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UNIMODULAR ELEMENTS IN
PROJECTIVE MODULES AND AN ANALOGUE

OF A RESULT OF MANDAL

MANOJ K. KESHARI AND MD. ALI ZINNA

ABSTRACT. (1) Let R be a commutative Noetherian
ring of dimension n and P a projective R[X1, . . . , Xm]-
module of rank n. In this paper, we associate an obstruction
for P to split off a free summand of rank one. (2) Let R be
a local ring and R[X] ⊂ A ⊂ R[X,X−1]. Let P and Q be
two projective A-modules with rank(Q) < rank(P ). If Qf is
a direct summand of Pf for some special monic polynomial
f ∈ R[X], then Q is also a direct summand of P .

1. Introduction. Throughout the paper, rings are commutative
Noetherian, and projective modules are finitely generated and of con-
stant rank.

If R is a ring of dimension n, then Serre [17] proved that projec-
tive R-modules of rank > n contain a unimodular element. Plum-
stead [12] generalized this result and proved that projective R[X] =
R[Z+]-modules of rank > n contain a unimodular element. Bhat-
wadekar and Roy [4] generalized this result and proved that projective
R[X1, . . . , Xr] = R[Zr

+]-modules of rank > n contain a unimodular
element.

In another direction, if A is a ring such that

R[X] ⊂ A ⊂ R[X,X−1],

then Bhatwadekar and Roy [3] proved that projective A-modules of
rank > n contain a unimodular element. Rao [14] improved this result
and proved that if B is a birational overring of R[X], i.e.,

R[X] ⊂ B ⊂ S−1R[X],
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where S is the set of non-zerodivisors of R[X], then projective B-
modules of rank > n contain a unimodular element. Bhatwadekar,
Lindel and Rao [2, Theorem 5.1, Remark 5.3] generalized this result
and proved that projective B[Zr

+]-modules of rank > n contain a
unimodular element when B is seminormal. In [1, Theorem 3.5],
Bhatwadekar removed the hypothesis of seminormality used in [2].

All of the above results are best possible in the sense that projective
modules of rank n above rings need not have a unimodular element.
Thus, it is natural to look for obstructions for a projective module of
rank n over above rings to contain a unimodular element. We will prove
some results in this direction.

Let P be a projective R[Zr
+][T ]-module of rank n = dimR such that

Pf and P/TP contain unimodular elements for some monic polynomial
f in the variable T . Then, P contains a unimodular element. The proof
of this result is implicit in [2, Theorem 5.1]. We will generalize this
result to projective R[M ][T ]-modules of rank n, where M ⊂ Zr

+ is a
Φ-simplicial monoid in the class C(Φ). For this, we need the following
result, the proof of which is similar to [2, Theorem 5.1].

Proposition 1.1. Let R be a ring and P a projective R[X]-module.
Let J ⊂ R be an ideal such that Ps is extended from Rs for every s ∈ J .
Suppose that :

(a) P/JP contains a unimodular element.
(b) If I is an ideal of (R/J)[X] of height rank(P )− 1, then there exist

σ ∈ Aut ((R/J)[X]) with σ(X) = X and σ ∈ Aut (R[X]) with
σ(X) = X, which is a lift of σ such that σ(I) contains a monic
polynomial in the variable X.

(c) EL(P/(X, J)P ) acts transitively on Um(P/(X, J)P ).
(d) There exists a monic polynomial f ∈ R[X] such that Pf contains

a unimodular element.

Then, the natural map Um(P ) → Um(P/XP ) is surjective. In par-
ticular, if P/XP contains a unimodular element, then P contains a
unimodular element.

We prove the following result as an application of Proposition 1.1.

Theorem 1.2. Let R be a ring of dimension n and M ⊂ Zr
+ a Φ-

simplicial monoid in the class C(Φ). Let P be a projective R[M ][T ]-
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module of rank n whose determinant is extended from R. Assume
P/TP and Pf contain unimodular elements for some monic polyno-
mial f in the variable T . Then, the natural map Um(P ) → Um(P/TP )
is surjective. In particular, P contains a unimodular element.

Let R be a ring containing Q of dimension n ≥ 2. If P is a projective
R[X]-module of rank n, then Das and Zinna [5] obtained an obstruction
for P to have a unimodular element. We fix an isomorphism

χ : L
∼−→ ∧nP,

where L is the determinant of P . To the pair (P, χ), they associated an
element e(P, χ) of the Euler class group E(R[X], L) and proved that P
has a unimodular element if and only if e(P, χ) = 0 in E(R[X], L) [5].

It is desirable to have such an obstruction for projective R[X,Y ]-
module P of rank n. As an application of (1.2), we obtain such a
result. Recall that R(X) denotes the ring obtained from R[X] by
inverting all monic polynomials in X. Let L be the determinant
of P and χ : L

∼→ ∧n(P ) an isomorphism. We define the Euler
class group E(R[X,Y ], L) of R[X,Y ] as the product of Euler class
groups E(R(X)[Y ], L ⊗ R(X)[Y ]) of R(X)[Y ] and E(R[Y ], L ⊗ R[Y ])
of R[Y ], defined by Das and Zinna [5]. To the pair (P, χ), we associate
an element e(P, χ) in E(R[X,Y ], L) and prove the following result
(Theorem 3.5).

Theorem 1.3. Let the notation be as above. Then, e(P, χ) = 0 in
E(R[X,Y ], L) if and only if P has a unimodular element.

Let R be a local ring and P a projective R[T ]-module. Roitman [15,
Lemma 10] proved that, if the projective R[T ]f -module Pf contains
a unimodular element for some monic polynomial f ∈ R[T ], then P
contains a unimodular element. Roy [16, Theorem 1.1] generalized
this result and proved that, if P and Q are projective R[T ]-modules
with rank(Q) < rank(P ) such that Qf is a direct summand of Pf for
some monic polynomial f ∈ R[T ], then Q is a direct summand of P .
Mandal [11, Theorem 2.1] extended Roy’s result to Laurent polynomial
rings.

We prove the following result (4.4), which gives Mandal’s [11] in the
case where A = R[X,X−1]. Recall that a monic polynomial f ∈ R[X]
is called special monic if f(0) = 1.
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Theorem 1.4. Let R be a local ring and R[X] ⊂ A ⊂ R[X,X−1]. Let
P and Q be two projective A-modules with rank(Q) < rank(P ). If Qf is
a direct summand of Pf for some special monic polynomial f ∈ R[X],
then Q is also a direct summand of P .

2. Preliminaries.

Definition 2.1. Let R be a ring and P a projective R-module. An
element p ∈ P is called unimodular if there is a surjective R-linear map

φ : P � R

such that φ(p) = 1. Note that P has a unimodular element if and only
if P ≃ Q⊕R for some R-module Q. The set of all unimodular elements
of P is denoted by Um(P ).

Definition 2.2. Let M be a finitely generated submonoid of Zr
+ of

rank r such that M ⊂ Zr
+ is an integral extension, i.e. for any x ∈ Zr

+,
nx ∈ M for some integer n > 0. Such a monoid M is called a Φ-
simplicial monoid of rank r [8].

Definition 2.3. Let M ⊂ Zr
+ be a Φ-simplicial monoid of rank r.

We say that M belongs to the class C(Φ) if M is seminormal, i.e., if
x ∈ gp(M) and x2, x3 ∈M , then x ∈M , and if we write

Zr
+ = {ts11 · · · tsrr | si ≥ 0},

then, for 1 ≤ m ≤ r,

Mm =M ∩ {ts11 · · · tsmm | si ≥ 0}

satisfies the following properties: given a positive integer c, there exist
integers ci > c for i = 1, . . . ,m − 1 such that, for any ring R, the
automorphism

η ∈ AutR[tm](R[t1, . . . , tm]),

defined by η(ti) = ti + tcim for i = 1, . . . ,m − 1, restricts to an R-
automorphism of R[Mm]. It is easy to see that Mm ∈ C(Φ) and rank
Mm = m for 1 ≤ m ≤ r.

Example 2.4. The following monoids belong to C(Φ) [9, Examples
3.5, 3.9, 3.10].
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(i) If M ⊂ Z2
+ is a finitely generated and normal monoid (i.e.,

x ∈ gp(M) and xn ∈ M for some n > 1, then x ∈ M) of rank 2,
then M ∈ C(Φ).

(ii) For a fixed integer n > 0, if M ⊂ Zr
+ is the monoid generated by

all monomials in t1, . . . , tr of total degree n, then M is a normal
monoid of rank r and M ∈ C(Φ). In particular, Zr

+ ∈ C(Φ) and

⟨t21, t22, t23, t1t2, t1t3, t2t3⟩ ∈ C(Φ).

(iii) The submonoid M of Z3
+ is generated by ⟨t21, t22, t23, t1t3, t2t3⟩ ∈

C(Φ).

Remark 2.5. Let R be a ring and

M ⊂ Zr
+ = {tm1

1 · · · tmr
r | mi ≥ 0}

a monoid of rank r in the class C(Φ). Let I be an ideal of R[M ] of height
> dimR. Then, by [8, Lemma 6.5] and [9, Lemma 3.1], there exists
an R-automorphism σ of R[M ] such that σ(tr) = tr, and σ(I) contains
a monic polynomial in tr with coefficients in R[M ] ∩R[t1, . . . , tr−1].

We now state some results for later use.

Theorem 2.6 ([9, Theorem 3.4]). Let R be a ring and M a Φ-
simplicial monoid such that M ∈ C(Φ). Let P be a projective R[M ]-
module of rank > dimR. Then, P has a unimodular element.

Theorem 2.7 ([6, Theorem 4.5]). Let R be a ring and M a Φ-
simplicial monoid. Let P be a projective R[M ]-module of rank ≥
max{dimR+1, 2}. Then, EL(P ⊕R[M ]) acts transitively on Um(P ⊕
R[M ]).

The next result is proven in [2, Criterion-1 and Remark] in the case
where J = Q(P,R0) is the Quillen ideal of P in R0. The same proof
works in our case.

Theorem 2.8. Let R = ⊕i≥0Ri be a graded ring and P a projective
R-module. Let J be an ideal of R0 such that J is contained in the
Quillen ideal Q(P,R0). Let p ∈ P be such that p1+R+ ∈ Um(P1+R+)
and p1+J ∈ Um(P1+J), where R+ = ⊕i≥1Ri. Then, P contains a
unimodular element p1 such that p = p1 modulo R+P .

The following result is a consequence of Eisenbud and Evans [7], as
stated in [12, page 1420].
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Lemma 2.9. Let A be a ring and P a projective A-module of rank n.
Let (α, a) ∈ (P ∗ ⊕A). Then, there exists an element β ∈ P ∗ such that
ht(Ia) ≥ n, where I = (α+aβ)(P ). In particular, if the ideal (α(P ), a)
has height ≥ n, then htI ≥ n. Further, if (α(P ), a) is an ideal of height
≥ n and I is a proper ideal of A, then htI = n.

3. Proofs of Proposition 1.1, Theorem 1.2 and Theorem 1.3.

3.1. Proof of Proposition 1.1. Let p0 ∈ Um(P/JP ) and p1 ∈
Um(P/XP ). Let p̃0 and p̃1 be the images of p0 and p1 in P/(X, J)P .

By hypothesis (c), there exists a δ̃ ∈ EL(P/(X,J)P ) such that δ̃(p̃0) =

p̃1. By [4, Proposition 4.1], δ̃ can be lifted to an automorphism δ of
P/JP . Consider the fiber product diagrams for rings and modules:

R[X]
(XJ)

//

��

R
J [X]

��
R[X]
(X)

// R[X]
(X,J) ,

P
(XJ)P

//

��

P
JP

��
P

XP
// P
(X,J)P .

Since δ(p0) and p1 coincide over P/(X, J)P , we can patch δ(p0)
and p1 to obtain a unimodular element p ∈ Um(P/XJP ) such that
p = δ(p0) modulo JP and p = p1 modulo XP . Writing δ(p0) by p0, we
assume that p = p0 modulo JP and p = p1 modulo XP .

Using hypothesis (d), we get an element q ∈ P such that the order
ideal

OP (q) = {ϕ(q) | ϕ ∈ HomR[X](P,R[X])}

contains a power of f . We may assume that f ∈ OP (q).

Let “bar” denote reduction modulo the ideal (J). Write P =

R[X]p0 ⊕ Q for some projective R[X]-module Q and q = (ap0, q
′) for

some q′ ∈ Q. By Eisenbud and Evans [7], there exists a τ ∈ EL(P )
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such that
τ(q) = (ap0, q

′′)

and
ht(OQ(q

′′))R[X]a ≥ rank(P )− 1.

Since τ can be lifted to τ ∈ Aut (P ), replacing P by τ(P ), we may
assume that ht(OQ(q

′)) ≥ rank(P )− 1 on the Zariski-open set D(a) of

Spec(R[X]).

Let p1, . . . , pr be minimal prime ideals of OQ(q
′) in R[X] not contain-

ing a. Then, ht(∩r
1pi) ≥ rank(P ) − 1. By hypothesis (b), we can find

σ ∈ Aut (R[X]) with σ(X) = X and σ ∈ Aut (R[X]) with σ(X) = X,
which is a lift of σ, such that σ(∩r

1pi) contains a monic polynomial in

R[X] = R[X]. Note that σ(f) is a monic polynomial. Replacing R[X]
by σ(R[X]), we may assume that ∩r

1pi contains a monic polynomial in
R[X], and f ∈ OP (q) is a monic polynomial.

If p is a minimal prime ideal of OQ(q
′) in R[X] containing a, then p

contains OP (q). Since f ∈ OP (q), p contains the monic polynomial f .
Therefore, all minimal primes of OQ(q

′) contain a monic polynomial;

hence, OQ(q
′) contains a monic polynomial, say g ∈ R[X]. Let

g ∈ R[X] be a monic polynomial which is a lift of g.

Claim 3.1. For large N > 0, p2 = p+XNgNq ∈ Um(P1+JR).

Proof. Choose ϕ ∈ P ∗ such that ϕ(q) = f . Then, ϕ(p2) =
ϕ(p)+XNgNf is a monic polynomial for large N . Since p = p0 module
JP , p = p0 and q = (ap, q′). Therefore,

p2 = p+XNgN (ap, q′) = ((1 + TNgNa)p,XNgNq′).

Since g ∈ OQ(q
′) ⊂ OP (p2), we obtain OP (p) ⊂ OP (p2). In addition,

since p ∈ Um(P ), we get p2 ∈ Um(P ), and hence, p2 ∈ Um(P1+JR[X]).
Since OP (p2) contains a monic polynomial, by [10, Lemma 1.1, p. 79],
p2 ∈ Um(P1+JR).

Now, p2 = p = p1 modulo XP , and we obtain p2 ∈ Um(P/XP ). By
(2.8), there exists a p3 ∈ Um(P ) such that p3 = p2 = p1 modulo XP .
This completes the proof. �
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3.2. Proof of Theorem 1.2. Without loss of generality, we may
assume that R is reduced. When n = 1, the result follows from the well-
known [13, 18]. When n = 2, the result follows from [1, Proposition
3.3], where it is proven that, if P is a projective R[T ]-module of rank 2
such that Pf contains a unimodular element for some monic polynomial
f ∈ R[T ], then P contains a unimodular element. Thus, now, we
assume n ≥ 3.

Write A = R[M ]. Let

J(A,P ) = {s ∈ A | Ps is extended from As}

be the Quillen ideal of P in A. Let J̃ = J(A,P ) ∩ R be the ideal of

R and J = J̃R[M ]. We will show that J satisfies the properties of
Proposition 1.1.

Let p ∈ Spec(R) with ht(p) = 1 and S = R − p. Then, S−1P is a
projective module over S−1A[T ] = Rp[M ][T ]. Since dim(Rp) = 1, by
(2.6),

S−1P = ∧nPS ⊕ S−1A[T ]n−1.

Since the determinant of P is extended from R, ∧nPS = A[T ]S , and
hence, S−1P is free. Therefore, there exists an s ∈ R− p such that Ps

is free. Hence, s ∈ J̃ , and thus, ht(J̃) ≥ 2.

Since dim(R/J̃) ≤ n − 2 and A[T ]/(J) = (R/J̃)[M ][T ], by (2.6),
P/JP contains a unimodular element. If I is an ideal of (A/J)[T ] =

(R/J̃)[M ][T ] of height ≥ n − 1, then, by (2.5), there exists an R[T ]-
automorphism σ ∈ AutR[T ](A[T ]) such that, if σ denotes the in-
duced automorphism of (A/J)[T ], then σ(I) contains a monic poly-
nomial in T . By Theorem 2.7, EL(P/(T, J)P ) acts transitively on
Um(P/(J, T )P ). Therefore, the result now follows from (1.1). �

Corollary 3.2. Let R be a ring of dimension n,

A = R[X1, . . . , Xm]

a polynomial ring over R and P a projective A[T ]-module of rank n.
Assume that P/TP and Pf both contain a unimodular element for some
monic polynomial f(T ) ∈ A[T ]. Then, P has a unimodular element.

Proof. If n = 1, the result follows from the well-known Quillen and
Suslin theorem [13, 18]. When n = 2, the result follows from [1,
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Proposition 3.3]. Assume n ≥ 3. Let L be the determinant of P . If R̃

is the seminormalization of R, then, by Swan [19], L⊗ R̃[X1, . . . , Xm]

is extended from R̃. By Theorem 1.2, P ⊗ R̃[X1, . . . , Xm] has a
unimodular element. Since

R̃[X1, . . . , Xn]

is the seminormalization of A, by [1, Lemma 3.1], P has a unimodular
element. �

3.3. Obstruction for projective modules to have a unimodular
element. Let R be a ring of dimension n ≥ 2 containing Q, and let P
be a projective R[X,Y ]-module of rank n with determinant L. Let

χ : L
∼−→ ∧n(P )

be an isomorphism. We call χ an orientation of P . In general, we shall
use ‘hat’ when we move to R(X)[Y ] and ‘bar’ when we move modulo
the ideal (X). For instance, we have:

(1) L⊗R(X)[Y ] = L̂ and L/XL = L,

(2) P ⊗R(X)[Y ] = P̂ and P/XP = P .

Similarly, χ̂ denotes the induced isomorphism L̂
∼→ ∧nP̂ and χ denotes

the induced isomorphism L
∼→ ∧nP .

We now define the Euler class of (P, χ).

Definition 3.3. First, we consider the case n ≥ 2 and n ̸= 3. Let

E(R(X)[Y ], L̂) be the nth Euler class group of R(X)[Y ] with respect

to the line bundle L̂ over R(X)[Y ], and let E(R[Y ], L) be the nth
Euler class group of R[Y ] with respect to the line bundle L over
R[Y ] (see [5, Section 6] for the definition). We define the nth Euler
class group of R[X,Y ], denoted by E(R[X,Y ], L), as the product

E(R(X)[Y ], L̂)× E(R[Y ], L).

To the pair (P, χ) we associate an element e(P, χ) of E(R[X,Y ], L),
called the Euler class of (P, χ), as follows:

e(P, χ) = (e(P̂ , χ̂), e(P , χ))
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where e(P̂ , χ̂) ∈ E(R(X)[Y ], L̂) is the Euler class of (P̂ , χ̂), and
e(P , χ) ∈ E(R[Y ], L) is the Euler class of (P , χ), defined in [5, Sec-
tion 6].

Now, we treat the case when n = 3. Let Ẽ(R(X)[Y ], L̂) be the nth
restricted Euler class group of R(X)[Y ] with respect to the line bundle

L̂ over R(X)[Y ] and Ẽ(R[Y ], L) the nth restricted Euler class group
of R[Y ] with respect to the line bundle L over R[Y ] (see [5, Section 7]
for the definition). We define the Euler class group of R[X,Y ], again

denoted E(R[X,Y ], L), as the product Ẽ(R(X)[Y ], L̂)× Ẽ(R[Y ], L).

To the pair (P, χ) we associate an element e(P, χ) of E(R[X,Y ], L),
called the Euler class of (P, χ), as follows:

e(P, χ) = (e(P̂ , χ̂), e(P , χ)),

where e(P̂ , χ̂) ∈ Ẽ(R(X)[Y ], L̂) is the Euler class of (P̂ , χ̂) and

e(P , χ) ∈ Ẽ(R[Y ], L) is the Euler class of (P , χ), defined in [5, Sec-
tion 7].

Remark 3.4. Note that, when n = 2, the definition of the Euler class
group E(R[T ], L) is slightly different from the case n ≥ 4. See [5,
Remark 7.8] for details.

Theorem 3.5. Let R be a ring containing Q of dimension n ≥ 2, and
let P be a projective R[X,Y ]-module of rank n with determinant L. Let

χ : L
∼→ ∧n(P ) be an isomorphism. Then, e(P, χ) = 0 in E(R[X,Y ], L)

if and only if P has a unimodular element.

Proof. First, we assume that P has a unimodular element. There-

fore, P̂ and P also have unimodular elements. If n ≥ 4, by [5, The-

orem 6.12], we have e(P̂ , χ̂) = 0 in E(R(X)[Y ], L̂) and e(P , χ) = 0
in E(R[Y ], L). The case n = 2 is taken care of by [5, Remark 7.8].

Now, if n = 3, it follows from [5, Theorem 7.4] that e(P̂ , χ̂) = 0

in E(R(X)[Y ], L̂) and e(P ], χ) = 0 in Ẽ(R[Y ], L). Consequently,
e(P, χ) = 0.

Conversely, assume that e(P, χ) = 0. Then, e(P̂ , χ̂) = 0 in

E(R(X)[Y ], L̂) and e(P , χ) = 0 in E(R[Y ], L). If n ̸= 3, by [5, Theo-

rem 6.12, Remark 7.8], P̂ and P have unimodular elements. If n = 3,
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by [5, Theorem 7.4], P̂ and P have unimodular elements. Since P̂ has
a unimodular element, we can find a monic polynomial f ∈ R[X] such
that Pf contains a unimodular element. Therefore, then, by Theorem
3.2, P has a unimodular element. �

Remark 3.6. Let R be a ring containing Q of dimension n ≥ 2, and
let P be a projective R[X1, . . . , Xr]-module, r ≥ 3, of rank n with

determinant L. Let χ : L
∼→ ∧r(P ) be an isomorphism. By induction

on r, we can define the Euler class group of R[X1, . . . , Xr] with respect
to the line bundle L, denoted by E(R[X1, . . . , Xr], L), as the product

of E(R(Xr)[X1, . . . , Xr−1], L̂) and E(R[X1, . . . , Xr−1], L).

To the pair (P, χ) we can associate an invariant e(P, χ) in E(R[X1,
. . . , Xr], L) as follows:

e(P, χ) = (e(P̂ , χ̂), e(P , χ))

where
e(P̂ , χ̂) ∈ E(R(Xr)[X1, . . . , Xr−1], L̂)

is the Euler class of (P̂ , χ̂) and

e(P , χ) ∈ E(R[X1, . . . , Xr−1], L)

is the Euler class of (P , χ). Finally, we have the following result.

Theorem 3.7. Let R be a ring containing Q of dimension n ≥
2, and let P be a projective R[X1, . . . , Xr]-module of rank n with

determinant L. Let χ : L
∼→ ∧n(P ) be an isomorphism. Then,

e(P, χ) = 0 in E(R[X1, . . . , Xr], L) if and only if P has a unimodular
element.

4. Analogue of Roy and Mandal. In this section, we will prove
Theorem 1.4. We begin with the following result from [16, Lemma 2.1].

Lemma 4.1. Let R be a ring and P,Q two projective R-modules.
Suppose that

ϕ : Q −→ P

is an R-linear map. For an ideal I of R, if ϕ is a split monomorphism
modulo I, then
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ϕ1+I : Q1+I −→ P1+I

is also a split monomorphism.

Lemma 4.2. Let (R,M) be a local ring and A a ring such that

R[X] ↩→ A ↩→ R[X,X−1].

Let P and Q be two projective A-modules and

ϕ : Q −→ P

an R-linear map. If ϕ is a split monomorphism modulo M, and, if ϕf
is a split monomorphism for some special monic polynomial f ∈ R[X],
then ϕ is also a split monomorphism.

Proof. By Lemma 4.1 ϕ1+MA is a split monomorphism. Thus, there
is an element h in 1+MA such that ϕh is a split monomorphism. Since
f is a special monic polynomial, R ↩→ A/f is an integral extension, and
hence, h and f are comaximal. As ϕf is also a split monomorphism, it
follows that ϕ is a split monomorphism. �

Lemma 4.3. Let R be a local ring, and let A be a ring such that
R[X] ↩→ A ↩→ R[X,X−1]. Let P and Q be two projective A-modules
and

ϕ, ψ : Q −→ P

A-linear maps. Furthermore, assume that

γ : P −→ Q

is an A-linear map such that γψ = f1Q for some special monic poly-
nomial f ∈ R[X]. For large m, there exists a special monic polynomial
gm ∈ A such that Xϕ+(1+Xm)ψ becomes a split monomorphism after
inverting gm.

Proof. As in [11, 16], first, we assume that Q is free. We have

γ(Xϕ+ (1 +Xm)ψ) = Xγϕ+ (1 +Xm)f1Q.

Since Q is free, Xγϕ + (1 + Xm)f1Q is a matrix. Clearly, for large
integer m, det(Xγϕ + (1 + Xm)f1Q) is a special monic polynomial
which can be taken for gm.
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In the general case, find projective A-module Q′ such that Q⊕Q′ is
free. Define maps

ϕ′, ψ′ : Q⊕Q′ −→ P ⊕Q′

and

γ′ : P ⊕Q′ −→ Q⊕Q′

as ϕ′ = ϕ ⊕ 0, ψ′ = ψ ⊕ f1Q′ and γ′ = γ ⊕ 1Q′ . By the previous
case, we can find a special monic polynomial gm for some large m such
that (Xϕ′ + (1 + Xm)ψ′)gm becomes a split monomorphism. Hence,
Xϕ+(1+Xm)ψ becomes a split monomorphism after inverting gm. �

The next result generalizes Mandal’s [11].

Theorem 4.4. Let (R,M) be a local ring and R[X] ⊂ A ⊂ R[X,X−1].
Let P and Q be two projective A-modules with rank(Q) < rank(P ).
If Qf is a direct summand of Pf for some special monic polynomial
f ∈ R[X], then Q is also a direct summand of P .

Proof. The method of proof is similar to [16, Theorem 1.1]; hence,
we merely give an outline of the proof.

Since Qf is a direct summand of Pf , we can find A-linear maps
ψ : Q → P and γ : P → Q such that γψ = f1Q (possibly after
replacing f by a power of f).

Let ‘bar’ denote reduction modulo M. Then we have γψ = f1Q. As

f is special monic, ψ is a monomorphism.

We may assume that A = R[X, f1/X
t, . . . , fn/X

t] with fi ∈ R[X].
If fi ∈ MR[X], then R[X, fi/X

t] = R[X,Y ]/(XtY ). If fi ∈ R[X] −
MR[X], then R[X, fi/X

t] is either R[X] or R[X,X−1], depending
upon whether f i/X

t is a polynomial in R[X] or F i/X
s with F i(0) ̸= 0

and s > 0.

In general, A is one of R[X], R[X,X−1] or

R[X,Y1, . . . , Ym]/(Xt(Y1, . . . , Ym))

for somem > 0. By [20, Theorem 3.2], any projectiveR[X,Y1, . . . , Ym]/
(Xt(Y1, . . . , Ym))-module is free. Therefore, in all cases, projective A-
modules are free and hence extended from R[X]. In particular, P and
Q are extended from R[X], which is a PID.
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Let rank(P ) = r and rank(Q) = s. Therefore, using the elementary
divisors theorem, we can find bases {p1, . . . , pr} and {q1, . . . , qs} for P
and Q, respectively, such that ψ(qi) = f ipi for some fi ∈ R[X] and
1 ≤ i ≤ s.

For the remainder of the proof, we can follow the proof of [16,
Theorem 1.1]. �

Now, we have the following consequence of Theorem 4.4.

Corollary 4.5. Let R be a local ring and R[X] ⊂ A ⊂ R[X,X−1]. Let
P and Q be two projective A-modules such that Pf is isomorphic to Qf

for some special monic polynomial f ∈ R[X]. Then:

(i) Q is a direct summand of P ⊕ L for any projective A-module
L;

(ii) P is isomorphic to Q if P or Q has a direct summand of rank
one;

(iii) P ⊕ L is isomorphic to Q ⊕ L for all rank one projective A-
modules L;

(iv) P and Q have same number of generators.

Proof.

(i) Follows trivially from Theorem 4.4, and (iii) follows from (ii).

The proof of (iv) is the same as [16, Proposition 3.1 (4)].

For (ii), we can follow the proof of [11, Theorem 2.2 (ii)] by
replacing doubly monic polynomial by special monic polynomial in his
arguments. �

Corollary 4.6. Let R be a local ring and R[X] ⊂ A ⊂ R[X,X−1]. Let
P be a projective A-module such that Pf is free for some special monic
polynomial f ∈ R[X]. Then, P is free.

Proof. Follows from the second part of Corollary 4.5. �
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