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POLYNOMIAL OVERRINGS OF Int(Z)

JEAN-LUC CHABERT AND GIULIO PERUGINELLI

ABSTRACT. We show that every polynomial overring
of the ring Int(Z) of polynomials which are integer-valued
over Z may be considered as the ring of polynomials which

are integer-valued over some subset of Ẑ, the profinite
completion of Z with respect to the fundamental system of
neighbourhoods of 0 consisting of all non-zero ideals of Z.

Introduction. The classical ring of integer-valued polynomials,
namely,

Int(Z) = {f ∈ Q[X] | f(Z) ⊆ Z},

is known to be a two-dimensional Prüfer domain (see for instance [1,
subsection VI.1]). Thus, all the overrings of Int(Z), that is, rings
between Int(Z) and its quotient field Q(X), are well known a priori :
they are intersections of localizations of Int(Z) at its prime ideals, which
are themselves well-known valuation domains. However, the spectrum
of Int(Z) turns out to be uncountable, so that these intersections of
localizations are not so easy to characterize. The aim of this paper is to
classify the ‘polynomial overrings’ of Int(Z), that is, rings lying between
Int(Z) and Q[X]. We first describe them as particular intersections of
some families of valuation domains. Furthermore, we will see that
the polynomial overrings of Int(Z) may be characterized as rings of
polynomials which are integer-valued over some subset of Z or, more

generally, of Ẑ, the profinite completion of Z with respect to the
fundamental system of neighborhoods of 0 consisting of all non-zero
ideals of Z.
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1. Prime spectrum of Int(Z) and localizations. We first recall
the structure of the spectrum of Int(Z) [1, Proposition V.2.7]. A non-
zero prime ideal P of Int(Z) lies over a prime ideal of Z, and hence,
there are two cases:

• P ∩ Z = (0). Then P is of the form

P = Pq = q(X)Q[X] ∩ Int(Z), where q ∈ Z[X] is irreducible.

These ideals Pq have height 1 and the polynomial q is uniquely
determined.

•P∩Z = pZ, where p ∈ P (we denote by P the set of prime numbers).
Then P is of the form

P = Mp,α = {f ∈ Int(Z) | f(α) ∈ pZp}, where α ∈ Zp.

These ideals Mp,α are maximal ideals and the residue field of Mp,α is
isomorphic to Z/pZ. More precisely,

Zp ∋ α 7−→ Mp,α ∈ Max (Int(Z))

is a one-to-one correspondence between Zp and the set of prime ideals
of Int(Z) lying over p. (Recall that Zp, the ring of p-adic integers, is
uncountable.)

Moreover, given q irreducible in Z[X], p ∈ P and α ∈ Zp, the
following holds [1, Proposition V.2.5]:

(1.1) Pq ⊂ Mp,α ⇐⇒ q(α) = 0.

Consequently, given an irreducible polynomial q ∈ Z[X], for a fixed
prime p, there are at most finitely many ideals Mp,α containing Pq; on
the other hand, it is known that there exist infinitely many primes p
such that q(X) has a root α in Zp, that is, Pq is contained in infinitely
many Mp,α’s [1, Proposition V.2.8]. In particular, the prime ideals
Pq are not maximal. From equivalence (1.1), it follows also that the
height of Mp,α is one if and only if α is transcendental over Q, it is two
otherwise.

We now describe the localizations of Int(Z) with respect to these
prime ideals (see for example, [1, Proposition VI.1.9]). They are the
following valuation domains of the field Q(X):

• Int(Z)Pq = Q[X](q) = {f(X)/g(X) ∈ Q(X) | q - g}.
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• Int(Z)Mp,α = Vp,α = {φ ∈ Q(X) | φ(α) ∈ Zp}.
Consequently, Int(Z) is a Prüfer domain. Moreover,

(1.2) Vp,α ⊂ Q[X](q) ⇐⇒ Pq ⊂ Mp,α ⇐⇒ q(α) = 0.

We are interested in the representation of Int(Z) as an intersection
of valuation overrings. For this purpose, we have to make some choices.
First, we may represent Int(Z) as the intersection of all of its valuation
overrings:

Int(Z) =
∩

q∈Pirr(Z)

Q[X](q) ∩
∩
p∈P

∩
α∈Zp

Vp,α,

where Pirr(Z) denotes the set of irreducible polynomials of Z[X]. We
may look for a more optimal representation of Int(Z). To begin with,
we may discard from the above representation the valuation domains
which are not minimal valuation overrings of Int(Z), or, equivalently,
the valuation domains which does not correspond to maximal ideals of
Int(Z) because Int(Z) is a Prüfer domain:

(1.3) Int(Z) =
∩
p∈P

∩
α∈Zp

Vp,α.

The above intersection in (1.3) is uncountable and it is far from being
irredundant. Recall that, given a domain D with quotient field K, and
a family of valuation overrings Λ = {Vλ} of D (that is, D ⊆ Vλ ⊂ K)
such that D =

∩
λ Vλ, the representation D =

∩
λ Vλ is said irredundant

if no Vλ is superfluous, that is, for each λ, D is strictly contained in
the intersection of the member of Λ distinct from Vλ ([6]). For the
domain Int(Z), there are suitable countable intersections as shown, for
instance, by the following equality:

(1.4) Int(Z) =
∩
p∈P

∩
α∈Z

Vp,α.

The fact that every rational function on the right-hand side of equal-
ity (1.4), that is, that every φ ∈ Q(X) such that φ(Z) ⊆ Z is a polyno-
mial, follows from the observation that a rational function which takes
integral values on infinitely many integers is a polynomial (see [12,
VIII.2 (93)] or [1, Proposition X.1.1]).

So, every Vp,α, α ∈ Zp \ Z, p ∈ P, in the representation (1.3) is
superfluous; actually, we will show that, for each p ∈ P and α ∈ Zp,
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every Vp,α in the above representation is superfluous (Corollary 4.4).
However, there is no irredundant representation of Int(Z) as an inter-
section of valuation overrings because there is no subset of Z which is
minimal among the subsets of Z which are dense in Z for every p-adic
topology (see Corollary 3.5 and Remark 5.2). Thus, in the sequel, the
only representations that we will consider as ‘canonical’ will be the
intersections of all the minimal valuation overrings as in (1.3).

After some generalities about the overrings of Int(Z) in Section 2,
we consider the representations of the overrings of Int(Z(p)), where p is
a fixed prime number and Z(p) denotes the localization of Z at pZ in
Section 3, as intersections of valuation domains (Proposition 3.3) and
then, as rings of integer-valued polynomials on a subset of Zp (Theorem
3.11); in particular, we show that there is a one-to-one correspondence
between the set of polynomial overrings of Int(Z(p)) and the closed sub-
sets of Zp. In order to globalize these results, we study in Section 4
the valuation overrings of an intersection of valuation domains, charac-
terizing those which are superfluous (Corollary 4.4 and Theorem 4.6).
Finally, the polynomial overrings of Int(Z) are described in Section 5
by their representations as intersection of valuation overrings (Propo-
sition 5.1), and in Section 6 with an interpretation as integer-valued

polynomials on a subset of the ring Ẑ (Theorem 6.2).

2. Generalities about overrings of Int(Z). We are interested in
rings R which are overrings of Int(Z), that is,

(2.1) Int(Z) ⊆ R ⊆ Q(X),

and, in particular, by the polynomial overrings of Int(Z), that is, the
rings R which are contained in Q[X].

Since Int(Z) is a Prüfer domain, we first recall the following funda-
mental result of [4] (see also [3, Theorem 26.1]) concerning overrings
D′ of a Prüfer domain D, that is, rings D′ such that D ⊆ D′ ⊆ K
where K denotes the quotient field of D.

Proposition 2.1. Let D′ be an overring of a Prüfer domain D, and
let SD′ be the set of prime ideals p of D such that pD′ ( D′. Then

(i) If p′ is a prime ideal of D′ and p = p′ ∩ D, then Dp = D′
p′ and

p′ = pDp ∩D′. Therefore D′ is Prüfer.
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(ii) If p is a non-zero prime ideal of D, then p is in SD′ if and only
if Dp ⊇ D′. Moreover, D′ =

∩
p∈SD′ Dp.

(iii) Every ideal I′ of D′ is an extended ideal, that is, I′ = (I′∩D)D′.
(iv) The spectrum of D′ is {pD′ | p ∈ SD′}.

In view of the previous proposition, we will use the following termi-
nology: a prime ideal p of D is said to survive in D′ if its extension
pD′ in D′ is a proper ideal (that is, pD′ ( D′, in which case pD′ is a
prime ideal of D′ by the above result) and p is said to be lost in D′

otherwise (that is, if pD′ = D′). In particular, every overring D′ of a
Prüfer domain D is equal to the intersection of the localizations of D
at those prime ideals p of D which survive in D′.

Example 2.2. Clearly,

Q[X] =
∩

q∈Pirr

Int(Z)Pq =
∩

q∈Pirr

Q[X](q),

where Pirr = Pirr(Z) is the set of irreducible polynomials in Z[X]. By
[6, Remark 1.12], this representation of Q[X] is irredundant, since
Q[X] is a Dedekind domain and the set of maximal ideals of Q[X] is in
one-to-one correspondence with Pirr, namely Pirr ∋ q 7→ q(X)Q[X].

Consequently, for a polynomial overring R, each prime ideal Pq of
Int(Z) must survive in R since it survives in Q[X], and we have

Pq R = q(X)Q[X] ∩R.

Since we want to describe explicitly R in terms of those prime ideals
of the spectrum of Int(Z) which survive in R, we are mostly interested
in the other prime ideals, those lying over a prime. They are called
unitary prime ideals because they contain nonzero constants.

The following result of Gilmer and Heinzer is of fundamental impor-
tance in order to decide whether an ideal p of Int(Z) survives or not in
some intersection of valuation overrings of Int(Z).

Proposition 2.3. ([6, Proposition 1.4]). Let D be a Prüfer domain,
and let {p} ∪ {pα}α∈Λ be a family of prime ideals of D. Then Dp ⊇∩

α∈ΛDpα if and only if, for every finitely generated ideal I ⊆ p, there
exists an α ∈ Λ such that I ⊆ pα.
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Corollary 2.4. If Dp is not a minimal valuation overring of the Prüfer
domain D, then Dp is superfluous in each representation of D as an
intersection of valuation overings in which Dp appears.

Proof. (See also [6, Lemma 1.6].) Let
∩

α∈ΛDpα be any representa-
tion ofD, let α0 ∈ Λ, and assume thatDpα0

is not a superfluous element
in this representation. By Proposition 2.3, there exists a finitely gen-
erated ideal I ⊆ pα0 such that I ̸⊆ pα for every α ∈ Λ \ {α0}. Let
m be a maximal ideal of D containing pα0 , and let x be any element
of m. Since D =

∩
α∈ΛDpα and I + (x) ̸⊆ pα for α ̸= α0, necessarily

I+ (x) ⊆ pα0 . Finally, pα0 = m is maximal, which is equivalent to the
fact that Dpα0

is a minimal valuation overring of D. �

Remarks 2.5.

(i) The converse of the previous corollary may be false: there are
minimal valuation overrings which may be superfluous (cf., Ex-
ample 4.7 below).

(ii) We have to take care that there is another notion of minimality
which depends on the representation that we consider: a valuation
domain which is minimal with respect to the elements of some
representation of D is not necessarily minimal with respect to
another representation (and in particular, with respect to all the
valuation overrings of D). For instance, let p ∈ P, αn ∈ Z (n ≥ 0)
and q ∈ Pirr(Z) be such that q(α0) = 0 and limn→+∞ vp(αn −
α0) = +∞. Let Vq = Q[X](q). Then, we have:

D +
( ∩

n≥0

Vp,αn

)∩
Vq(2.2)

=
∩
n≥0

Vp,αn =
∩
n>0

Vp,αn

=

( ∩
n>0

Vp,αn

)∩
Vq.

The first equality follows from the fact that Vq ⊃ Vp,α0 and the
second equality from the fact that α0 = limn→∞ αn in Zp (see
Lemma 4.1). The valuation domain Vq is not minimal with respect
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to the elements of the first representation, while it is for the last
one.

(iii) Obviously, a valuation domain which is not minimal with respect
to some representation is superfluous for this representation, but
Corollary 2.4 says something stronger since a minimal valuation
overring of D which appears in some representation of D is a
fortiori minimal for this representation. In the last representation
of D given in (2.2), Vq is superfluous although it is minimal for
this representation, but we could be sure that it is superfluous
because it is not a minimal overring of D as shown by the first
representation.

Thus, we emphasize that when we speak of a minimal valuation
overring of D it is always a valuation domain which is minimal with
respect to the family of all the valuation overrings of D.

Another important example is the localization of Int(Z) with respect
to a prime p ∈ Z.

Example 2.6. For every fixed prime p, we have

Int
(
Z(p)

)
= Int(Z)(p),

where Int(Z)(p) is the localization of the Z-module Int(Z) at pZ,
namely, Int(Z)(p) = {(1/s)f(X) | f ∈ Int(Z), s ∈ Z \ pZ} (see
[1, Theorem I.2.3]). Consequently, the prime ideals of Int(Z) which
survive in Int(Z(p)) are the non-unitary ideals Pq and the unitary ideals
Mp,α lying over the prime p. By a slight abuse of notation, we still
denote the corresponding extended ideals in Int(Z(p)) by Pq and Mp,α,
respectively. Then we have:

Int(Z(p)) =
∩

q∈Pirr

Q[X](q) ∩
∩

α∈Zp

Vp,α

=
∩

q∈Pirr

Q[X](q) ∩
∩
α∈Z

Vp,α.

But, in this local case, an ideal Pq may be maximal in Int(Z(p)): Pq

is maximal if and only if q(X) has no root in Zp ([1, Proposition

V.2.5]). Therefore, if PZp
irr denotes the set of irreducible polynomials

over Z which have no roots in Zp, we have the following representation
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of Int(Z(p)) as the intersection of all its minimal valuation overrings
(which correspond to the maximal ideals of Int(Z(p))):

(2.3) Int(Z(p)) =
∩

q∈PZp
irr

Q[X](q) ∩
∩

α∈Zp

Vp,α.

Remark 2.7. It is not difficult to see that PZp
irr is non-empty: let

g ∈ Zp[X] be a monic irreducible polynomial of degree d ≥ 2. By
a corollary of Krasner’s lemma (see, for instance, [9, Chapter V,
Proposition 5.9]), every monic polynomial q ∈ Zp[X] of degree d which
is sufficiently close to g(X) with respect to the p-adic valuation is also
irreducible over Zp[X]. Clearly, we may choose such a polynomial q(X)
with coefficients in Z. Then, in particular, q(X) is irreducible in Z[X]
and has no roots in Zp.

If we localize each ring of (2.1) at p (that is, with respect to the
multiplicative set Z\pZ), since Int(Z) is well behaved under localization
as seen in Example 2.6, we get

(2.4) Int(Z(p)) ⊆ R(p) ⊆ Q(X),

where R(p) = {(1/n)f | f ∈ R,n ∈ Z \ pZ}. If R is a polynomial
overring of Int(Z), then R(p) is a polynomial overring of Int(Z(p)), that
is, R(p) ⊆ Q[X]. Clearly, we have

(2.5) R =
∩
p∈P

R(p).

Hence, in order to make our work easier, we fix a prime p, and we
continue our discussion for an overring R of Int(Z(p)).

3. Polynomial overrings of Int(Z(p)). In this section, p denotes
a fixed prime number, and we consider overrings of Int(Z(p)), that is,
rings R such that

Int
(
Z(p)

)
⊆ R ⊆ Q(X).

Notation. For every overring R of Int(Z(p)), we consider the
following subsets:
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(i) A subset of the ring Zp of p-adic integers

(3.1) Zp(R) + {α ∈ Zp | Mp,αR ( R}.

(ii) For every α ∈ Zp which is not the pole of some element of R, the
following subring of the field Qp of p-adic numbers

R(α) + {f(α) | f ∈ R} ⊆ Qp.

Note that Zp(R) indexes the set of maximal unitary ideals of
Int(Z(p)) which survive in R under extension, and that R(α) is al-
ways defined for polynomial overrings of Int(Z(p)). For instance, if R =
Int(Z(p)), then Zp(R) = Zp and, for every α ∈ Zp(R)∩Q, R(α) = Z(p),
since Z(p)[X] ⊂ R(p) and R(α) ⊆ Zp ∩Q.

The following easy proposition characterizes the set Zp(R) for any
overring R.

Proposition 3.1. Let R be an overring of Int(Z(p)) and α ∈ Zp. Then

(3.2) α ∈ Zp(R) ⇐⇒ R ⊆ Vp,α ⇐⇒ R(α) ⊆ Zp.

Moreover, the subset Zp(R) is closed in Zp for the p-adic topology.

Proof. The first equivalence follows from Proposition 2.1. The
second equivalence is straightforward from the definitions of Vp,α and
R(α). Concerning the last assertion, note that, for each f ∈ R, by
continuity of f , the subset {α ∈ Zp | f(α) ∈ Zp} is closed in Zp. Then,
we just have to remark that:

Zp(R) =
∩
f∈R

{α ∈ Zp | f(α) ∈ Zp}. �

Corollary 3.2. Under extension, a prime ideal Pq of Int(Z(p)) is
maximal in R if and only if q(X) has no roots in Zp(R).

Proof. If Pq does not become maximal in R under extension, then
PqR is strictly contained is some prime ideal Q of R. By Proposi-
tion 2.1, Q must be equal to the extension of some prime ideal of
Int(Z(p)), which must be a maximal idealMp,α containingPq, or equiv-
alently, Vp,α ⊂ Q[X](q). In particular, α ∈ Zp(R) and q(α) = 0, by
(1.2). The converse is clear. �
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3.1. Polynomial overrings of Int(Z(p)) as intersections of valu-
ation domains. Now we consider different representations of a poly-
nomial overring R as intersections of valuation overrings of Int(Z(p)).

Proposition 3.3. Let p be a prime, and let R be any polynomial
overring of Int(Z(p)). We have the following representations of R as
an intersection of valuation overrings.

(i) The intersection of all the valuation overrings:

(3.3) R =
∩

q∈Pirr

Q[X](q) ∩
∩

α∈Zp(R)

Vp,α,

where Pirr denotes the set of irreducible polynomials of Z[X], and
Zp(R) is defined by Zp(R) + {α ∈ Zp | Mp,αR ( R}.

(ii) The intersection of all the minimal valuation overrings:

(3.4) R =
∩

q∈PZp(R)

irr

Q[X](q) ∩
∩

α∈Zp(R)

Vp,α,

where PZp(R)
irr denotes the subset of Pirr formed by those polyno-

mials which have no roots in Zp(R).
(iii) For every P ⊆ Pirr and every E ⊆ Zp(R), the following intersec-

tion of valuation overrings of R:

(3.5) RP,E =
∩
q∈P

Q[X](q) ∩
∩
α∈E

Vp,α

is equal to R if and only if P ⊇ PZp(R)
irr and E is p-adically dense

in Zp(R).

Proof. Example 2.2 and equivalences (3.2) show clearly that the
valuation overrings of R are exactly those which appear in the right-
hand side of equality (3.3). The equality follows from the fact that R is
an overring of a Prüfer domain, and hence, it is a Prüfer domain, equal
to the intersection of all its valuation overrings. Thus, (i) is proved.

The minimal valuation overrings of R correspond to the valuation
overrings whose center is a maximal ideal of R. Assertion (ii) is then a
consequence of Corollary 3.2.
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By equality (3.3), R is contained in any ring of the form RP,E . By
continuity of the rational functions, if β ∈ Zp is the limit of a sequence
{αn}n≥0 of elements of E, then Vp,β ⊃

∩
n∈N Vp,αn ⊃

∩
α∈E Vp,α. As a

consequence, if E is dense in Zp(R), then
∩

α∈E Vp,α =
∩

α∈Zp(R) Vp,α,

and hence, once more by equality (3.4), RP,E = R.

Let us now prove the converse assertion of (iii). Assume first that

P ̸⊃ PZp(R)
irr . Then, there exists r ∈ Pirr \P without any root in Zp(R).

Let m = sup{vp(r(α)) | α ∈ Zp(R)}. Since Zp(R) is closed, m is finite
since otherwise there would exist a sequence {αn}n≥0 of elements of
Zp(R) such that vp(r(αn)) ≥ n, and, by compactness of Zp(R), there
would exist a subsequence which converges to an element β, which then
would be a root of r(X) in Zp(R). Consider now the rational function
φ(X) = pm/r(X). For every α ∈ Zp(R), vp(r(α)) ≤ m, and hence,
φ ∈ Vp,α. Consequently, φ ∈

∩
q∈P Q[X](q) ∩

∩
α∈Zp(R) Vp,α, while

clearly φ /∈ Q[X](r). Thus, R ( RP,E .

Assume now that E is not p-adically dense in Zp(R). It remains to
prove that again we have a strict containment: R ( RP,E . For this, it
is enough to prove that:

R (
( ∩

q∈Pirr

Q[X](q)

)
∩
( ∩

α∈E

Vp,α

)
= {f(X) ∈ Q[X] | f(E) ⊆ Zp}.

This strict containment is a clear consequence of Proposition 3.10
below. �

Remark 3.4. By Remark 2.7 and, by the fact that PZp
irr ⊆ PZp(R)

irr

for each overring R of Int(Z(p)), it follows that PZp(R)
irr is always non-

empty. Note though, that the complement of PZp(R)
irr may be empty, for

example, if Zp(R) is formed by elements of Zp which are transcendental
over Q.

As for Int(Z) or for Int(Z(p)), an overring R does not have in general
an irredundant representation as intersection of valuation overrings.
There does exist an irredundant representation in some particular cases,
as the next result shows.
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Corollary 3.5. A polynomial overring R of Int(Z(p)) admits an irre-
dundant representation if and only if Zp(R) contains a p-adically dense
subset E formed by isolated points.

Proof. Assume that RP,E is an irredundant representation of R. By

Proposition 3.3 (iii), P = PZp(R)
irr and E is dense in Zp(R). Moreover,

for each α0 ∈ E, R = RP,E ( RP,E\{α0}; thus, the topological closure
of E \ {α0} is strictly contained in that of E, which means that α0 is
isolated in E. The reverse implication is obvious still by Proposition
3.3 (iii). �

For instance, we can consider E to be equal to the set of distinct
elements of a convergent sequence {αn}n≥0 with limit α, so that
Zp(R) = E ∪ {α}.

3.2. Polynomial overrings of Int(Z(p)) as integer-valued poly-
nomials rings. Contrary to equality (3.4), equality (3.3) shows that
a polynomial overring R depends only on Zp(R). In order to describe
how a polynomial overring R of Int(Z(p)) is characterized by its asso-
ciated set Zp(R), we recall the following definition (for example, see
[10, 11]).

Definition 3.6. For every subset E of Zp, the ring formed by the
polynomials of Q[X] whose values on E are p-integers is denoted by:

IntQ(E,Zp) + {f ∈ Q[X] | f(E) ⊂ Zp}.

In particular, for E = Zp, we set IntQ(Zp) + IntQ(Zp,Zp).

By definition (or by convention) we set IntQ(∅,Zp) = Q[X] (after all,
any polynomial is integer-valued over the empty-set). Note also that
IntQ(E,Zp) = Q[X] ∩ Int(E,Zp), where Int(E,Zp) = {f ∈ Qp[X] |
f(E) ⊆ Zp}. The following equality follows from a continuity-density
argument:

(3.6) Int(Z(p)) = IntQ(Zp).
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Proposition 3.7. Let R be a polynomial overring of Int(Z(p)), and let
Zp(R) = {α ∈ Zp | Mp,αR ( R}. Then

R = IntQ(Zp(R),Zp).

Proof. The containment R ⊆ IntQ(Zp(R),Zp) follows from Proposi-
tion 3.1: α ∈ Zp(R) if and only R(α) ⊆ Zp. Thus, we have the chain
of inclusions

Int(Z(p)) ⊆ R ⊆ IntQ(Zp(R),Zp) ⊆ Q[X].

In order to prove the converse containment, it is sufficient to show
that each prime ideal of Int(Z(p)) which survives in R also survives in
IntQ(Zp(R),Zp). In fact, since we are dealing with Prüfer domains, if
a prime ideal P of Int(Z(p)) is such that PR ( R, then PR is a prime
ideal of R and these extensions comprise the whole spectrum of R by
Proposition 2.1 (iv). We then use the well-known fact that an integral
domain is equal to the intersection of the localizations at its own prime
ideals.

For what we have already said, all the prime non-unitary ideals
survive in both rings since they survive inQ[X]. LetMp,α be a maximal
unitary ideal which survives in R. By definition of Zp(R), α ∈ Zp(R).
Now, Mp,α survives in IntQ(Zp(R),Zp) if and only if IntQ(Zp(R),Zp)
is contained in Vp,α, that is, each polynomial of IntQ(Zp(R),Zp) is
integer-valued on α. Since α ∈ Zp(R), the conclusion follows. �

In particular, from Proposition 3.7, we have a complete characteri-
zation of the family Rp of polynomial overrings of Int(Z(p)):

Corollary 3.8. If F(Zp) denotes the family of closed subsets of Zp,
then

Rp = {IntQ(F,Zp) | F ∈ F(Zp)}.

Proposition 3.7 says how R is characterized by the closed subset
Zp(R) ⊆ Zp. In order to prove that, for different closed subsets of Zp

we get different polynomial overrings of Int(Z(p)), we recall the notion
of polynomial closure introduced by Gilmer [5] and McQuillan [8].

Definition 3.9. For any subset E ⊆ Zp (E is not necessarily closed),

the p-polynomial closure of E is the largest subset E of Zp (containing
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E) such that
IntQ(E,Zp) = IntQ(E,Zp).

Equivalently,

E = {α ∈ Zp | IntQ(E,Zp)(α) ⊂ Zp}
= {α ∈ Zp | IntQ(E,Zp) ⊂ Vp,α}
= Zp(IntQ(E,Zp)),

where the last equality follows by Proposition 3.1.

Proposition 3.10. For any subset E ⊆ Zp, the following subsets are
equal :

(i) the p-polynomial closure of E,
(ii) the p-adic topological closure of E,
(iii) Zp(IntQ(E,Zp)).

For equivalence between the polynomial closure and the topological
closure, see for instance, [1, Theorem IV.1.15].

The next theorem shows that the closed subsets of Zp are in one-to-
one correspondence with the polynomial overrings of Int(Z(p)).

Theorem 3.11. Let Rp be the set of polynomial overrings of Int(Z(p)),
and let F(Zp) be the family of closed subsets of Zp. The following maps
which reverse the containments are inverse to each other :

φp : Rp ∋ R 7−→ Zp(R) ∈ F(Zp)

and

ψp : F(Zp) ∋ F 7−→ IntQ(F,Zp) ∈ Rp.

Proof. By Proposition 3.7, ψp◦φp = idRp . Now, considering φp◦ψp :
for every F ∈ F(Zp), one has φp(ψp(F )) = Zp(Int(F,Zp)) = {α ∈ Zp |
for all f ∈ Int(F,Zp) f(α) ∈ Zp} = F by Proposition 3.10 since F is
assumed to be closed. Consequently, φp ◦ ψp = idF(Zp). �
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We end this section with the characterization of minimal ring exten-
sions of the family Rp. Recall that R1 ( R2 ∈ Rp forms a minimal
ring extension if there is no ring in between R1 and R2.

Proposition 3.12. Let R = IntQ(F,Zp) where F = Zp(R) is a closed
subset of Zp. There is a bijection between the minimal ring extensions
of R in Rp and the subset F0 formed by the isolated points of F , which
is given by:

F0 ∋ α 7−→ IntQ(F \ {α},Zp).

We stress that we are interested only in polynomial ring extensions
of R, that is, elements of the family Rp. Note that the proposition says
that R has no minimal ring extension in Rp if and only if Zp(R) has
no isolated points.

Proof. Let S ∈ Rp be a proper extension of R. Then, by Theo-
rem 3.11, S = IntQ(E,Zp) where E = Zp(S) is a closed subset strictly
contained in F . For every α ∈ F \E, the subset E∪{α} is closed and the
ring T = IntQ(E∪{α},Zp) satisfies R ⊆ T ( S since E ( E∪{α} ⊆ F.

Therefore, the extension R ( S is minimal if and only if there is no
closed subset G such that E ( G ( F . Consequently, if the extension
R ( S is minimal, then necessarily F = E ∪ {α}. The fact that E
is closed in E ∪ {α} = F implies that α is isolated in F . Conversely,
if α ∈ F is isolated in F , then F \ {α} is closed in F , and clearly
there is no closed subset G properly lying between F \ {α} and F .
Thus, we may conclude that S is a minimal extension of R if and
only if S = IntQ(F \ {α},Zp) where α ∈ F is an isolated point. If
α ̸= α′ are two distinct isolated points of F , then by Theorem 3.11,
the corresponding minimal ring extensions of R are distinct because
F \ {α} ̸= F \ {α′}. �

4. Valuation overrings of an intersection of valuation do-
mains. The aim of this section is to characterize whether a valuation
overring of Int(Z) as described in Section 1 contains a given intersection
of valuation overrings of Int(Z). We will apply the obtained results to
describe the representations of every polynomial overring of Int(Z) as
intersections of valuation domains. In order to do this, we will exten-
sively use Proposition 2.3. To ease the notation, we set Vq = Q[X](q),
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for q ∈ Pirr. Moreover, since now we are going to consider arbitrary
intersections of unitary valuation domains for different p ∈ P, we gen-
eralize the notation RP,Ep used in formula (3.5) in the following way:
if P ⊆ Pirr and if, for each p ∈ P, Ep ⊆ Zp, then we set

RP,(Ep)p∈P =
∩
q∈P

Vq ∩
∩
p∈P

∩
α∈Ep

Vp,α.

If the subset Ep of Zp is empty for some p ∈ P, then the corresponding
intersection

∩
α∈Ep

Vp,α is set to be equal to Q(X). We consider a

similar convention for the set of non-unitary valuation overrings Vq if
P = ∅. In particular, if Ep is empty for all p ∈ P except p0, then the
intersection corresponds to the ring RP,Ep0

.

We want to determine which are the valuation overrings of a ring
RP,(Ep)p∈P as above. We distinguish the case of a unitary valuation
overring Vp,α (whose center is a unitary prime ideal of Int(Z)) from a
non-unitary valuation overring Vq (whose center is non-unitary).

4.1. Unitary valuation overrings. We begin to determine unitary
valuation overrings of an arbitrary intersection of Vp,α for a fixed prime
p, and possibly some non-unitary valuation domains Vq’s. We remark
first that, given a subset E of Zp, if Vp0,α0 is an overring of ∩α∈EVp,α,
where p0 ∈ P and α0 ∈ Zp0 , then p0 = p. In fact, if that were not true,
then 1/p0, which is in ∩α∈EVp,α would also belong to Vp0,α0 , which
is a contradiction. Therefore, we can just consider valuation overrings
which lie above the same prime p.

The next result is an obvious consequence of Proposition 3.10 (see
also [7, Lemma 26]; although [7, Section 5] is entitled Overrings of
Int(Z), the author’s point of view is quite different from ours).

Lemma 4.1. Let p ∈ P, E ⊆ Zp, P ⊆ Pirr and α0 ∈ Zp. The following
assertions are equivalent :

(i) RP,E ⊆ Vp,α0 ,
(ii) IntQ(E,Zp) ⊆ Vp,α0 ,

(iii) α0 belongs to the topological closure E of E in Zp.

In particular, RP,E = RP,E and Zp(RP,E) = E.

Proof. (i) → (ii). IntQ(E,Zp) is contained in RP,E .
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(ii) ↔ (iii). (ii) means that, for every f ∈ IntQ(E,Zp), f(α0) ∈ Zp,
that is, α0 belongs to the p-polynomial closure of E; thus, we may
conclude with Proposition 3.10.

(ii) → (i). Assume that Vp,α0 is an overring of R = IntQ(E,Zp). We
use Proposition 2.3 to get the claim. Let I ⊂ R be a finitely generated
ideal contained in Mp,α0

and let J = I + (p). Since J is not contained
in any non-unitary prime ideal of R, then it follows from (3.4) that
J is contained in some unitary prime ideal Mp,α of R where α ∈ E.
In particular, I is contained in this ideal Mp,α and we conclude that
Vp,α0 ⊇

∩
α∈E Vp,α ⊇ RP,E .

The last claims follow immediately. �

Lemma 4.2. For each p ∈ P, let Ep ⊆ Zp. Let p0 ∈ P and α0 ∈ Zp0
.

Then ∩
p∈P

∩
α∈Ep

Vp,α ⊂ Vp0,α0
⇐⇒

∩
α∈Ep0

Vp0,α ⊂ Vp0,α0

Proof. One implication is obvious. Conversely, assume that Vp0,α0

is an overring of the intersection
∩

p∈P
∩

α∈Ep
Vp,α. Let I be a finitely

generated ideal contained in Mp0,α0 , and let J = I +(p0). Since for all
p ̸= p0 and, for all α ∈ Ep, we have J ̸⊂ Mp,α, it follows that J ⊆ Mp0,α

for some α ∈ Ep0 . In particular, I ⊆ Mp0,α. By Proposition 2.3, we
may conclude. �

Both previous lemmas lead to the following proposition.

Proposition 4.3. For each p ∈ P, let Ep ⊆ Zp. Let p0 ∈ P, let
α0 ∈ Zp, and let P be any subset of Pirr. Then the following conditions
are equivalent :

(i)
∩

p∈P
∩

α∈Ep
Vp,α ⊂ Vp0,α0 .

(i′) RP,(Ep)p∈P ⊂ Vp0,α0 .
(ii)

∩
α∈Ep0

Vp0,α ⊂ Vp0,α0 .

(ii′) RP,Ep0
⊂ Vp0,α0 .

(iii) α0 is in the topological closure of Ep0 in Zp0 .
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Corollary 4.4. Let P ⊆ Pirr and, for each p ∈ P, let Ep ⊆ Zp.
Then, Vp0,α0

where p0 ∈ P and α0 ∈ Ep0
is not a superfluous valuation

overring of RP,(Ep)p∈P if and only if α0 is an isolated point of Ep0 .

Proof. Vp0,α0 is not a superfluous valuation overring of RP,(Ep)p∈P

if and only if the intersection of the valuation domains of the family
{Vq | q ∈ P}∪{Vp,α|α ∈ Ep, p ∈ P}\{Vp0,α0} is not contained in Vp0,α0 .

By Proposition 4.3, this condition is equivalent to α0 /∈ Ep0 \ {α0}, that
is, α0 is an isolated point of Ep0 . �

4.2. Non-unitary valuation overrings. Now we consider the case
of a non-unitary valuation domain Vq = Q[X](q), q ∈ Pirr, containing
an arbitrary intersection of unitary and non-unitary valuation domains.

Lemma 4.5. Let P ⊂ Pirr and q0 ∈ Pirr. Then∩
q∈P

Vq ⊆ Vq0 ⇐⇒ q0 ∈ P.

Proof. One direction is obvious. Conversely, suppose Vq0 is an
overring of the intersection of the Vq’s, q ∈ P. If q0 /∈ P, we have
a contradiction since

1

q0
∈

∩
q∈P

Vq and
1

q0
/∈ Vq0 .

�

Theorem 4.6. Let q ∈ Pirr and, for each p ∈ P, let Fp ⊆ Zp be a
(possibly empty) closed set of p-adic integers. Then∩

p∈P

∩
α∈Fp

Vp,α ⊂ Vq ⇐⇒ ∃(αp) ∈
∏
p∈P

Fp

such that
∑
p∈P

vp(q(αp)) = +∞.

Note that the latter condition means that: either there exist p ∈ P
and αp ∈ Fp such that q(αp) = 0, or there exist infinitely many primes
pn ∈ P and some αpn ∈ Fpn such that vpn(q(αpn)) ≥ 1. Example 4.7
below shows that the latter condition can really occur.
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Proof. Since Pq = {qf ∈ Int(Z) | f ∈ Q[X]} and Q[X] is countable,
we may fix a sequence {fn}n≥0 of polynomials in Q[X] such that the
qfn’s generate Pq. We also consider the set

Pq + {p ∈ P | there exists αp ∈ Fp such that q ∈ Mp,αp
}.

Assume that there exists (αp)∈
∏

p∈P Fp such that
∑

p∈P vp(q(αp))

= ∞. If, for some prime p and some α ∈ Fp, q(α) = 0, then Vq ⊃ Vp,α,
and hence, Vq ⊃

∩
p∈P

∩
α∈Fp

Vp,α. Suppose that, for each p ∈ P,
q(X) has no roots in Fp. It follows that the set Pq is infinite. Let
I ⊆ Pq be any finitely generated ideal. There exists n such that I ⊆
(qf1, . . . , qfn). Since, for almost all p ∈ P, the polynomials f1, . . . , fn
are in Z(p)[X], there exists p ∈ Pq such that f1, . . . , fn ∈ Z(p)[X], and
hence, for the above αp ∈ Fp, vp(q(αp)fj(αp)) ≥ vp(q(αp)) > 0, for
1 ≤ j ≤ n. Consequently, I ⊆ Mp,αp , which shows by Proposition 2.3
that Vq ⊃

∩
p∈P

∩
α∈Fp

Vp,α.

Conversely, assume that Pq = {p1, . . . , ps} and mi = sup{vpi(q(α)) |
α ∈ Fpi} < ∞ for i = 1, . . . , s (⇔ q(α) ̸= 0, for each α ∈ Fpi ,
i = 1, . . . , s since Fpi is closed.) Then, consider the rational function:

φ(X) =

s∏
i=1

pmi
i

1

q(X)
.

For every pi ∈ Pq and every αpi ∈ Fpi , vp(q(αpi)) ≤ mi, and hence,
φ ∈ Vpi,αpi

. For every p ∈ P\Pq and every αp ∈ Fp, vp(q(αp)) = 0, and

hence, φ ∈ Vp,αp . Consequently, φ ∈
∩

p∈P
∩

αp∈Fp
Vp,αp , while clearly

φ /∈ Vq. �

Example 4.7. This example shows that a minimal non-unitary valua-
tion overring of some ring RP,(Fp)p∈P can be superfluous. Let q(X) = X.
Suppose Pq =

∪
n∈N In, where {In}n≥0 is an increasing sequence

of ideals, each of them generated by Xf1(X), . . . , Xfn(X), for some
fi ∈ Q[X]. Let pn be the nth prime. For each n ∈ N, there exists
an ∈ N large enough such that In ⊂ Mpn,p

an
n
, exactly by the same

argument as the above proof. Then, by Proposition 2.3, Vq is an over-
ring of

∩
n∈N Vpn, p

an
n
, even though, by (1.2), Vpn, p

an
n

̸⊂ Vq for each
n ∈ N. Hence, Vq is a minimal overring of

∩
n∈N Vpn,p

an
n

∩ Vq which is
superfluous. Or, if we want to consider integer-valued polynomials, let
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E = ∪n∈N{pan
n }. Then we have

Int(E,Z) =
∩

q∈Pirr

Q[X](q) ∩
∩
p∈P

∩
n∈N

Vp,pan
n
,

where the minimal valuation overring VX of Int(E,Z) is superfluous.

Remark 4.8. Let P ⊆ Pirr, q0 ∈ Pirr, and, for each p ∈ P, let Fp be a
closed subset of Zp.

(i) Theorem 4.6 may be generalized to an arbitrary intersection of
unitary and non-unitary valuation domains:

RP,(Fp)p∈P ⊂ Vq0 ⇐⇒ either q0 ∈ P
or

there exists (αp) ∈
∏
p∈P

Fp

such that
∑
p∈P

vp(q0(αp)) = +∞.

In fact, if Vq0 is an overring of RP,(Fp)p∈P and there is no (αp) ∈∏
p∈P Fp such that

∑
p∈P vp(q0(αp)) = +∞, then, by Theorem 4.6,

Vq0 is not an overring of
∩

p∈P
∩

α∈Fp
Vp,α. Hence, by the tech-

niques of Proposition 2.3, Vq0 is easily seen to be an overring of∩
q∈P Vq, and so, by Lemma 4.5, q0 ∈ P, as desired. Conversely,

by Theorem 4.6, each condition on the right-hand side implies
that Vq0 is an overring of RP,(Fp)p∈P .

(ii) If Fp is an empty set for all but finitely many primes {p1, . . . , pn}
(for example, overrings RP,Fp of Int(Z(p))), then Vq is an overring
of RP,(Fp)p∈P if and only if q(X) has a root in some Fpi , i =
1, . . . , n, or q ∈ P. Therefore, a minimal non-unitary valuation
overring Vq of RP,(Fpi

)i=1,...,n
is not superfluous.

5. Polynomial overrings of Int(Z) as intersections of valua-
tion domains. We consider now a polynomial overring R of Int(Z).
Analogously to the previous case of overrings of Int(Z(p)), we consider
the subset Zp(R).
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Notation. For every ring R such that Int(Z) ⊆ R ⊆ Q[X] and
every p ∈ P, let Zp(R) be the following subset of Zp:

(5.1) Zp(R) + {α ∈ Zp | Mp,αR ( R}.

We already introduced Zp(R) in (3.1) for polynomial overrings of
Int(Z(p)). Fortunately, both notations agree with each other since,
clearly, Zp(R) = Zp(R(p)):

(5.2) α ∈ Zp(R) ⇐⇒ R ⊆ Vp,α ⇐⇒ R(p) ⊆ Vp,α ⇐⇒ α ∈ Zp(R(p)).

Analogously to Proposition 3.3, we now consider the representations
of R as an intersection of valuation overrings.

Proposition 5.1. Let R be any polynomial overring of Int(Z). We
have the following representations of R as an intersection of valuation
overrings.

(i) The intersection of all the valuation overrings:

(5.3) R =
∩

q∈Pirr

Q[X](q) ∩
∩
p∈P

∩
α∈Zp(R)

Vp,α;

(ii) The intersection of all the minimal valuation overrings:

(5.4) R =
∩

q∈PZ(R)
irr

Q[X](q) ∩
∩
p∈P

∩
α∈Zp(R)

Vp,α,

where PZ(R)
irr denotes the set of irreducible polynomials of Z[X]

which have no roots in Zp(R) whatever p ∈ P.
(iii) For every P ⊆ Pirr and every Ep ⊆ Zp(R)(p ∈ P), the following

intersection of valuation overrings of R:

(5.5) RP,(Ep)p∈P =
∩
q∈P

Q[X](q) ∩
∩
p∈P

∩
α∈Ep

Vp,α

is equal to R if and only if

(a) P ⊇ PZ0(R)
irr where PZ0(R)

irr is formed by the irreducible poly-
nomials q of Z[X] such that, for every p ∈ P, q has no root in
Zp(R), and there do not exist two infinite sequences {pj}j∈N
and {αj}j∈N where pi ∈ P, αj ∈ Zpj (R), and vpj (q(αj)) > 0,

(b) for every p ∈ P, Ep is p-adically dense in Zp(R).
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Proof. Formula (5.3) is clearly a consequence of Proposition 3.3 (i).
Analogously to formula (3.4), formula (5.4) follows from the globaliza-
tion of Corollary 3.2: a prime ideal Pq of Int(Z) is maximal in R if and
only if, for each p ∈ P, q(X) has no roots in Zp(R).

It remains to prove assertion (iii). If (a) and (b) hold, then, by
Proposition 4.3 and Theorem 4.6, the right-hand side of formula (5.5)
is equal to the right-hand side of formula (5.3), and hence to R.

Assume now that (a) does not hold. There exists r ∈ PZ0(R)
irr \ P.

Since Ep ⊆ Zp(R) for every p ∈ P and r /∈ P, it follows from
Theorem 4.6 that Vr = Q[X](r) ̸⊇ RP,(Ep)p∈P ; in particular, Q[X] ̸⊇
RP,(Ep)p∈P , and hence, R ( RP,(Ep)p∈P .

Finally, assume that (b) does not hold. There is some p0 ∈ P such
that Ep0 is not p0-adically dense in Zp0(R); in other words, there is
some α0 ∈ Zp0(R) which is not in the topological closure of Ep0 . By
Proposition 4.3,

∩
p∈P

∩
α∈Ep

Vp,α ∩ Q[X] ̸⊆ Vp0,α0 , and hence, once

more, R ( RP,(Ep)p∈P . �

Remark 5.2. We can generalize Corollary 3.5 to overrings of Int(Z)
in the following way: a polynomial overring R of Int(Z) admits an
irredundant representation if and only if, for each p ∈ P, Zp(R) contains
a p-adically dense subset formed by isolated points.

6. Polynomial overrings of Int(Z) as integer-valued polyno-

mial rings over subsets of Ẑ. In this section, we give another point of
view about polynomial overrings R of Int(Z), in order to represent them
as rings of integer-valued polynomials. We know that R = ∩p∈PR(p)

and that R(p) = IntQ(Zp(R),Zp). Consequently, R is equal to an inter-
section of different integer-valued polynomial rings as p runs through
the set of prime numbers:

(6.1) R =
∩
p∈P

IntQ(Zp(R),Zp).

However, it seems to be more convenient to consider all the p-adic
completions Zp at the same time. Classically, the way to do that is via
the ring of finite adeles Af (Q) (‘finite’ refers to the fact we forget the
Archimedean absolute value). A finite adele is an element α = (αp)p of
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the product
∏

p∈P Qp such that, for all but finitely many p’s, αp belongs

to Zp (for instance, see [9, subsection 6.2, page 286]).

Note that Q embeds diagonally into
∏

p∈P Qp and its image is in

Af (Q). Actually, Q embeds into the group of units of Af (Q). Recall
that this group, denoted by If (Q) and called finite ideles, is formed by
the elements α = (αp)p ∈

∏
p∈P Q∗

p such that vp(ap) = 0, for all but

finitely many p. Given α = (αp)p ∈ Af (Q) and f ∈ Q[X], we clearly
have

f(α) = (f(αp))p ∈ Af (Q) ⊂
∏
p∈P

Qp,

that is, every polynomial with rational coefficients maps an adele into
an adele. For this reason, the ring of integer-valued polynomials over
the ring of finite adeles is trivial:

Q[X] = IntQ(Af (Q))

= {f ∈ Q[X] | f(α) ∈ Af (Q), for all α ∈ Af (Q)}.

However, note that Af (Q) contains as a subring the product
∏

p∈P Zp,

which is isomorphic to Ẑ, the profinite completion of Z with respect
to the fundamental system of neighborhoods of 0 consisting of all the
non-zero ideals of Z.

Given f ∈ Q[X] and α ∈ Af (Q), we say that f is integer-valued at α

if f(α) = (f(αp))p ∈ Ẑ =
∏

p Zp. Then, analogously to Definition 3.6,
we introduce the following:

Definition 6.1. For every subset E of Ẑ, the ring of integer-valued
polynomials on E is

IntQ(E, Ẑ) = {f ∈ Q[X] | f(α) ∈ Ẑ, for all α ∈ E}.

Notation. For each polynomial overring R of Int(Z), we consider
the following set of finite adeles:

ZR +
∏
p

Zp(R) ⊆
∏
p

Zp = Ẑ.
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Clearly, ZR = {(αp)p ∈ Ẑ | Mp,αpR ( R, for all p ∈ P}. With the
previous notation, equality (6.1) may then be written:

(6.2) R = IntQ(ZR, Ẑ),

which means that every polynomial overring R of Int(Z) may be
considered as the ring formed by polynomials which are integer-valued

over a subset of Ẑ. Note that since, for each p ∈ P, Zp(R) is a closed
subset of Zp, and hence, is compact, the subset ZR is also compact in

Ẑ where Ẑ =
∏

p∈P Zp is endowed with the product topology.

The following theorem is the globalized version of Theorem 3.11.

Theorem 6.2. Let R be the set of polynomial overrings of Int(Z), and
let F(Ẑ) be the family of compact subsets of Ẑ of the form

∏
p∈P Fp

where Fp is a closed subset of Zp. The following maps which reverse
the containments are inverse to each other :

φ : R ∋ R 7−→ ZR =
∏
p∈P

Zp(R) ∈ F(Ẑ)

and

ψ : F(Ẑ) ∋ F 7−→ IntQ(F , Ẑ) ∈ R.

Proof. By equality (6.2), ψ◦φ = idR. Now consider φ◦ψ. For every
F =

∏
p Fp ∈ F(Zp), one has

φ(ψ(F )) = ZIntQ(F,Zp)

=
{
(αp)p ∈

∏
p

Zp | for all f ∈ Int(F , Ẑ),

for all p ∈ P, f(αp) ∈ Zp

}
=

{
(αp)p ∈

∏
p

Zp | Int(F , Ẑ) ⊆ Vp,αp , for all p ∈ P
}
,

which is equal to F by Proposition 4.3. �
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Remark 6.3. Let F be a generic compact subset of Ẑ, and consider
the following ring of integer-valued polynomials:

R = IntQ(F , Ẑ).

For each p ∈ P, let πp : Ẑ → Zp be the canonical projection. Then,

for each f ∈ IntQ(F , Ẑ), and for each αp ∈ πp(F ), p ∈ P, we have
f(αp) ∈ Zp. Consequently, f ∈ IntQ(πp(F ),Zp). Therefore,

R ⊆
∩
p

IntQ(πp(F ),Zp) = IntQ

(∏
p

πp(F ),
∏
p

Zp

)
⊆ IntQ(F , Ẑ) = R,

since F ⊆
∏

p πp(F ). Finally,

IntQ(F , Ẑ) = IntQ

(∏
p

πp(F ), Ẑ
)
.

Since the projections πp are closed maps, each πp(F ) is a closed subset
of Zp. Therefore, by Theorem 6.2, we have proved that ZIntQ(F,Ẑ) =∏

p πp(F ), which is an element of F(Ẑ). In other words,
∏

p πp(F ) is

precisely equal to the subset of Ẑ of those α such that f(α) ∈ Ẑ, for
each f ∈ IntQ(F , Ẑ). Generalizing the terminology of subsection 3.2,

one could say that the polynomial closure of F ⊆ Ẑ is the compact
subset

∏
p πp(F ).

Remark 6.4. Let E ⊆ Z be an infinite subset. We denote by Ê the

topological closure of E in Ẑ =
∏

p∈P Zp, by Ep the topological closure

of E in Zp, for each prime p and by E the direct product
∏

p∈PEp ⊆ Ẑ.
By Remark 6.3, E is the polynomial closure of E in Ẑ. It is easy to see
that

Ê ⊆ E,

since the canonical embedding of E into Ẑ is contained in
∏

p∈PE (in

fact, strictly contained if Card (E) ̸= 1) whose topological closure is E.

Moreover, for each prime p, πp(Ê) = πp(E) = Ep. In particular,

Int(E,Z) = IntQ(Ê, Ẑ) = IntQ(E, Ẑ).
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We know that, locally, for a subset E ⊆ Z(p), the polynomial closure
of E in Zp coincides with its topological closure in Zp (Proposition
3.10 and Theorem 3.11). The global situation can be different: as the

next example shows, in general, Ê can be strictly contained in E. By
definition, an element α ∈ E has the property that, for each finite set of
primes {p1, . . . , pk} and finite set of non-negative integers {k1, . . . , ks},
there exists ai ∈ E such that ai ≡ αpi (mod pki

i ), for i = 1, . . . , s.

In order for α to belong to Ê, there should exist a ∈ E which is a
simultaneous solution of all the previous congruences.

Example 6.5. Let E = Z \ {−7+8 · 9k | k ∈ Z}. It is easy to see that

E is dense in Zp for each prime p, so the polynomial closure of E in Ẑ
is equal to Ẑ. However, since there is no a ∈ E such that the following
congruences are satisfied:

a ≡ 1 (mod 8), a ≡ 2 (mod 9),

it follows that Ê ( E.

Example 6.6. Let us consider the ring Int(Z). Since

Int(Z) =
∩
p∈P

Int(Z(p)),

by (3.6), we have

Int(Z) =
∩
p∈P

IntQ(Zp) = IntQ(Ẑ, Ẑ) + IntQ(Ẑ).

Note the analogy of the previous equation with (3.6).

Corollary 6.7. For each p ∈ P, let R(p) be a polynomial overring of
IntQ(Z(p)). Then, there exists a polynomial overring R of Int(Z) such
that R(p) = R(p) for each p ∈ P.

Proof. By Theorem 3.11, the choice for each p ∈ P of an overring
R(p) of Int(Z(p)) corresponds to a closed subset Fp = Zp(R(p)) ⊆ Zp.

Moreover, R(p) = IntQ(Fp,Zp). Let F =
∏

p∈P Fp ⊆ Ẑ, and let

R = IntQ(F , Ẑ) =
∩
p∈P

R(p).
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We claim that R is the desired polynomial overring of Int(Z). Since
R(p) and R(p) are elements of the family Rp, by Theorem 3.11, it is
sufficient to show that Zp(R(p)) = Fp. Proposition 4.3 and (5.2) allow
us to conclude. �

Remark 6.8. With our interpretation in terms of finite adeles, we may
formulate Theorem 4.6 in another way. Let R be a polynomial overring
of Int(Z). Let RP,ZR

be a representation of R as an intersection of
valuation overrings (Proposition 5.1). Theorem 4.6 says that, for every
q ∈ P, Vq is superfluous if and only if there exists α ∈ ZR such that q(α)
is not invertible in Af (Q). The valuation domain Vq is surperfluous in
all representations of R if and only if q(ZR) ̸⊆ If (Q).

To end our study, we now show under which conditions a polynomial
overring R of Int(Z) is of the simple form Int(E,Z) where E is a subset
of Z.

Corollary 6.9. A polynomial overring R of Int(Z) is a ring of integer-
valued polynomials on a subset of Z if and only if, for each prime p, the
subset E = ∩p(Zp(R)∩Z) is dense in Zp(R) for the p-adic topology. If
this condition holds, then R = Int(E,Z).

Proof. Clearly, E = {a ∈ Z | R(a) ⊆ Z} and, if R is a ring of
integer-valued polynomials on a subset of Z, the subset E is convenient.
Moreover, the equality R = Int(E,Z) holds if and only if both rings
have the same localizations at each prime p. For every p, Int(E,Z)(p) =
IntQ(E,Zp) and R(p) = IntQ(Zp(R),Zp) by Proposition 3.7. Thus, by
Proposition 3.10, both localizations are equal if and only if E is dense
in Zp(R). �

Example 6.10. For each p, let us consider the following closed subset

of Zp: Fp = {p}∪ (Zp \ pZp). Let F =
∏

p Fp ⊆ Ẑ and R = IntQ(F , Ẑ).
Does there exist an E ⊆ Z such that R = Int(E,Z)? Yes, R = Int(P,Z)
since, for each p, the topological closure of P in Zp is Fp. Actually, the
subset E suggested in Corollary 6.9 is P∪{±1}, namely, the polynomial
closure of P in Z (about Int(P,Z) see [2]).



28 JEAN-LUC CHABERT AND GIULIO PERUGINELLI

REFERENCES

1. P.-J. Cahen and J.-L. Chabert, Integer-valued polynomials, Amer. Math. Soc.
Surv. Mono. 48, Providence, 1997.

2. J.-L. Chabert, S. Chapman and W. Smith, A basis for the ring of polynomials

integer-valued on prime numbers, in Factorization in integral domains, Lect. Notes
Pure Appl. Math. 189, Dekker, New York, 1997.

3. R. Gilmer, Multiplicative ideal theory, Dekker, New York, 1972.
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