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RATIONAL SINGULARITIES OF G-SATURATION

NHAM V. NGO

ABSTRACT. Let G be a semisimple algebraic group
defined over an algebraically closed field of characteristic 0
and P a parabolic subgroup of G. Let M be a P -
module and V a P -stable closed subvariety of M . We
show in this paper that, if the varieties V and G · M have
rational singularities, and the induction functor Ri indGP (−)
satisfies certain vanishing conditions, then the variety G ·
V has rational singularities. This generalizes a result of
Kempf [8] on the collapsing of homogeneous bundles. As
an application, we prove the property of having rational
singularities for nilpotent commuting varieties over 3 × 3
matrices.

1. Introduction. The study of rational singularities for varieties of
dimension higher than two dates back to the 1970’s when Kempf [7]
investigated the geometry of Riemann’s theorem. One of the interesting
questions which arose is when the G-saturation G · V preserves the
property of having rational singularities of V . In particular, let M be
a G-module and V a closed subvariety of M stabilized by a parabolic
subgroup P of G. Kempf showed [9] that, if the action of P on V is
completely reducible and V has rational singularities, then G · V has
rational singularities. It is known that completely reducible actions
rarely occur; thus, the usage of Kempf’s result is rather restricted.
We prove in the present paper that this condition can be relaxed, see
Theorem 3.1. As an application, we show that nilpotent commuting
varieties over 3 × 3 matrices have rational singularities. Our interest
in nilpotent commuting varieties was motivated by their connection to
the cohomology of Frobenius kernels of G in positive characteristic, see
[13]. It is worth noting that it is interesting to study the converse of
our question, see for example, [1].
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The paper is organized as follows. Section 2 provides necessary no-
tation and background. The main result is shown in Section 3. From
Section 4 to the end of the paper, we assume G = SL3. Before
showing our applications, we prove in Section 4 a vanishing result of
higher induction Ri indGB(−) for certain modules. Computations in
this section extend a recent result on the null-cone of Vilonen and Xue
[17]. Next, in Section 5, these vanishing results are applied to prove
the rational singularities of the nilpotent commuting varieties Cr(N )
and some related varieties.

2. Notation.

2.1. Algebraic groups and Lie algebras. Let k be an algebraically
closed field of characteristic 0. Let G be a semisimple algebraic group
defined over k, unless otherwise stated. Fix a maximal torus T ⊂ G,
and let Φ be the root system of T in G. Let Φ+ be the corresponding
set of positive roots. Let B be the Borel subgroup of G containing
T and corresponding to the set of negative roots Φ−, and let U be
the unipotent radical of B. Set g = Lie(G), the Lie algebra of G,
b = Lie(B), u = Lie(U).

Given a vector space V , we denote by Sn(V ) and Λn(V ) the sym-
metric and exterior space of degree n over V . Then, the direct sums

S(V ) =
∞⊕

n=0

Sn(V ),

Λ(V ) =
∞⊕

n=0

Λn(V )

denote the symmetric algebra and exterior algebra of V . Define
V ∗ = Homk(V, k) the dual space of V . Throughout this paper, tensor
products will be taken over k. Assume, for the rest of the paper, that
every G-module is a rational module over G.

From now on, for an affine variety X, we write k[X] for the coordi-
nate algebra of X. This leads to the following.

2.2. Induction functor. Let M be a P -module where P is a par-
abolic subgroup of G. Then, the induced G-module can be defined
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as
indGP M = (k[G]⊗M)P .

The higher derived functor of indGP (−) is denoted by Ri indGP (−). Note
that the definition of induction is not restricted to parabolic subgroups;
the reader is referred to [6, Chapter I.3] for further details.

2.3. Adjoint action. Group G acts on the Lie algebra g via the
adjoint action denoted by “·” called the G-action. Note that the
nilpotent cone N of g is stable under this G-action and b and u
are stable under the B-action, the restriction of the G-action to B.
For every positive integer r, the G-action on the direct product gr is
diagonally defined, i.e.,

g · (x1, . . . , xr) = (g · x1, . . . , g · xr)

for all g ∈ G and xi ∈ g. It also restricts to the B-action on br and ur.

In general, let X be a variety and H a connected algebraic group
acting on X. We call X an H-variety if the action map is a morphism
from H × X to X. This action induces an action on the coordinate
algebra k[X]; thus, we call it an H-algebra. A morphism between two
H-varieties

f : X −→ Y

is called H-equivariant if it commutes with the actions of H on both
varieties. For instance, the moment map

m : G×B ur −→ G · ur,

defined by (g, x1, . . . , xr) 7→ (g · x1, . . . , g · xr) for all g ∈ G, xi ∈ u, is
G-equivariant.

2.4. Basic algebraic geometry conventions. Let X be a (not
necessarily affine) variety. We also write k[X] for the ring of global
sections OX(X) on X. In the case where X is affine, it coincides with
the coordinate algebra of X.

For each variety X, a morphism π : X̃ → X is called a resolution

of singularities if the variety X̃ is non-singular and π is proper and
birational. If, in addition, X is normal and the higher direct image of
π vanishes, i.e., Riπ∗OX̃ = 0 for all i > 0, then we call π a rational
resolution and say that X has rational singularities. Note that this



378 NHAM V. NGO

vanishing condition is equivalent to Hi(X̃,OX̃) = 0 for all i > 0
when X is affine [4, Proposition III.8.5]. This notion can also be
applied to a commutative ring R if we replace X by Spec(R). Suppose
further that π is H-equivariant. Then, the above resolution is called an
H-equivariant resolution of singularities, respectively, H-equivariant
rational resolution. The next proposition regarding the existence of
equivariant rational resolutions of an H-variety should be well known;
however, we have not seen it in the literature.

Proposition 2.1. Let H be a connected algebraic group and X an
H-variety. If X has rational singularities, then there exists an H-
equivariant rational resolution of X.

Proof. First, note that X has an H-equivariant resolution of singu-
larities, namely,

π : X̃ −→ X,

see, for example, [10, Proposition 3.9.1]. On the other hand, the
rational singularities of X and [16, Remark 4 (or Lemma 1)] imply
that π must carry the property of having rational singularities. �

Next, let P be a parabolic subgroup of G. The associated bundle of
a P -variety X over G/P is denoted by G ×P X. It is known that the
ring of global sections on G×P X coincides with the ring of P -invariant
global sections on G×X. In particular, we have

k[G×P X] ∼= k[G×X]P ∼= (k[G]⊗ k[X])P = indGP k[X].

Furthermore, we have, for all i ≥ 0,

Hi(G×P X,OG×PX) ∼= Ri indGP (k[X]),

where the left-hand side is the sheaf cohomology of the scheme G×P X.

2.5. Determinantal varieties. Consider an m× n matrix

M =

x11 · · · x1n

...
. . .

...
xm1 · · · xmn

 ,
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whose entries are independent indeterminates over the field k. Let

k[M] := k[xij : 1 ≤ i ≤ m, 1 ≤ j ≤ n],

and let It(M) be the ideal in k[M] generated by all t× t minors of M.
For each t ≥ 1, the ring

Rt(M) =
k[M]

It(M)

is called a determinantal ring. We denote by Dt(M) the determinantal
variety defined by It(M). These rings (or varieties) are well known
in commutative algebra. For convenience, we state some of their nice
properties.

Proposition 2.2 ([2, 2.13, 11.23]). For every 1 ≤ t ≤ min(m,n),
the ring Rt(M) (or the variety Dt(M)) is a reduced, Cohen-Macaulay,
normal domain of dimension (t − 1)(m + n − t + 1). Furthermore, it
has rational singularities.

3. Equivariant rational resolution. We prove in this section the
main result of the paper. Recall that G is a connected semisimple
algebraic group. The argument is a combination of techniques in [11,
Section 5].

Theorem 3.1. Let V be a P -subvariety of a P -module M contained
in a G-module N , possibly M = N . Let I(V ) be the defining ideal of
V in k[M ] = S(M∗). Assume that the moment map

m : G×P M −→ G ·M

is a rational resolution. If V is normal and, for all i ≥ 1,

Ri indGP I(V ) = 0,

then G · V is normal. Furthermore, suppose that V has rational
singularities. If the map

m′ : G×P V −→ G · V,

the restriction of m, is a birational map, then the variety G · V has
rational singularities.
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The argument is split into several steps, as follows.

Lemma 3.2. Let q be the embedding of V into M which induces a
surjective homomorphism of P -algebras q∗ : S(M∗) → k[V ]. Then, the
map

ϕ := indGP (q
∗) : indGP S(M∗) −→ indGP k[V ]

is a surjective G-equivariant homomorphism of algebras.

Proof. Note first that

k[V ] ∼=
S(M∗)

I(V )

is an isomorphism of P -algebras. We then have the following short
exact sequence of P -modules

0 −→ I(V ) −→ S(M∗)
q∗−→ k[V ] −→ 0.(3.1)

Since we have, for all i ≥ 1,

Ri indGP (I(V )) = 0,

the long exact sequence when applying the induction functor to the
short exact sequence (3.1) deduces to the short exact sequence of G-
modules

0 −→ indGP I(V ) −→ indGP S(M∗)
ϕ−→ indGP (k[V ]) −→ 0,

which implies the surjectivity of ϕ. �

We now prove the first statement in the theorem.

Lemma 3.3. The variety G · V is normal.

Proof. Since V is normal, the ring

indGP k[V ] ∼= k[G×P V ] ∼= k[G× V ]P

is also normal. Hence, it suffices to show that the map

m′∗ : k[G · V ] −→ k[G×P V ]
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is an isomorphism. Clearly, it is injective. In order to show the surjec-
tivity of m′∗, we consider the commutative diagram of G-equivariant
morphisms

G×P V
m′

//

q

��

G · V

e

��
G×P M

m
// G ·M,

where q is induced from the embedding V ↩→ M , and e is the embedding
from G ·V into G ·M . The commutative diagram of G-algebras follows:

indGP k[V ] ∼= k[G×P V ] k[G · V ]
m′∗

oo

indGP S(M∗)

ϕ

OOOO

∼= k[G×P M ]

q∗

OO

k[G ·M ].
m∗

oo

e∗

OO

Since m∗ is an isomorphism (as m is a rational resolution) and ϕ is onto
(by Lemma 3.2), we have thatm′∗ is surjective, proving Lemma 3.3. �

Before completing the proof, we need to set up a few things. By
Proposition 2.1, V has a P -equivariant rational resolution, namely,

π : Ṽ → V . This morphism can be extended to the birational map

π̃ : G×P Ṽ −→ G×P V

by setting (g, v) 7→ (g, π(v)) for all g ∈ G, v ∈ V . Then, composing
with the map

m′ : G×P V −→ G · V,

we have a G-equivariant resolution of singularities

(3.2) m′ ◦ π̃ : G×P Ṽ −→ G · V.

Proof of Theorem 3.1. We show that (3.2) is a rational resolution of
G · V . From Lemma 3.3, we only need show that

Ri(m′ ◦ π̃)∗OG×P Ṽ = 0

for all i ≥ 1. Using [4, Proposition III.8.5], we have, for all i ≥ 1, the
following:
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Ri(m′ ◦ π̃)∗OG×P Ṽ
∼= Hi(G×P Ṽ ,OG×P Ṽ )

∼

∼=
(
Ri indGP k[Ṽ ]

)∼

∼=
(
Ri indGP k[V ]

)∼
.

Now, applying the induction functor to the short exact sequence (3.1)
and using the vanishing

Ri indGP I(V ) = Ri indGP S(M∗) = 0

for all i > 0, we obtain Ri indGP k[V ] = 0 for all i > 0. Hence, the
theorem is proved. �

Remark 3.4. When M = N , it automatically induces the isomor-
phism

m∗ : k[G ·N ] −→ k[G×P N ].

Indeed, since N is a G-module, we have G ·N = N . We then have the
commutative diagram

G×P N
m // N

G×G N

i

OO

m

;;wwwwwwwww

,

where m(g, n) = g · n and i(g, n) = (g, n) for all g ∈ G, n ∈ N . Note
further that m is an isomorphism of varieties, see [6, page 88, I.5.14],
hence giving us an isomorphism

m∗ : k[N ] −→ k[G×G N ].

On the other hand, the induced homomorphism

i∗ : k[G×G N ] −→ k[G×P N ]

is also an isomorphism, since

k[G×P N ] = indGP k[N ] ∼= indGP (k)⊗ k[N ] ∼= k[N ] ∼= k[G×G N ],

by the tensor identity (see [6, I.4.8]) and the fact that indGP (k)
∼= k.
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Hence, the commutativity of the diagram

k[G×P N ]

i∗

��

k[N ]
m∗

oo

m∗
yyttt

tt
tt
tt

k[G×G N ]

implies the isomorphism

m∗ : k[N ] −→ k[G×P N ].

Next, we explain how our work generalizes the results in Kempf’s pa-
pers [8].1 His papers focus on studying singularities of the G-saturation
G · V , where V is a P -subvariety of a P -module W contained in a G-
moduleN . Explicitly, Kempf studied geometric properties of the homo-
geneous bundle G×P W → G/P and the collapsing m : G×P W → N ,
which is simply the moment map in our context. In his 1976 paper, he
was able to prove that, if P acts completely reducibly on V , then G ·V
is normal and Cohen-Macaulay. If, in addition,

G×P V −→ G · V

is birational, then G · V has rational singularities. The proof of this
statement totally rests on [8, Theorem 2] which is strengthened as
follows.

Theorem 3.5. Let W be a P -module, and let N = indGP (W ), which is
a subspace of k[G×P W ]. Consider the bundle

π : G×P W −→ G/P

and collapsing
m : G×P W −→ N.

If Ri indGP I(W ) = 0 for all i > 0 where I(W ) is the defining ideal of
W in S(N∗), then we have

(i) m is a projective morphism;
(ii) the homomorphism ON → m∗OG×PW is surjective;
(iii) Rim∗OG×PW = 0 for all i > 0.
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Proof. Statement (i) follows from the identical argument in [8,
Theorem 2]. The second is equivalent to the surjectivity of the map

S(N∗) → indGP S(W ∗). This is accomplished by the use of Lemma 3.3
with M = N and V = W . Lastly, (iii) is proven by the same argument
for the proof of Theorem 3.1. �

4. Vanishing of the induction functor. Before giving applica-
tions of the main theorem in the previous section, we prove some vanish-
ing results for the induction functor in certain cases. The calculations
in this section are of independent interest since they extend a result
in [17]. The strategy is repeatedly making use of Koszul resolutions
for various vector spaces.

We assume, for the rest of the paper, that G = SL3, unless otherwise
stated. Let

Φ+ = {α, β, α+ β}

be the set of positive roots of the root system Φ of G. Denote by X(T )
the weight lattice of T . We further denote by

X(T )+ = {λ ∈ X(T ) : (λ, γ∨) ≥ 0 for all γ ∈ Φ+},

the set of dominant weights in X(T ).

First note that Vilonen and Xue recently showed [17] that, for all
i, r ≥ 1,

(4.1) Hi(G×B ur,OG×Bur ) ∼= Ri indGB S(u∗r) = 0.

It follows that the resolution

G×B ur −→ G · ur,
(g, x1, . . . , xr) 7−→ (g · x1, . . . , g · xr)

is a (G-equivariant) rational resolution.

Now, for γ, either α or β, we let

Aγ = X+ ∪ {µ ∈ X(T ) : (µ, γ∨) = −1 and µ+ γ ∈ X(T )+}.

For each simple root, say α, we denote by uα the Lie algebra of the
unipotent radical of the parabolic subgroup of G generated by {α}. It
then follows that

0 −→ uα −→ u −→ −α −→ 0.
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For convenience, we will write u∗r instead of (u∗)r, and Hi(M) instead

of Ri indGB(M) for all i ≥ 0. We first prove a lemma.

Lemma 4.1. For r, i ≥ 1 and µ ∈ Aγ ,

Hi
(
S(u∗rγ )⊗ µ

)
= 0.2

Proof. By symmetry, it suffices to prove the lemma for γ = α. If
(µ, α∨) = −1, then we have the vanishing of Hi(S(u∗rα ) ⊗ µ) for all
i ≥ 0 by the ‘easy’ lemma in [3, Section 2]. Hence, we assume that µ
is dominant. We prove by induction on r. First, consider r = 1. We
have:

0 −→ α −→ u∗ −→ u∗α −→ 0.

Tensoring the Koszul resolution of this short exact sequence with µ, we
obtain

0 −→ Sn−1(u∗)⊗ (α+ µ) −→ Sn(u∗)

⊗ µ −→ Sn(u∗α)⊗ µ −→ 0.

Since µ is dominant and α+ µ is in Aα, [11, Theorem 2] gives us, for
all i > 0,

Hi(Sn(u∗)⊗ µ) = Hi(Sn−1(u∗)⊗ (α+ µ)) = 0,

which implies Hi(Sn(u∗α)⊗ µ) = 0.

Suppose this holds for r−1 for some positive integer r. We consider

0 −→ u∗α −→ u∗rα −→ u∗(r−1)
α −→ 0.

Tensoring the Koszul resolution of this short exact sequence with µ, we
obtain
(4.2)

0 −→ Sn−2u∗rα ⊗ Λ2(u∗α)⊗ µ −→ Sn−1u∗rα

⊗ u∗α ⊗ µ −→ Snu∗rα ⊗ µ −→ Snu∗(r−1)
α ⊗ µ −→ 0

for all n ≥ 0. Observe that µ+ β, µ+ (α+ β) and µ+ (α+ 2β) are in
Aα. Induction on n then implies that, for all i ≥ 1,

Hi(Sn−2u∗rα ⊗ Λ2(u∗α)⊗ µ) = Hi(Sn−1u∗rα ⊗ u∗α ⊗ µ) = 0.
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Now, breaking up (4.2) into short exact sequences and applying induc-
tive hypotheses, we obtain

Hi(Snu∗rα ⊗ µ) = 0 for all i ≥ 1,

which inductively proves our lemma. �

We further extend the above result as follows.

Theorem 4.2. For all i ≥ 1, r, s ≥ 0 and λ ∈ Aγ ,

Hi
(
S(u∗r × u∗sγ )⊗ λ

)
= 0.

Proof. Again, we only need argue for the case when γ = α. By
Lemma 4.1, the theorem holds for r = 0. Suppose it holds for r − 1
(with r ≥ 1) and all s ≥ 0. Proceeding inductively for n, we only need
prove that, for all i ≥ 1,

(4.3) Hi
(
Sn(u∗r × u∗sα )⊗ λ

)
= 0.

Assume that (λ, α∨) = −1. Then, consider the short exact sequence

0 −→ α −→ u∗r × u∗sα −→ u∗(r−1) × u∗(s+1)
α −→ 0.

Tensoring the Koszul resolution of this short exact sequence with λ, we
obtain

0 −→ Sn−1(u∗r × u∗sα )⊗ (α+ λ) −→ Sn(u∗r × u∗sα )

⊗ λ −→ Sn(u∗(r−1) × u∗(s+1)
α )⊗ λ −→ 0.

By inductive hypotheses, the vanishing of Hi(S(u∗r × u∗sα ) ⊗ (α + λ))
implies that of Hi(S(u∗r × u∗sα )⊗ λ) for all i ≥ 1. Hence, we only need
verify (4.3) for λ ∈ X+. Consider:

0 −→ u∗α −→ u∗r × u∗sα −→ u∗r × u∗(s−1)
α −→ 0.

Tensoring the Koszul resolution of this short exact sequence with λ, we
get for all n ≥ 0,

(4.4)

0 −→ Sn−2(u∗r × u∗sα )⊗ Λ2(u∗α)

⊗ λ −→ Sn−1(u∗r × u∗sα )

⊗ u∗α ⊗ λ −→ Sn(u∗r × u∗sα )

⊗ λ −→ Sn(u∗r × u∗(s−1)
α )⊗ λ −→ 0.
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Since we are assuming λ is dominant, λ+β, λ+(α+β) and λ+(α+2β)
are in Aγ . Induction on n then implies that, for all i ≥ 1,

Hi(Sn−2(u∗r × u∗sα )⊗Λ2(u∗α)⊗ λ) = Hi(Sn−1(u∗r × u∗sα )⊗ u∗α ⊗ λ) = 0.

Now, breaking up (4.4) into short exact sequences and applying induc-
tive hypotheses, we obtain Hi(Sn(u∗r × u∗sα ) ⊗ λ) = 0 for all i ≥ 1,
which inductively proves our lemma. �

Setting s = 0 in Theorem 4.2, we obtain the following.

Corollary 4.3. For all i ≥ 1, r ≥ 0 and λ ∈ Aγ , we have

Hi(S(u∗r)⊗ λ) = 0.

Remark 4.4. Our vanishing results in this section hold for all charac-
teristics greater than 3, see [17, Remark 6.2]. Note also that analogous
vanishings for S(b∗r) do not hold for r > 1, see the counterexamples in
[17, subsection 5.2].

5. Nilpotent commuting varieties. Let g be a Lie algebra defined
over k and X a closed subvariety of g. For each r ≥ 1, the commuting
variety (of r-tuples) over X is defined by

Cr(X) = {(x1, . . . , xr) ∈ Xr | [xi, xj ] = 0}

for r ≥ 2 and C1(X) = X. When V = N , we call Cr(N ) the nilpotent
commuting variety. The study of nilpotent commuting varieties was
begun not long ago. The pioneering work of Premet [15] showed that
C2(N ) has pure dimension3 dim g. In [13], I proved that the result does
not hold for arbitrary r. In joint work with Šivic [14], we determined
the (ir)reducibility of the variety Cr(N ) with g = sln for various values
of n and r. Explicitly, it is reducible for all n, r ≥ 4. Moreover, for
r = 3, it is irreducible for all n ≤ 6.

In this section, we continue with the assumption that G = SL3 is
defined over k. Recall from [12] that various commuting varieties over
2 × 2 matrices were proven to be Cohen-Macaulay and have rational
singularities. While these properties easily follow from determinantal
varieties for Cr(sl2) and Cr(gl2), the proof for the nilpotent commuting
varieties requires deep methods in commutative algebra, due to the
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difficulty in computing their defining ideals. Note also that, in [12,
Section 7], the author showed that the singular locus of Cr(N ) is of
codimension 2, which is strong evidence for the normality of Cr(N ). In
this section, we verify the normality of Cr(N ) and further prove that
it has rational singularities.

Note that, for each r ≥ 1, we have Cr(N ) = G · Cr(u) and the
moment map m : G ×B Cr(u) → Cr(N ) is proper birational map, see
[12, Proposition 3.4.3].

We first analyze some properties of Cr(u). Let fα, fβ and fα+β be
root vectors in u corresponding to weights −α, −β and −α− β. Then,
each element v in u can be written as

v = afα + bfβ + cfα+β

for some a, b, c ∈ k. Now, suppose that (vi) = (aifα + bifβ + cifα+β :
1 ≤ i ≤ r) is an r-tuple in ur. Analyzing the commutator [vi, vj ] for all
i ̸= j, we obtain

(vi) ∈ Cr(u) ⇐⇒ aibj − ajbi = 0.

These equations are exactly all 2× 2 minors of the matrix

M =

(
a1 · · · ar
b1 · · · br

)
.

It follows that Cr(u) is a product of an affine space and determinantal
variety D2(M). Therefore, from Proposition 2.2, we have obtained the
following.

Proposition 5.1. For all r ≥ 1, we have:

(a) Cr(u) has rational singularities;
(b) the defining ideal of Cr(u) in S(u∗r) is I(Cr(u)) = ⟨fi,j : 1 ≤ i ̸=

j ≤ r⟩, where all fij = aibj − ajbi ∈ S(u∗r) are of weight α + β.
Moreover, since U acts trivially on I(Cr(u)), we have

I(Cr(u)) ∼=
⊕

1≤i ̸=j≤r

(α+ β)⊗ S(u∗r)

as a B-module.

Next, we state the main result of this section.
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Theorem 5.2. For all r ≥ 1, the nilpotent commuting variety Cr(N )
has rational singularities. Consequently, it is Cohen-Macaulay.

Proof. Note first that Cr(u) is a B-subvariety of ur. Moreover, G ·ur
is shown to have rational singularities in [17, 6.1], in particular, we have

m : G×B ur −→ G · ur

is a rational resolution. Hence, our theorem follows immediately from
Proposition 2.1, Theorem 3.1, Corollary 4.3 and Proposition 5.1. �

Remark 5.3. As pointed out earlier, the result cannot be extended
further for higher rank groups for all r, as it was shown by Šivic and
the author [14] that Cr(N ) is reducible for all r ≥ 4 and rank(G) ≥ 3
for type A (also see [13] for other classical types).

The above result can be strengthened as follows.

Theorem 5.4. Let V be a B-subvariety of ur for some r ≥ 1, whose
defining ideal I(V ) contains polynomials of weight α + β. If V has
rational singularities and

G×B V −→ G · V

is a birational map, then G · V has rational singularities.

Proof. Recall from the last section that G×Bur → G·ur is a rational
resolution. The assertion then follows from Theorem 3.1 if we show that
Ri indGB I(V ) = 0 for all i ≥ 1. This can be done by the same argument
as in Proposition 5.1. Indeed, set I(V ) = ⟨f1, . . . , fs⟩ with all fi of
weight α + β. This implies that U acts trivially on I(V ) so that, as a
B-module,

I(V ) ∼=
s⊕

i=1

fi ⊗ S(u∗r) ∼=
s⊕

i=1

(α+ β)⊗ S(u∗r).

Now, Corollary 4.3 gives us the desired vanishing of Ri indGB I(V ). �
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ENDNOTES

1. One may find it difficult to follow the notation in this paper. We
refer the reader to [5, Section 3], which is more useful in our context.

2. This result also holds for r = 0 by [11, Theorem 2].

3. This means all irreducible components are of the same dimension.
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