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THE CONE OF BETTI TABLES OVER THREE
NON-COLLINEAR POINTS IN THE PLANE

IULIA GHEORGHITA AND STEVEN V SAM

ABSTRACT. We describe the cone of Betti tables of
all finitely generated graded modules over the homogeneous
coordinate ring of three non-collinear points in the projective
plane. We also describe the cone of Betti tables of all finite
length modules.

1. Introduction. The idea of studying the cone of Betti tables of
finitely generated graded modules over a polynomial ring originates in
the work of Boij and Séderberg [3]. To summarize, they conjectured
that the cone of Betti tables derived from Cohen-Macaulay modules
(of a fixed codimension) is spanned by Betti tables derived from pure
resolutions. This conjecture was proven by Eisenbud and Schreyer
[7] and later improved to get a statement for the cone of all finitely
generated modules [4]. For a survey of these developments, we point
the reader to [8, 9].

A crucial step was the construction of the defining inequalities of
the cone of Betti tables. Eisenbud and Schreyer found a surprising
connection with the cone of cohomology tables of vector bundles on
projective space. A conceptual understanding of this connection was
proposed by Eisenbud and Erman [5].

In a different direction, one can replace the polynomial ring with a
singular ring and try to generalize these results. The main difference
is that all finitely generated modules over polynomial rings have finite
length free resolutions, whereas this property fails for singular rings.
The next class of rings in terms of complexity of resolutions are the
hypersurface rings: the minimal free resolutions of finitely generated
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modules become periodic (of period 2). The cone of Betti tables over
hypersurface rings of low embedding dimension are described in [1].

Another perspective, when the ring is Cohen-Macaulay, is that the
long-term behavior of a minimal free resolution is reduced to the
study of minimal free resolutions of maximal Cohen-Macaulay modules.
From this point of view, the next level of complexity of rings are
the Cohen-Macaulay rings with finitely many isomorphism classes of
indecomposable maximal Cohen-Macaulay modules. These have been
classified in [6]; the homogeneous coordinate rings of rational normal
curves are one family, and the cone of Betti tables over this ring has
been described in [12].

In this paper, we describe the cone of Betti tables over another
example of such a Cohen-Macaulay ring: the homogeneous coordinate
ring of three non-collinear points in the projective plane. Up to
isomorphism, these points are [1 : 0: 0], [0:1:0] and [0:0:1]. A
pleasant feature of this example is that all of the defining inequalities
of the cone of Betti tables have concrete interpretations. This is similar
to the examples considered in [1], but one crucial difference is that our
ring is not a hypersurface ring, so that this example bridges ideas from
[1, 12].

Now we fix notation. Throughout, k is a fixed field. The Cohen-
Macaulay ring in question, i.e., the coordinate ring of the three points
[1:0:0/,[0:1:0]and [0:0:1], is

B =Xkz,y,2]/(zy, yz, v2).

Let V be the Q-vector space of tables (v; ;), where i > 0 and j € Z,
with the property that, for each i, there are only finitely many j such
that v; ; # 0. Given a finitely generated graded B-module M, define

BE(M); ; = dimy Tor? (M, k);,

which is an element of V. Our main object of study is the Q>o-span of
BB(M) in V as M varies over all finitely generated (respectively, finite
length) B-modules. Call these cones Bq(B) and BfQ(B), respectively.

The main results of this paper are Theorem 3.1 and Corollary 3.6
which completely describe the cone of Betti tables of all finitely gen-
erated B-modules, and the cone of Betti tables of all finite length
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B-modules, respectively. We give two descriptions: one in terms of
b
generators, and one in terms of linear inequalities.

In Section 2, we begin with some general results on MCM modules
and pure resolutions, and in Section 3, we prove the main results and
give a local version of the results.

2. Generalities on B-modules.

2.1. Notation. Given a B-module M, its Hilbert series

Hy (1) =) (dimye M)t
d

is of the form p(t)/(1 — t) for some polynomial p(t). We define
e(M) = p(1). From generalities on Hilbert polynomials, we obtain

dimy My = e(M) for d > 0.
In particular, e(M) > 0, and M is of finite length if and only if
e(M) = 0.

The (reduced) syzygy module Q(M) of M is the kernel of a surjec-
tion,
F—M-—D0,

where F is a free module whose basis maps to a minimal generating set
of M.

Finally, if M is a graded module, then M (—d) denotes the same
module with a grading shift:

M(~d). = M._yg.

2.2. MCM modules. There are eight indecomposable maximal Cohen-
Macaulay (MCM) B-modules (see [13, Remark 9.16] for the com-
pletion of B; to compare this to the graded case we can use [13,
Lemma 15.2.1]): the free module B, the canonical module wp and
the quotients

M, = B/(z), M> = B/(y), Ms = B/(z),
MLQ:B/(I,Z/), ]\/[273:B/(y,2’)7 M173:B/(.’,E,Z).
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Their Hilbert series are as follows:

1+2¢ 2+t
Holt) =75 Moo ()= T3

14+t 1
Hay, (1) = 1—¢ Hag, , (t) = 1—¢

An MCM module M is pure if M is (up to a grading shift) of one of
the following four forms:
B®r, wy",
MEM & MR e MER,  MER & ME & MEP.
Implicit in this definition is that M is generated in a single degree.

We treat each of the modules M; the same because their numerical
invariants (such as Betti numbers) are the same, and similarly with
M; ;. We use the convention that M; may refer to any of M;, My or
M3, and similarly for M; ;. To clarify, if we say that M is a direct sum
of M;, we mean that it is a direct sum of the copies of M7, My or M3,
and similarly for M ;.

Proposition 2.1. The syzygy modules are as follows:
Qwp) = (M2 ® M3 ® M 3)(—1),
Q(M;) = Mg 2330:(—1),
Q(M; ;) = (M ® M;)(—1),
where, in the last line, k = {1,2,3}\ {¢,7}.

Proof. Let A = k[z,y, z]. The minimal free resolution of B over A
is
(%z %’) 3 (my Tz yz)
A

0— A? A— B —0.

In particular, wp has the following minimal presentation over A (and
B):
—z E[ 0)
P/E I s ANy L N SN}
The image of the three basis vectors of A give, respectively, copies of
MLQ, M173 and M273.

The last two equalities are straightforward calculations. ]
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2.3. Herzog-Kiihl equations.

Definition 2.2. A B-module M has a pure resolution if it is Cohen-
Macaulay and there is an exact sequence of the form,

0— QM) —Fy— M —0,

where Q(M) is a pure MCM module and Fy is a free B-module
generated in a single degree. If M is a finite length module, we say that
its type is (do, d1), where dj is the common degree of all generators of
Fy and d; is the common degree of all generators of Q(M).

The Betti numbers of a pure resolution satisfy certain relations which
we now describe. Over a polynomial ring, such relations were worked
out by Herzog and Kiihl [11, Theorem 1]. If M is a finite length module
with pure resolution of type (do,d1) with dy < dy, then it has an exact
sequence of the form,

0 — N(=d1)?* — B(—dp)* — M — 0,

where N is an MCM module: B, wp, M; or M; ;. The latter three
modules have the following minimal free resolutions over B:

- B(=m)*?" 5.5 B(=2)% - B(-1)3 = B2 5 wp — 0,
-5 B(=m)?" 5. 5 B(=2)2 5 B(-1) > B — M; — 0,
-— B(-m)*" —-— B(=2)* - B(-1)> - B — M, ; — 0.

To prove this, one can use Proposition 2.1. In particular, in all cases,
if
-—F—F,_ 4 — —F —Fy—M—=0

is the minimal free resolution of M over B, then each F; is generated
in a single degree d;; let 3; be its rank. We see that d; = d;_1 + 1 for
i > 2. Also, for i > 2, we get a relation

(2.1) Bi = 2"7%¢(N) By
where ¢(IN) depends on the isomorphism type of N and is 0,1, 3/2,2 if
N is B, M;,wp, M; j, respectively.

Proposition 2.3. Let M be a finite length B-module with a pure
resolution of type (do,d1). Write Q(M) = N®" where N is one of
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B, M;,wp, M, ;, and set

c=c(N) e {O, 1, g, 2}.

Then the Betti numbers of M are a multiple of the entries of the vector

1, S e g e g 8c g 8¢ g2 3
3—c 3—¢c 3-—c¢ 3—c¢ 3—c

Proof. Using equation (2.1), we obtain

Har(t) = Hp (1) (Bt — prt™ + pret+1 S ™ (—1)i2i=2¢2)

i>2
1+2t J & Brcthtl
— % _ 4
1t(50 Ot
(142t)(Bot™ — Bat™) + fret
1—t ’

Since M is of finite length, Hy(¢) is a polynomial, and so the numerator
of the above expression is divisible by 1—¢. Thus, the substitution ¢ +— 1
gives the relation

3(Bo — B1) + Pic = 0.
Taking 8y = 1 gives us the desired statement. O

Remark 2.4. The Betti numbers do not depend on the actual degree
sequence, just on the isomorphism class of the MCM module. For
convenience, we list here the first lattice point on the rays spanned by
the vectors from Proposition 2.3:

vi =(1,1,0,0,0,...),
vo = (2,3,3,6,12,...),
vs = (1,2,3,6,12,...),

vy =(1,3,6,12,24,...).
Note that 2vs = vi+v4 and 2ve = 3v; + vy, so that the cone generated
by vi,vsa,v3, vy is minimally generated by vi and vy4.

In particular, the Betti diagrams of wp and M; are positive linear
combinations of the Betti diagrams of B and M; ;. Finally, the Betti
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diagram of M; ; is
2V + E 0, 0
3 4 3 O Yee)

3. The cone of Betti diagrams.

3.1. Main result. Each pure resolution has an associated degree
sequence which documents in what degree each term of the resolution
is generated. If the resolution is finite, we pad the degree sequence with
the symbol oo, so the possible degree sequences are:

(do,O0,00,...), (d07d1,00,...), (do,dl,d1+1,d1+2,...),
where do < d;.

For each degree sequence d define my € V as follows. First,
(ma)o,; = 1 for j = dy and 0 otherwise. If

d = (dg, 00,00, ...),
m;; = 0 for all ¢ > 1 and all j. If
d = (dy,dy,0,...),
m,; = 1 for j = d; and O otherwise. If
d=(do,d1,dr +1,d1+2,...),

T =3 2¢=1 for ¢ > 1 and 7 = d; and 0 otherwise. Recall that these
are the Betti numbers (up to scalar multiple) of a finite length module
whose syzygy module is a direct sum of copies of M; ; and that we do
not use the others because of the relations in Remark 2.4.

For each v € V, define

€ij(v) =vij,  ar(v) =2€e5(v) — €2,641(v),
() = (3€0,;(v) = Be1j11(v) + €2,542(v)).
i<k

We also define v, by summing over all j. Note that, while v, involves
an infinite sum, only finitely many nonzero terms of v are involved so
it is well-defined.

Theorem 3.1. The following cones are equal:
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(i) The cone Bq(B) spanned by the Betti diagrams of all finitely
generated B-modules.
(ii) The cone D spanned by mq for all B-degree sequences d.
(iii) The cone F defined to be the intersection of the halfspaces
{€i,j >0} foralli,j >0, {ar > 0} for all k € Z, {y, > 0} for
allk € Z, and the subspaces {2¢; j = €11 j41} fori>2,j € Z.

The proof of Theorem 3.1 follows by establishing the inclusions
D CBq(B) S FCD,

which are the content of the next three lemmas.
Lemma 3.2. D C Bq(B).

Proof. Tt suffices to show that, for each degree sequence d, there
exists a B-module M with 82 (M) = 4. We assume dy = 0 for simpli-
city of notation.

e When d = (0,00, 00,...), take M = B.

e When d = (0,dy,00,...), take M = B/((x +y + 2)%).

e When d = (0,dy,dy+1,d1+2,...), take M = B/(z%,y%, z%).
O

Lemma 3.3. Bq(B) C F.

Proof. For a finitely generated graded B-module M, we want to show
that the inequalities defining F' are nonnegative on 38 (M). There are
no negative entries in A% (M), so

eij (B85 (M)) = B7(M) > 0
for all 7, j. The inequalities
{ay >0 | ke Z}
and the equalities
{26 =€iy1541 |1 >2, jEZL}

hold for BB (M) by our discussion in subsection 2.3.
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It remains to show that (8% (M)) > 0 for all k € Z. Let
—>F1—>FQ—>M—>O
be a minimal free resolution of M. Suppose that
Q(M) = B®* @ wi™ @ M & M.

Let B; be the ith Betti number of M (ignoring the grading). From
subsections 2.2 and 2.3, we can determine the relations

e(QUM)) = 3 + 31 + 202 + g,
B1 = ag + 201 + az + as,
62 = 3C¥1 + a2 + 2043.

In particular, e(Q(M)) = 381 — f2. From the short exact sequence,
0— QUM) —Fy— M —0,

we get
e(M) = e(Fo) — e(QM)) = 360 — 361 + P,

and e(M) is a nonnegative quantity, so

(3.1) 360 —3P1+ P2 = 0.

If F is a free B-module, let 7<j(F) be the free module generated by
minimal generators of degree < k. For a general B-module M, define
T<k (M) to be the quotient of

T<ky1(F1) — 7<i(Fo).

In subsection 2.3, we established that the differentials F; — F;_; are
linear for ¢ > 2, and so we conclude that the following is a minimal free
resolution of 7<x(M):

o= T<hti(Fi) — T<prio1(Fio1) —
— T§k+1(F1) — Tgk(Fo) — Tgk(M) — 0.

In particular, applying equation (3.1) to 7<x(M), we conclude that
Ye(BE(M)) > 0, as desired. 0

Lemma 3.4. I C D.
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Proof. The proof is formally the same as the proofs of [1, Lemmas
2.7, 2.8]. 0

Remark 3.5. Following [1], define a partial order on the degree
sequences by d < d' if dy < dj and d; < d} where either inequality
is strict, or if dy = df), dy = d} and d,, < d), for all n > 2. Then the
proofs of [1, Lemmas 2.7, 2.8] show that Bq(B) has a triangulation
coming from the simplicial cones spanned by the rays corresponding to
the elements of maximal chains in this partial order.

From Theorem 3.1, we immediately obtain a result about the cone
of finite length B-modules:

Corollary 3.6. The following cones are equal:

(i) The cone Bg (B) spanned by the Betti diagrams of all finite length
B-modules.

(ii) The cone D¥ spanned by w4 for all B-degree sequences d with
dp < 0.

(iii) The cone F7! defined to be the intersection of the halfspaces
{ei,j > 0} for alli,j > 0, {a > O} for all k € Z, {y, > 0}
for all k € Z, and the subspaces {2¢; ; — €j41 41 = 0} fori > 2,
7 €Z and y5 = 0.

Proof. In each of three items, we have added one extra condition
to the cones defined in Theorem 3.1, so we just have to verify that
these conditions are the same. From the proof of Lemma 3.3, we get
that 7o (8P (M)) = e(M). Since e(M) = 0 if and only if M has finite
length, this shows that the extra conditions in (i) and (iii) coincide.
From Proposition 2.3, voo(mq) = 0 if dy < co. If di < 0o and dy = o0,
it is immediate from the definition that vy (7g) = 0. Finally, for the
last case with dq = 0o, we have v (7g) = 1, so the extra conditions in
(ii) and (iii) coincide. O

3.2. Local version. Following [2], we now give a local version of our
main result by considering minimal free resolutions over the completion

~

B =K|[z,y, 2]]/(zy, yz, x2).
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In this case, the relevant numerical invariant is the Betti sequence 8(M)
of a module M which records the number of generators of each term in
a minimal free resolution of M.

As discussed above, the only relevant information are the first three
Betti numbers (8, 51, 32) since 5; = 28;—1 for i > 2. The following
results are easy to prove from what we have already discussed.

Proposition 3.7. The following cones are equal:

(i) The cone spanned by the Betti sequences of all finitely generated
B-modules.
(ii) The cone spanned by (1,0,0,...), (1,1,0,...) and (1,3,6,...).
(iii) The cone defined by the inequalities By > 0, 38y + B2 > 3081 and
281 > B2, and the equalities B; = 23,1 for i > 2.

Proposition 3.8. The following cones are equal:

(i) The cone spanned by the Betti sequences of all finite length B-
modules.
(ii) The cone spanned by (1,1,0,...) and (1,3,6,...).
(iii) The cone defined by the inequalities B > 0 and 231 > P2, and the
equalities 3By + B2 = 361 and B; = 2B;—1 for i > 2.
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