [8, Theorem 1.1].

Theorem 3.9. Let R = A[X] be a polynomial ring over a Noetherian
ring A. Let I ⊂ R be a locally complete intersection ideal of height r
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with dim(R/I) ≤ 1. If it contains a monic polynomial, then I is set
theoretically generated by r elements.

The next result is the quasi-monic version of the affine Horrocks’
theorem [11, 13]. Since the proof is along the same lines, we do not
repeat it here.

Theorem 3.10. Let A be a Noetherian ring. Let P be a projective
A[X]-module such that the A[X]f -module Pf is free for some quasi-
monic polynomial f ∈ A[X]. Then, P is free.

The next theorem generalizes Theorem 3.9 to the setting of the quasi-
monic polynomial. The proof is along the same lines as [8, Theorem
1.1]; therefore, we do not give the details.

Theorem 3.11. Let R = A[X] be a polynomial ring over a Noetherian
ring A. Let I ⊂ R be a locally complete intersection ideal of height r
with dim(R/I) ≤ 1. If I contains a quasi-monic polynomial, then I is
set theoretically generated by r elements.

Proof. The case r = 1 follows from Theorem 3.10. For details, see
the proof of [8, Theorem 1.1].

We assume that r ≥ 2. Then, from Ferrand and Szpiro [9, Theorem
6.1.3], there is a locally complete intersection ideal J of height r such
that

(i)
√
J =

√
I, and

(ii) J/J2 is a free R/J-module of rank r.

Let r ≥ 3 and f ∈ I be a quasi-monic polynomial. Furthermore, we
can assume that f is a quasi-monic polynomial of length ≥ 1. Then,
by Lemma 2.4, there exists a decomposition of A:

A = A0 ⊕A1 ⊕ · · · ⊕Ak+1,

where Aj = Asj , and each sj is as in Lemma 2.4.

Note that √
J =

√
Js0 ⊕ · · · ⊕

√
Jsk+1.
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Since
√
J contains f , therefore, each Jsj contains a monic polynomial

(some power of fsj). As Jsj/(Jsj)
2 is generated by r elements

and dim(Asj/Jsj) ≤ 1, applying Theorem 3.1, it follows that Jsj ,
0 ≤ j ≤ k + 1, is generated by r elements. Hence, J is generated by r
elements. Therefore, I is set-theoretically generated by r elements.

If r = 2, we have that J/J2 is generated by two elements. From the
standard patching argument, it may be shown that J is a surjective im-
age of a projective module P of a trivial determinant. Since J contains
a quasi-monic polynomial, the result follows from Theorem 3.10. �

4. Ring decomposition and the Euler class groups. Let A be
a Noetherian ring, and let X = Spec(A). Now, consider X together
with the Zariski topology. Assume that Spec(A) is not connected. Let

Spec(A) = X1 ∪ · · · ∪Xk

be the disjoint union of the connected components. Since connected
components are closed, therefore, for 1 ≤ i ≤ k, Xi = V(Ji) for some
ideal Ji ⊂ A.

Since Spec(A) = Spec(Ared); thus, we may assume that A is reduced.
This yields

Spec(A) = V(J1) ∪ · · · ∪ V(Jk) = V(J1 ∩ · · · ∩ Jk).

Hence, J1 ∩ · · · ∩ Jk ⊂ N(A), where N(A) denotes the nilradical of A.
However, since A is reduced, N(A) = 0 and J1 ∩ · · · ∩ Jk = 0. Also
note that Ji + Jj = A for i ̸= j. By the Chinese remainder theorem,
we have

A ≃ A/J1 ⊕ · · · ⊕A/Jk.

Therefore, we have a decomposition of A, say, A = A1 ⊕ · · · ⊕An, such
that Spec(A) = Spec(A1) ∪ · · · ∪ Spec(Ak). Let dim(A) = n. Then,
dim(Ai) ≤ n for 1 ≤ i ≤ k.

In this section, we establish a natural relation between the Euler class
group of A = A1 ⊕ · · · ⊕ Ak and the Euler class groups of A1, . . . , Ak.
Note that, if dim(Ai) < n, then E(Ai) = 0. The main theorem of this
section is the following.
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Theorem 4.1. Let A be a Noetherian ring and A = A1⊕· · ·⊕Ak such
a decomposition of A so that Spec(A1), . . . ,Spec(Ak) are the connected
components of Spec(A). Then, E(A) ≃ E(A1)⊕ · · · ⊕ E(Ak).

If dim(Ai) < n for some i, then E(Ai) = 0, and we may drop that
summand. Therefore, without loss of generality, we may assume that
each Ai has dimension n.

In order to prove Theorem 4.1 (using Theorem 2.18), it is sufficient
to show that

Ẽ(A) ≃ Ẽ(A1)⊕ · · · ⊕ Ẽ(Ak),

for which we must ensure that there is a group homomorphism from

Ẽ(A) to Ẽ(A1)⊕ · · · ⊕ Ẽ(Ak).

Remark 4.2. Let A1, . . . , Ak be Noetherian rings of dimension n, and
let A = A1 ⊕ · · · ⊕ Ak. It follows that dim(A) = n. Now, we can

give a natural map from Ẽ(A) to Ẽ(A1)⊕ · · · ⊕ Ẽ(Ak) in the following
manner.

Let (I, ωI) ∈ Ẽ(A), where I is an ideal of A such that dim(A/I) = 0
and ωI is a local orientation of I. Then, by Lemma 2.11, I is of the
form I = I1 ⊕ · · · ⊕ Ik, where Ij is an ideal of Aj . Furthermore,
A/I ≃ A1/I1 ⊕ · · · ⊕Ak/Ik.

Since dim(A/I) = max{dim(A1/I1), . . . , dim(Ak/Ik)} and dim(A/I)
= 0, therefore, dim(Aj/Ij) = 0, for j = 1, . . . , k.

Let ωI be a local orientation of I induced by, say, I = (f1, . . . , fn)+
I2. Then, by Lemma 2.4, each fi has a decomposition, say fi =
fi1 + · · ·+ fik, where fij ∈ Ij . It is easy to verify that

Ij = (f1j , . . . , fnj) + I2j for j = 1, . . . , k.

We define
φ : Ẽ(A) −→ Ẽ(A1)⊕ · · · ⊕ Ẽ(Ak)

by sending (I, ωI) to ((I1, ωI1), . . . , (In, ωIk)), where ωIj is the local

orientation of Ij induced by Ij = (f1j , . . . , fnj) + I2j .

Proof of Theorem 4.1. First, we show that φ is one-to-one. Let

(I, ωI) ∈ Ẽ(A) be such that (Ij , ωIj ) = 0 in E(Aj) for i = 1, . . . , n.
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Then, by [2, Theorem 4.2], ωIj is a global orientation, for i = 1, . . . , k.

This tells us that Ij = (g1j , . . . , gnj) such that fij − gij ∈ I2j for all j,
and for 1 ≤ i ≤ n.

Now, following the proof of Theorem 3.2, it can easily be verified that
there exist g1, . . . , gn ∈ I such that I = (g1, . . . , gn) with fi−gi ∈ I2, in
other words, ωI is a global orientation and (I, ωI) = 0 in E(A). Hence,
φ is one-to-one.

Next, we show that φ is surjective. Let ((I1, ωI1), . . . , (Ik, ωIk)) ∈
Ẽ(A1) ⊕ · · · ⊕ Ẽ(Ak). Consider I = I1 ⊕ · · · ⊕ Ik. Then, I is an ideal
of A and

A/I ≃ A1/I1 ⊕ · · · ⊕Ak/Ik.

Since dim(Ai/Ii) = 0, for i ≤ i ≤ k, we have dim(A/I) = 0 as well as
the local orientations ωIj , for 1 ≤ j ≤ n, which will naturally induce
a local orientation of I, say ωI . Therefore, (I, ωI) ∈ E(A). It follows
that φ(I, ωI) = ((I1, ωI1), . . . , (Ik, ωIk)).

Finally, we have

E(A) ≃ Ẽ(A) ≃ Ẽ(A1)⊕ · · · ⊕ Ẽ(Ak) ≃ E(A1)⊕ · · · ⊕ E(Ak).

This completes the proof of the theorem. �

5. Ring decomposition and the weak Euler class groups. Let
A be a Noetherian ring of dimension n ≥ 2. Let A = A1 ⊕ · · · ⊕ Ak
be a decomposition such that Spec(A) = Spec(A1) ∪ · · · ∪ Spec(Ak) as
in Section 4. In this section, we study the relation between the weak
Euler class group of A and the weak Euler class groups of A1, . . . , Ak.

We now define a group Ẽ0(A) which may be regarded as the gener-

alized weak Euler class group of A. The definition of Ẽ0(A) is similar
to that of E0(A), defined in [2].

Definition 5.1 (The generalized weak Euler class group Ẽ0(A)). Let
A be a Noetherian ring of dimension n ≥ 2. Let G0 be the free abelian
group on the set of all ideals n, where n is an m-primary ideal for
some maximal ideal m of A (not necessarily of height n). Given any
zero-dimensional ideal I of A, an element of G0 may be associated in an
obvious manner; we call it (I). Let H0 be the subgroup of G0 generated
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by all elements of type (I), where dim(A/I) = 0 and I is generated by

n elements. We define Ẽ0(A) = G0/H0.

Remark 5.2. We note that there is a canonical surjective group

homomorphism from Ẽ(A) to Ẽ0(A), sending (I, ωI) ∈ Ẽ0(A) to

(I) ∈ Ẽ0(A).

The proof of the following lemma is the same as that of [1, Lemma
3.3].

Lemma 5.3. Let A be a Noetherian ring of dimension n ≥ 2. Let H̃

be a subgroup of Ẽ(A), generated by all elements of the type (I, ωI),
where I is generated by n elements. Let

Φ : Ẽ(A) −→ Ẽ0(A)

be the canonical surjection. Then, Ker(Φ) = H̃.

The proof of the next proposition is along the same lines as [1,
Theorem 3.9].

Proposition 5.4. Let A be a Noetherian ring (containing Q) of di-
mension n, where n is even. Let I ⊂ A be a zero-dimensional ideal

such that I/I2 is generated by n elements. Then, (I) = 0 in Ẽ0(A) if
and only if I is the surjective image of a stably free projective A-module
of rank n.

Remark 5.5. The natural map

ψ0 : E0(A) −→ Ẽ0(A)

which sends (I) ∈ E0(A) to (I) ∈ Ẽ(A), is a group homomorphism.

Lemma 5.6. Let A be a Noetherian ring (containing Q) of dimen-

sion n, where n is even. Then, the map ψ0 : E0(A) → Ẽ0(A), as
described above, is an isomorphism of groups.

Proof. ψ0 is clearly surjective due to the following commutative
diagram:
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E(A)

��

≃ // Ẽ(A)

��
E0(A) // Ẽ0(A)

where the top horizontal map is an isomorphism, and the vertical maps
are surjective.

Now, we show that ψ0 is injective. Let (I) ∈ E0(A) be such that

(I) = 0 in Ẽ0(A). By Proposition 5.4, there exists a stably free
projective A-module P such that I is surjective image of P . Therefore,
by [2, Proposition 6.2], (I) = 0 in E0(A). �

Remark 5.7. Let A = A1⊕· · ·⊕Ak be a ring decomposition, as above.

Let (I) ∈ Ẽ0(A). Then, I = I1⊕· · ·⊕Ik with each Ij zero-dimensional.

Then, we have a natural map ψ from Ẽ0(A) to

Ẽ0(A1)⊕ · · · ⊕ Ẽ0(Ak),

sending (I) to ((I1), . . . , (Ik)).

Proposition 5.8. Let A be a Noetherian ring of dimension n. Let
A = A1⊕· · ·⊕Ak be a ring decomposition, as above. Then, the induced
homomorphism

ψ : Ẽ0(A) −→ Ẽ0(A1)⊕ · · · ⊕ Ẽ0(Ak)

is an isomorphism.

Proof. It is easy to prove that the canonical homomorphism ψ is
surjective since we have already proved that the canonical homomor-
phism

Ẽ(A) −→ Ẽ(A1)⊕ · · · ⊕ Ẽ(Ak)

is an isomorphism. Now, we have a natural surjection

Ẽ(A) � Ẽ0(A),

the assignment sending (J, ωJ) ∈ Ẽ(A) to (J) ∈ Ẽ0(A). Hence, ψ is
surjective.

Now we will show the injectivity of ψ. Let J be a zero-dimensional
ideal of A such that J/J2 is generated by n elements. Suppose that
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(J) ∈ Ẽ0(A) such that (Ji) = 0 in Ẽ0(Ai) for 1 ≤ i ≤ k. Now, using
Lemma 5.3, we have

(Ji, ωJi) +
r∑
j=1

(Jij , ωJij ) =
m∑

j=r+1

(Jij , ωJij )

for 1 ≤ i ≤ k in Ẽ(Ai), where the Jijs are zero-dimensional ideals of
Ai for 1 ≤ j ≤ m such that they are generated by n elements.

0 // K //

ϕ

��

Ẽ(A) //

φ
��

Ẽ0(A) //

ψ
��

0

0 // K̃ // k⊕
i=1
Ẽ(Ai) // k⊕

i=1
Ẽ0(Ai) // 0.

Now, we have already proved that Ẽ(A) ≃ ⊕ki=1Ẽ(Ai). For each

((Ji1, ωJi1), . . . , (Jik, ωJik)) ∈ ⊕ki=1Ẽ(Ai), there exists a unique preim-

age in Ẽ(A), say (Ii, ωIi).

Therefore, we have the following

(J, ωJ) +
r∑
i=1

(Ii, ωIi) =
m∑

i=r+1

(Ii, ωIi)

in Ẽ(A) where the Iis are zero-dimensional ideals of A such that they
are generated by n elements. The proof follows from Lemma 5.3. �

Corollary 5.9. Let A be a Noetherian ring, containing Q, of even
dimension n ≥ 2. Let A = A1 ⊕ · · · ⊕ Ak be a ring decomposition, as
above. Then, the induced homomorphism

ψ : E0(A) −→ E0(A1)⊕ · · · ⊕ E0(Ak)

is an isomorphism.

Proof. Since R containing Q and n is even, by Lemma 5.6, E0(R) ≃
Ẽ0(R). Therefore, the proof follows from the above proposition. �
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