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EXTENDING UFDS TO PIDS
WITHOUT ADDING UNITS

KEITH A. KEARNES

ABSTRACT. If U is a UFD, then there is a PID P
containing U that has the same unit group as U . Moreover,
P can be taken so that its field of fractions is a pure
transcendental extension of the field of fractions of U with
transcendence degree at most |U |.

1. Introduction. At a recent conference, A. Romanowska raised
the question of whether there is a PID P such that

(i) P is a proper subring of the real numbers;
(ii) P properly contains the ring of integers; and
(iii) P has unit group P× = {±1}.

She was presenting her joint paper with G. Czédli [2], which studies
convex sets in generalized affine spaces. A classical real affine space may
be described algebraically as an R-module equipped with the affine
operations ax + (1 − a)y for a ∈ R. The convex subsets are those
closed under the operations ax+ (1− a)y where a ∈ [0, 1]. The Czédli-
Romanowska generalization replaces R with a subring P ≤ R that is a
PID.

Affine spaces over P are P -modules equipped with the operations
ax+(1−a)y, a ∈ P , and convex subsets of such faithful spaces are the
subsets closed under those operations ax+(1−a)y where a ∈ P ∩ [0, 1].
It turns out that any invertible element in P ∩ [0, 1] gives rise to a
congruence (called an aiming congruence) on C × C for each convex
subset C of an affine space over P [2, Section 5]. Such congruences play
an essential role in the algebraic description of the topological closure
of C.
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This explains the source of Romanowska’s question: can the PID
P ⊆ R be chosen so that its notion of convexity is nontrivial, i.e., P ̸= Z,
and such that all aiming congruences are trivial, i.e., P× = {±1}?

In this note, Romanowska’s question is considered as a question of
pure commutative ring theory, and the question is answered affirma-
tively. In fact, it will be shown that, if U is any UFD, then there is
a PID P containing U that has the same unit group as U . Moreover,
P can be taken so that its field of fractions is a pure transcendental
extension of the field of fractions of U with transcendence degree at
most |U |.

This answers Romanowska’s question as follows: Z[π] is a UFD that
is a subring of R that properly contains Z and has only ±1 as units.
Extend Z[π] to a PID P without adding units using the theorem of
this paper. The field of fractions of P will be a pure transcendental
extension of Q(π) of countable degree, and hence, will be embeddable
in R since the field extension R/Q(π) has uncountable transcendence
degree. Thus, there is a PID P contained properly between Z and R
whose only units are ±1.

The main result is proven in Section 2. This note concludes with
Section 3, where the following observations are explained:

(i) if P is any PID answering Romanowska’s question, then every
number in the difference P − Z must be transcendental;

(ii) there are integral domains that cannot be extended to PID’s
without adding units; and

(iii) there are UFD’s that can be extended to PID’s without adding
units but which cannot be extended further to Euclidean domains
without adding units.

2. The proof. If A is an integral domain, then Â denotes its field
of fractions and A× denotes its group of units. If S ⊆ A is a
multiplicatively closed subset, then the localization of A at S is denoted
S−1A, although, if S = {bn}n≥0 is generated by a single element b, then
we typically write Ab for S−1A.

Lemma 2.1. If U is a UFD, a, b ∈ U are coprime, and X and Y are
indeterminates, then

U [X,Y ]/(aX + bY − 1)
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is a UFD that extends U . The field of fractions of U [X,Y ]/(aX+bY−1)

is a pure transcendental extension of Û of transcendence degree 1.

Proof. First, we show that U [X,Y ]/(aX + bY − 1) is a domain that
extends U . U [X] is a UFD whose prime elements are the irreducibles
of U together with those polynomials in U [X] having content 1 that

are irreducible over Û . One such is the linear polynomial (aX − 1)
since the content is gcd(a,−1) = 1. Now, U [X,Y ] = (U [X])[Y ] is a
UFD whose prime elements are the irreducibles of U [X], together with
those polynomials in U [X,Y ] having content 1 that are irreducible over

Û(X). One such is the linear polynomial bY +(aX−1) due to the fact
that the content is gcd(b, aX − 1) = 1. Since aX + bY − 1 is prime
in U [X,Y ], U [X,Y ]/(aX + bY − 1) is a domain. In order to see that
it extends U , it suffices to note that the ideal (aX + bY − 1) restricts
trivially to the subring U ≤ U [X,Y ] consisting of constant polynomials.
This follows from the fact that every nonzero element of (aX+ bY −1)
has degree at least 1 with respect to X or Y .

Next, we show that U [X,Y ]/(aX + bY − 1) satisfies the ascending
chain condition on principal ideals (ACCP). Suppose that (d1) ⊆ (d2) ⊆
· · · is an ascending chain of principal ideals in U [X,Y ]/(aX + bY − 1).
Choose elements ek+1 ∈ U [X,Y ]/(aX + bY − 1) such that dk =
dk+1ek+1. Writing U [X,Y ]/(aX+bY −1) in the form U [X, (1− aX)/b],
consider it to be a subring of the localization

(2.1)

(
U

[
X,

1− aX

b

])
b

= Ub[X].

In the larger ring, Ub[X], which is a UFD, the chain must stabilize.
Assume that

(dk) = (dk+1) = · · · ,

so, for sufficiently large k, there exist elements fk/b
nk ∈ Ub[X] with

fk ∈ U [X,Y ]/(aX + bY − 1) such that dk · (fk/bnk) = dk+1. Since
Ub[X] is a domain in which dk = dk+1ek+1 and dk · (fk/bnk) = dk+1, it
must be that

ek+1 · (fk/bnk) = 1 in Ub[X],

or
ek+1fk = bnk in U [X,Y ]/(aX + bY − 1).
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This shows that, for sufficiently large k, the element ek+1 divides a
power of b in U [X,Y ]/(aX + bY − 1). A similar argument shows
that, for sufficiently large k, the element ek+1 divides a power of a in
U [X,Y ]/(aX+ bY − 1). Since aX+ bY = 1 in U [X,Y ]/(aX+ bY − 1),
ek+1 is a unit for sufficiently large k. Since dk = dk+1ek+1, it follows
that (dk) = (dk+1) = · · · in U [X,Y ]/(aX+bY −1) for sufficiently large
k.

Next, we claim that, if q is a prime divisor of b in U , then q
remains prime in U [X,Y ]/(aX + bY − 1), i.e., (q) is a prime ideal in
U [X,Y ]/(aX + bY − 1). For this, it suffices to establish the primeness
of the ideal (q, aX + bY − 1) = (q, aX − 1) in U [X,Y ]. Now,

U [X,Y ]/(q, aX − 1) ∼= U/(q)[X,Y ]/(aX − 1) ∼= U/(q)[Y ]a,

where the last ring may be constructed in steps: form the quotient
U/(q); form the polynomial ring U/(q)[Y ]; then, localize at the powers
of a, U/(q)[Y ]a. Since U itself is a domain, factoring by the prime ideal
(q) preserves and creates the domain property; forming the polynomial
ring U/(q)[Y ] preserves the domain property; then, localizing at the
nonzero element a, U/(q)[Y ]a, also preserves the domain property.
(That a is nonzero in U/(q)[Y ] follows from the fact that q does
not divide a in U , since q | b and gcd(a, b) = 1.) This shows that
U [X,Y ]/(q, aX − 1) is a domain; thus, (q, aX − 1) is prime in U [X,Y ],
and hence, q is prime in U [X,Y ]/(aX + bY − 1).

Nagata’s Criterion states that, if A is an integral domain with ACCP,
S is a multiplicatively closed subset of A that is generated by prime
elements, and the localization S−1A is a UFD, then A itself is a UFD.
Apply this to the ring A = U [X,Y ]/(aX + bY − 1) with S equal to
the multiplicatively closed subset of U [X,Y ]/(aX + bY − 1) that is
generated by the set of all prime divisors of b in U . Here, it helps to
write A = U [X,Y ]/(aX + bY − 1) in the form

U

[
X,

1− aX

b

]
.

It has been shown that A has ACCP. In the localization S−1A, the
element b is a unit; hence,

S−1A = S−1

(
U

[
X,

1− aX

b

])
= S−1U [X, 1− aX] = S−1U [X],
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which is a UFD since it is a localization of a polynomial ring over a
UFD. By Nagata’s Criterion, A = U [X,Y ]/(aX + bY − 1) is itself a
UFD.

For the final statement of the theorem, the element b becomes a unit
in the field of fractions of U [X,Y ]/(aX + bY − 1). Hence, the field of
fractions of U [X,Y ]/(aX + bY − 1) is the same as the field of fractions
of the ring (U [X,Y ]/(aX+ bY −1))b = Ub[X]. This field of fractions is

easily seen to be Û(X), which has transcendence degree 1 over Û . �

Lemma 2.2. Assume that U is a UFD and a, b ∈ U are coprime. If

f, g ∈ U [X,Y ]/(aX + bY − 1),

g divides f , and f ∈ U \ {0}, then g ∈ U . In particular (when
f = 1) any unit of U [X,Y ]/(aX + bY − 1) lies in U . Moreover, if
f1, f2 ∈ U are coprime in U , then they remain coprime in the extension
U [X,Y ]/(aX + bY − 1).

Proof. Every element of

U [X,Y ]/(aX + bY − 1) = U

[
X,

1− aX

b

]
(≤ Ub[X])

is a polynomial in X over the localization Ub. If f ∈ U \ {0}, then f
has degree zero with respect to X; hence, any divisor of f must have
degree zero with respect to X. This forces g ∈ Ub. A similar argument
using the representation

U [X,Y ]/(aX + bY − 1) = U

[
1− bY

a
, Y

]
≤ Ua[Y ]

shows that g ∈ Ua. Therefore, g ∈ Ua∩Ub = U , where the last equality
follows from the facts that U is a UFD and a and b are coprime.

The last two assertions of the lemma follow from the first. �

Theorem 2.3. If U is a UFD, then U has an extension P that is a
PID such that U and P have exactly the same set of units. Moreover,

P can be chosen so that the field of fractions P̂ is a pure transcendental

extension of Û of degree at most |U |.
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Proof. In this first paragraph, we describe the strategy of the proof.
If U is already a PID, then there is nothing to do. Otherwise, U
is infinite and contains elements a and b such that the ideal (a, b) is
not principal. If c = gcd(a, b), then a = a′c and b = b′c for some
coprime elements a′ and b′ such that the ideal (a′, b′) is not principal.
The proof consists of a construction designed to kill off all such “bad
pairs” of coprime elements, i.e., pairs of coprime elements that generate
nonprincipal ideals.

The proof begins now. Assume that U is an infinite UFD. Let
κ = |U |, and enumerate with κ a set of coprime pairs of elements
of U which includes all bad pairs of U , that is, all pairs of coprime
elements generating nonprincipal ideals. Here, (1, 1) is a coprime pair,
and pairs are allowed to be reused in the enumeration, so this kind of
enumeration is possible.

If the enumeration function is β : κ → U2, then define rings Vi, i < κ,
as follows.

(i) V0 = U .
(ii) Vi+1 = Vi[Xi, Yi]/(aiXi + biYi − 1) if β(i) = (ai, bi).
(iii) If λ ≤ κ is limit, then Vλ =

∪
i<λ Vi.

The statement “Vµ is a UFD and the pairs enumerated by β remain
coprime in Vµ” can be established for all µ ≤ κ by transfinite induction
using Lemmas 2.1 and 2.2. When µ = 0, the statement holds by our
initial hypothesis that U is a UFD and by the definition of β. When
µ = i + 1 is a successor ordinal, Lemma 2.1 proves that Vµ is a UFD,
while Lemma 2.2 proves that the pairs enumerated by β remain coprime
in Vµ. If µ is a limit ordinal, any element

f ∈ Vµ =
∪
i<µ

Vi

occurs first at some successor stage Vi+1 or else in V0, and when it
first occurs, all divisors of f that lie in Vµ already exist in Vi or V0,
respectively. Thus, unique factorization of elements and coprimeness
of β-enumerated pairs in Vµ is inherited from Vi+1 or V0.

Thus, U1 := Vκ is a UFD containing U0 := U as a subring. Since
new divisors of elements are not introduced during the construction,
no new units are introduced. Hence, the UFD U1 is an extension of U0
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that has the same unit group; however, all bad pairs in U0 have been
“killed” in U1.

In order to keep track of the transcendence degree of the field of
fractions as the construction progresses, we note the following:

Claim 2.4. Let κ be a cardinal, and let Fi, i < κ, be a sequence of
fields such that

(i) Fi+1/Fi is a pure transcendental extension with transcendence
base Ti for all i < κ; and

(ii)

Fλ :=
∪
i<λ

Fi

when λ ≤ κ is limit.

Then, Fκ/F0 is a pure transcendental extension with transcendence base∪
i<κ Ti.

Sketch. To prove the claim, it may be argued by transfinite induction
on λ that

∪
i<λ Ti is algebraically independent and, together with F0,

generates Fλ as a field. �

Applying Claim 2.4 to the situation where Fi = V̂i, i < κ, we obtain

that Û1/Û0 is a pure transcendental extension of transcendence degree
κ. (In particular, |U1| = κ = |U |.)

We may iterate the construction from above to produce a chain
U = U0 ≤ U1 ≤ · · · , where each Ui is a UFD with the same group of
units as U , in each Ui+1, all bad pairs from Ui have been killed, any
divisor of an element that first appears at the ith stage also exists at

the ith stage, and each Ûi+1 is a pure transcendental extension of Ûi

of degree κ = |U |. The union

P =
∪
i<ω

Ui

is therefore a UFD with no bad pairs. Such a ring is necessarily a PID,
as the following argument shows. No pair of coprime elements in P can
generate a nonprincipal ideal; thus, P is a Bezout domain. In order to
show that P is a PID, it suffices to show that it is Noetherian. If this
is not the case, then there is a strictly increasing chain of ideals

I0 ( I1 ( · · · in P .
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This can be adjusted to a strictly increasing chain of principal ideals,
as follows. Choose di+1 ∈ Ii+1 \ Ii for all i. Now, choose fi so that
(fi) = (d1, . . . , di) in P for all i. This is possible since P is Bezout.
The chain

(f1) ( (f2) ( · · ·

of principal ideals in P has been constructed so that it is strictly
increasing. This is impossible, since P is a UFD.

Applying Claim 2.4 to the chain

Û = Û0 ≤ Û1 ≤ · · · ≤
∪
i<ω

Ûi = P̂ ,

we obtain that P̂ is a pure transcendental extension of Û of transcen-
dence degree ω · κ = κ = |U |. �

3. Problems and discussion. If D is a subcategory of a category
C, it may be asked whether each C-object has a morphism to some D-
object. If the inclusion functor D → C has a left adjoint, then, indeed
each C-object has a universal morphism to a D-object given by the
unit of the adjunction. This is the case, for example, when C is the
category of integral domains equipped with embeddings and D is the
full subcategory of fields. A universal embedding of an integral domain
into a field is its embedding into its field of fractions.

It may happen that each C-object has a morphism to a D-object, but
not a universal such morphism, such as when C is the category of fields
and D is the full subcategory of algebraically closed fields. The author
does not know a conventional term for this situation, so (borrowing a
term from order theory) we call D a cofinal subcategory if each C-object
has a morphism to a D-object.

Every ring homomorphism

φ : R −→ S

preserves units in the sense that u ∈ R× implies φ(u) ∈ S×. Say that
φ reflects units if v ∈ S× implies that φ−1(v) is a nonempty subset
of R×. Thus, a unit-reflecting embedding φ : R → S restricts to an
isomorphism between unit groups.
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The theorem of this paper may be expressed as follows: if C is the
category of UFD’s equipped with unit-reflecting embeddings, then the
full subcategory of PID’s is cofinal.

This paper does not resolve the more general question:

Question 3.1. Does the inclusion functor from the category of PID’s
(with unit-reflecting embeddings)into the category of UFD’s (with unit-
reflecting embeddings) have a left adjoint? Is there a universal unit-
reflecting embedding of a UFD into a PID?

Now, we turn to another observation and question. Recall that
Romanowska’s original question was whether there is a subring P ≤ R
of the field of real numbers such that

(i) P properly contains Z;
(ii) P is a PID; and
(iii) the only units of P are +1 and −1.

Claim 3.2. If P is such a ring, then any algebraic number in P must
be a rational integer.

To see this, choose any algebraic number α ∈ P . The rings
K := Q[α] (a field) and P (a PID) are integrally closed; thus, the
intersection

I := K ∩ P

is integrally closed and lies between Z[α] and P . It follows that I
contains the integral closure of Z inK, which is the ringOK of algebraic
integers in K. By Dirichlet’s unit theorem, the group of units in OK is
the product of a finite group of roots of unity and a free abelian group of
rank r+s−1, where r is the number of real embeddings ofK and s is the
number of pairs of conjugate complex embeddings. Since OK ≤ I ≤ P
has +1 and −1 as its only units, it follows that r + s − 1 = 0. Since
K is real, it follows that r ≥ 1, while, of course, s ≥ 0; hence, r = 1,
s = 0, and K has inclusion as its unique embedding into C. If d is
the degree of the minimal polynomial of α over Q, then there are at
least d embeddings of K into C, so, d = 1 and α is rational. If α = p/q
where gcd(p, q) = 1, then, choose u, v ∈ Z such that pu + qv = 1, or
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αu+v = 1/q. Since α, u, v, q ∈ S, we obtain q, 1/q ∈ P ; hence, q = ±1.
Therefore, α ∈ Z.

Thus, if P is any PID, answering Romanowska’s question, then any
number in P − Z is transcendental. This suggests:

Question 3.3. Given a UFD U , what is the minimum transcendence

degree of the extension P̂ /Û , where P is a PID that contains U and
satisfies P× = U×? Is it always possible to find a PID P such that the

transcendence degree of P̂ /Û is finite? Is it always possible to find a

PID P such that the transcendence degree of P̂ /Û is 1?

The strategy used in this paper to construct a PID satisfying Z (
P ( R and P× = {±1} is to first adjoin a transcendental number
to Z (forming, say, Z[π]), and then to eliminate all occurrences of
nonprincipal ideals via a sequence of extensions. But observe that
this must be done carefully. If, for example, at some point of the
construction, we have a ring containing the transcendentals

π, π1/2, π1/4, π1/8, . . . ,

then the ring cannot be further extended to a PID without adding
units. More generally, if at some point of the construction, we have a
domain containing any strictly increasing sequence of principal ideals
(d1) ( (d2) ( · · · , then, in any larger domain with no additional units,
this chain remains a properly increasing chain. This cannot occur in
a PID. A stronger statement is true: if P ≤ R answers Romanowska’s
question, then, in any subring of P any principal ideal is contained in
only finitely many other principal ideals. This observation shows that
there exist integral domains, such as Z[π, π1/2, π1/4, . . .], which cannot
be extended to PID’s without adding units.

We change the question. Rather than extending a UFD to a PID
without adding units, can we extend a UFD to a Euclidean domain
without adding units? Interestingly, this is not always possible: there
exist UFD’s that cannot be extended to Euclidean domains without
adding units.

For example, it is well known that P = Z[(1+
√
−19)/2] is a PID that

is not a Euclidean domain [3, pages 277, 282]. This ring P cannot even
be extended to a Euclidean domain without adding units. This can be
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established by a slight modification, described below, of the argument
used in [3, page 277] to show that P is not a Euclidean domain.

Suppose that φ : P → E is a unit-reflecting embedding of P into a
Euclidean domain E. E has nonunits, so E is not a field. Therefore,
E has an element u of least Euclidean norm among elements in E −
(E× ∪ {0}). Such an element u ∈ E is a universal side divisor for E,
which means that every nonzero coset of the ideal (u) contains a unit.
In particular, E/(u) has cardinality at most

|E× ∪ {0}| = |E×|+ 1.

E/(u) has cardinality at least 2, since u is not a unit, so,

2 ≤ [E : (u)] ≤ |E×|+ 1.

The units of P = Z[(1 +
√
−19)/2] are only ±1, as may be shown

with a norm argument. If φ : P → E is a unit-reflecting embedding,
then E× = {±1}. The previous displayed equation becomes

2 ≤ [E : (u)] ≤ 3,

so E must have an ideal (u) of index 2 or 3. Restricting (u) to P ,
we obtain an ideal (u)|P = φ−1((u)) of index 2 or 3 in P . However,
there is no such ideal in Z[(1 +

√
−19)/2], as can be shown by a norm

argument [3, page 277]. Hence, there is no unit-reflecting embedding
of the PID Z[(1 +

√
−19)/2] into a Euclidean domain.

Question 3.4. What conditions on a PID P are necessary for there
to exist a unit-reflecting embedding from P into a Euclidean domain?

Problem 3.5. Let ID be the category of integral domains equipped
with unit-reflecting embeddings. Discover interesting instances (C,D)
of pairs of full subcategories where C ) D, and D is cofinal in C.

For example, this paper shows that (C,D) = (UFD’s, PID’s) is an
instance, while (PIDs, Euclidean domains) is not an instance.
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