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POLYNOMIAL OVERRINGS OF Int(Z)

JEAN-LUC CHABERT AND GIULIO PERUGINELLI

ABSTRACT. We show that every polynomial overring
of the ring Int(Z) of polynomials which are integer-valued
over Z may be considered as the ring of polynomials which

are integer-valued over some subset of Z, the profinite
completion of Z with respect to the fundamental system of
neighbourhoods of 0 consisting of all non-zero ideals of Z.

Introduction. The classical ring of integer-valued polynomials,
namely,

Int(Z) = {f € Q[X] | f(Z) € Z},

is known to be a two-dimensional Priifer domain (see for instance [1,
subsection VI.1]). Thus, all the overrings of Int(Z), that is, rings
between Int(Z) and its quotient field Q(X), are well known a priori:
they are intersections of localizations of Int(Z) at its prime ideals, which
are themselves well-known valuation domains. However, the spectrum
of Int(Z) turns out to be uncountable, so that these intersections of
localizations are not so easy to characterize. The aim of this paper is to
classify the ‘polynomial overrings’ of Int(Z), that is, rings lying between
Int(Z) and Q[X]. We first describe them as particular intersections of
some families of valuation domains. Furthermore, we will see that
the polynomial overrings of Int(Z) may be characterized as rings of
polynomials which are integer-valued over some subset of Z or, more
generally, of Z, the profinite completion of Z with respect to the
fundamental system of neighborhoods of 0 consisting of all non-zero
ideals of Z.
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1. Prime spectrum of Int(Z) and localizations. We first recall
the structure of the spectrum of Int(Z) [1, Proposition V.2.7]. A non-
zero prime ideal B of Int(Z) lies over a prime ideal of Z, and hence,
there are two cases:

e PNZ = (0). Then B is of the form
P =P, = ¢(X)QX]NInt(Z), where g € Z[X] is irreducible.

These ideals ‘B, have height 1 and the polynomial ¢ is uniquely
determined.

® PNZ = pZ, where p € P (we denote by P the set of prime numbers).
Then P is of the form

P=Myo={f €nt(Z)| f(o) € pZ,}, where a € Z,,.

These ideals 9, , are maximal ideals and the residue field of M, , is
isomorphic to Z/pZ. More precisely,

Zyp > a— My, o € Max (Int(Z))

is a one-to-one correspondence between Z, and the set of prime ideals
of Int(Z) lying over p. (Recall that Z,, the ring of p-adic integers, is
uncountable.)

Moreover, given ¢ irreducible in Z[X], p € P and a € Z,, the
following holds [1, Proposition V.2.5]:

(1.1) Py C My, 0 <= q(a) =0.

Consequently, given an irreducible polynomial ¢ € Z[X], for a fixed
prime p, there are at most finitely many ideals 9, ., containing J,; on
the other hand, it is known that there exist infinitely many primes p
such that ¢(X) has a root « in Z,, that is, 3, is contained in infinitely
many 9, ,’s [1, Proposition V.2.8]. In particular, the prime ideals
P, are not maximal. From equivalence (1.1), it follows also that the
height of 9, , is one if and only if « is transcendental over Q, it is two
otherwise.

We now describe the localizations of Int(Z) with respect to these
prime ideals (see for example, [1, Proposition VI.1.9]). They are the
following valuation domains of the field Q(X):

o nt(Z)gp, = QX]() = {f(X)/9(X) € QX) [ ¢1g}.



POLYNOMIAL OVERRINGS OF Int(Z) 3

o Int(Z)an, .. = Vp.o = {9 € QX) | p(a) € Zy}.

Consequently, Int(Z) is a Prifer domain. Moreover,

(1.2) Vo C Q[X](g) <= By C M0 <= q(a) = 0.

We are interested in the representation of Int(Z) as an intersection
of valuation overrings. For this purpose, we have to make some choices.
First, we may represent Int(Z) as the intersection of all of its valuation

overrings:
mt(z)= () QX () () Vee

qEPir: (Z) peEP a€Zy

where P,,,(Z) denotes the set of irreducible polynomials of Z[X]. We
may look for a more optimal representation of Int(Z). To begin with,
we may discard from the above representation the valuation domains
which are not minimal valuation overrings of Int(Z), or, equivalently,
the valuation domains which does not correspond to maximal ideals of
Int(Z) because Int(Z) is a Priifer domain:

(1.3) mt(Z) =[] () Vo

peP acZy,

The above intersection in (1.3) is uncountable and it is far from being
irredundant. Recall that, given a domain D with quotient field K, and
a family of valuation overrings A = {V)\} of D (that is, D C V), C K)
such that D = (), Vi, the representation D = (), V) is said irredundant
if no V), is superfluous, that is, for each A, D is strictly contained in
the intersection of the member of A distinct from V) ([6]). For the
domain Int(Z), there are suitable countable intersections as shown, for
instance, by the following equality:

(1.4) mt(Z) = () [ Voo

peEP a€eZ

The fact that every rational function on the right-hand side of equal-
ity (1.4), that is, that every ¢ € Q(X) such that ¢(Z) C Z is a polyno-
mial, follows from the observation that a rational function which takes
integral values on infinitely many integers is a polynomial (see [12,
VIIIL.2 (93)] or [1, Proposition X.1.1]).

So, every Vp o, @ € Z, \ Z, p € P, in the representation (1.3) is
superfluous; actually, we will show that, for each p € P and a € Z,,
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every V, o in the above representation is superfluous (Corollary 4.4).
However, there is no irredundant representation of Int(Z) as an inter-
section of valuation overrings because there is no subset of Z which is
minimal among the subsets of Z which are dense in Z for every p-adic
topology (see Corollary 3.5 and Remark 5.2). Thus, in the sequel, the
only representations that we will consider as ‘canonical’ will be the
intersections of all the minimal valuation overrings as in (1.3).

After some generalities about the overrings of Int(Z) in Section 2,
we consider the representations of the overrings of Int(Z,)), where p is
a fixed prime number and Z,) denotes the localization of Z at pZ in
Section 3, as intersections of valuation domains (Proposition 3.3) and
then, as rings of integer-valued polynomials on a subset of Z,, (Theorem
3.11); in particular, we show that there is a one-to-one correspondence
between the set of polynomial overrings of Int(Z,)) and the closed sub-
sets of Z,. In order to globalize these results, we study in Section 4
the valuation overrings of an intersection of valuation domains, charac-
terizing those which are superfluous (Corollary 4.4 and Theorem 4.6).
Finally, the polynomial overrings of Int(Z) are described in Section 5
by their representations as intersection of valuation overrings (Propo-
sition 5.1), and in Section 6 with an interpretation as integer-valued
polynomials on a subset of the ring / (Theorem 6.2).

2. Generalities about overrings of Int(Z). We are interested in
rings R which are overrings of Int(Z), that is,

(2.1) Int(Z) C R C Q(X),

and, in particular, by the polynomial overrings of Int(Z), that is, the
rings R which are contained in Q[X].

Since Int(Z) is a Prifer domain, we first recall the following funda-
mental result of [4] (see also [3, Theorem 26.1]) concerning overrings
D’ of a Priifer domain D, that is, rings D’ such that D C D' C K
where K denotes the quotient field of D.

Proposition 2.1. Let D' be an overring of a Priifer domain D, and
let Sp: be the set of prime ideals p of D such that pD’ C D’. Then

(i) If p’ is a prime ideal of D' and p = p' N D, then Dy, = D;

p and
p’ =pD, ND'. Therefore D" is Priifer.
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(ii) If p is a non-zero prime ideal of D, then p is in Sp/ if and only
if Dy 2 D'. Moreover, D" = (\,cs , Dp-

(iil) Every ideal 3’ of D' is an extended ideal, that is, 7' = (’'ND) D’'.

(iv) The spectrum of D' is {pD’ | p € Sp-}.

In view of the previous proposition, we will use the following termi-
nology: a prime ideal p of D is said to survive in D’ if its extension
pD’ in D’ is a proper ideal (that is, pD’ C D’, in which case pD’ is a
prime ideal of D’ by the above result) and p is said to be lost in D’
otherwise (that is, if pD’ = D’). In particular, every overring D’ of a
Priifer domain D is equal to the intersection of the localizations of D
at those prime ideals p of D which survive in D’.

Example 2.2. Clearly,
QX = (] Wt(Z)p, = (| QX

q€Pirr qEPirr
where P,., = P...(Z) is the set of irreducible polynomials in Z[X]. By
[6, Remark 1.12], this representation of Q[X] is irredundant, since
Q[X] is a Dedekind domain and the set of maximal ideals of Q[X] is in
one-to-one correspondence with P,,., namely P, 3 ¢ — q(X)Q[X].

Consequently, for a polynomial overring R, each prime ideal 3, of
Int(Z) must survive in R since it survives in Q[X], and we have

By R =q(X)QX]NR.

Since we want to describe explicitly R in terms of those prime ideals
of the spectrum of Int(Z) which survive in R, we are mostly interested
in the other prime ideals, those lying over a prime. They are called
unitary prime ideals because they contain nonzero constants.

The following result of Gilmer and Heinzer is of fundamental impor-
tance in order to decide whether an ideal p of Int(Z) survives or not in
some intersection of valuation overrings of Int(Z).

Proposition 2.3. ([6, Proposition 1.4]). Let D be a Prifer domain,
and let {p} U {pa}taca be a family of prime ideals of D. Then D, 2
Naca Dp. if and only if, for every finitely generated ideal 3 C p, there
exists an « € A such that J C pg.
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Corollary 2.4. If D, is not a minimal valuation overring of the Priifer
domain D, then Dy, is superfluous in each representation of D as an
intersection of valuation overings in which D, appears.

Proof. (See also [6, Lemma 1.6].) Let (,c, Dy, be any representa-
tion of D, let aig € A, and assume that Dy, isnota superfluous element
in this representation. By Proposition 2.3, there exists a finitely gen-
erated ideal J C p,, such that J & p, for every o € A\ {ap}. Let
m be a maximal ideal of D containing p,,, and let x be any element
of m. Since D = (,cp Dy, and T+ (z) € po for a # ag, necessarily
J+ (z) € pa,- Finally, p,, = m is maximal, which is equivalent to the
fact that Dy, is a minimal valuation overring of D. O

Remarks 2.5.

(i) The converse of the previous corollary may be false: there are
minimal valuation overrings which may be superfluous (cf., Ex-
ample 4.7 below).

(ii) We have to take care that there is another notion of minimality
which depends on the representation that we consider: a valuation
domain which is minimal with respect to the elements of some
representation of D is not necessarily minimal with respect to
another representation (and in particular, with respect to all the
valuation overrings of D). For instance, let p € P, o, € Z (n > 0)
and ¢ € P;.(Z) be such that ¢(ap) = 0 and lim, 1o vp(a, —
ap) = +o00. Let V; = Q[X](,). Then, we have:

(2.2) D#(ﬂ%m>ﬂ%

n>0
= ﬂ Van = m Vb,an
n>0 n>0
:(ﬂvm)ﬂn
n>0

The first equality follows from the fact that V; D V), o, and the
second equality from the fact that ag = lim, o v, in Z, (see
Lemma 4.1). The valuation domain Vj is not minimal with respect
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to the elements of the first representation, while it is for the last
one.

(iii) Obviously, a valuation domain which is not minimal with respect
to some representation is superfluous for this representation, but
Corollary 2.4 says something stronger since a minimal valuation
overring of D which appears in some representation of D is a
fortiori minimal for this representation. In the last representation
of D given in (2.2), V; is superfluous although it is minimal for
this representation, but we could be sure that it is superfluous
because it is not a minimal overring of D as shown by the first
representation.

Thus, we emphasize that when we speak of a minimal valuation
overring of D it is always a valuation domain which is minimal with
respect to the family of all the valuation overrings of D.

Another important example is the localization of Int(Z) with respect
to a prime p € Z.

Example 2.6. For every fixed prime p, we have
Int (Z(p)) = Int(Z)(p),

where Int(Z)(,) is the localization of the Z-module Int(Z) at pZ,
namely, Int(Z),) = {(1/s)f(X) | f € Int(Z),s € Z \ pZ} (see
[1, Theorem 1.2.3]). Consequently, the prime ideals of Int(Z) which
survive in Int(Z,)) are the non-unitary ideals B, and the unitary ideals
M, o lying over the prime p. By a slight abuse of notation, we still
denote the corresponding extended ideals in Int(Z,)) by B, and 9N, o,
respectively. Then we have:

Int(Zy) = [ QXN (] Vea

qEPirr €Ly
= ) QXN [) Voa-
qEPirr Q€L

But, in this local case, an ideal P, may be maximal in Int(Z)): B,
is maximal if and only if ¢(X) has no root in Z, ([1, Proposition
V.2.5]). Therefore, if Pfﬁ’ denotes the set of irreducible polynomials
over Z which have no roots in Z,, we have the following representation
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of Int(Z,)) as the intersection of all its minimal valuation overrings
(which correspond to the maximal ideals of Int(Z,))):

(2.3) Int(Z,)) = ﬂ QX](p N ﬂ Voao-

qep’r a€Zy

irr

Remark 2.7. It is not difficult to see that ’Pf}’ is non-empty: let
g € Z,[X] be a monic irreducible polynomial of degree d > 2. By
a corollary of Krasner’s lemma (see, for instance, [9, Chapter V,
Proposition 5.9]), every monic polynomial ¢ € Z,[X] of degree d which
is sufficiently close to g(X) with respect to the p-adic valuation is also
irreducible over Z,[X]. Clearly, we may choose such a polynomial ¢(X)
with coefficients in Z. Then, in particular, ¢(X) is irreducible in Z[X]
and has no roots in Z,.

If we localize each ring of (2.1) at p (that is, with respect to the
multiplicative set Z\pZ), since Int(Z) is well behaved under localization
as seen in Example 2.6, we get

(24) Int(Z(p)) g R(p) g Q(X),

where Ry = {(1/n)f | f € R,n € Z\ pZ}. If R is a polynomial
overring of Int(Z), then R, is a polynomial overring of Int(Z,)), that
is, R(p) € Q[X]. Clearly, we have

(2.5) R = ﬂ R(p).
peP

Hence, in order to make our work easier, we fix a prime p, and we
continue our discussion for an overring R of Int(Z,)).

3. Polynomial overrings of Int(Z,)). In this section, p denotes
a fixed prime number, and we consider overrings of Int(Z,)), that is,
rings R such that

Int (Z)) € R S Q(X).

Notation. For every overring R of Int(Z,)), we consider the
following subsets:
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(i) A subset of the ring Z, of p-adic integers
(3.1) Zp(R) ={a € Zy | MyoR C R}

(ii) For every o € Z, which is not the pole of some element of R, the
following subring of the field Q, of p-adic numbers

R(a) = {f(a) | f € R} € Qp.

Note that Z,(R) indexes the set of maximal unitary ideals of
Int(Z,)) which survive in R under extension, and that R(«a) is al-
ways defined for polynomial overrings of Int(Z ). For instance, if R =
Int(Zy)), then Z,(R) = Z, and, for every a € Z,(R) NQ, R(a) = Z(y),
since Z, [X] C R(y) and R(a) C Z, N Q.

The following easy proposition characterizes the set Z,(R) for any
overring R.

Proposition 3.1. Let R be an overring of Int(Z,)) and a € Z,. Then
(3.2) a € Z,(R) <= RCV,,<< R(a) CZ,.

Moreover, the subset Z,(R) is closed in Z, for the p-adic topology.

Proof. The first equivalence follows from Proposition 2.1. The
second equivalence is straightforward from the definitions of V, , and
R(«). Concerning the last assertion, note that, for each f € R, by
continuity of f, the subset {« € Z,, | f(«) € Z,} is closed in Z,. Then,
we just have to remark that:

Zy(R) = (| {a €2y | f(a) € Zp}. 0
feER

Corollary 3.2. Under estension, a prime ideal B, of Int(Zy) is
mazimal in R if and only if ¢(X) has no roots in Z,(R).

Proof. If B, does not become maximal in R under extension, then
B4R is strictly contained is some prime ideal 9 of R. By Proposi-
tion 2.1, Q must be equal to the extension of some prime ideal of
Int(Zy)), which must be a maximal ideal 91, ,, containing P, or equiv-
alently, V, o C Q[X](g). In particular, o € Z,(R) and g(a) = 0, by
(1.2). The converse is clear. O
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3.1. Polynomial overrings of Int(Z(,)) as intersections of valu-
ation domains. Now we consider different representations of a poly-
nomial overring R as intersections of valuation overrings of Int(Zy)).

Proposition 3.3. Let p be a prime, and let R be any polynomial
overring of Int(Z,y). We have the following representations of R as
an intersection of valuation overrings.

(i) The intersection of all the valuation overrings:

(3.3) R= () QXIpn (] Vo

q € Pirr a€Zy(R)

where Py, denotes the set of irreducible polynomials of Z[X], and
Zy(R) is defined by Z,(R) = {a € Z, | My, o R C R}.

(ii) The intersection of all the minimal valuation overrings:

(3.4) R= () QXlgpn () Vias
qG'Pff(R) a€Zy(R)
where Pier(R) denotes the subset of P, formed by those polyno-
mials which have no roots in Z,(R).
(iii) For every P C Py, and every E C Z,(R), the following intersec-
tion of valuation overrings of R:

(3.5) e = () QX N () Voo
qEP ack
is equal to R if and only if P D Pff’(R) and E is p-adically dense
in Zp(R).

Proof. Example 2.2 and equivalences (3.2) show clearly that the
valuation overrings of R are exactly those which appear in the right-
hand side of equality (3.3). The equality follows from the fact that R is
an overring of a Priifer domain, and hence, it is a Priifer domain, equal
to the intersection of all its valuation overrings. Thus, (i) is proved.

The minimal valuation overrings of R correspond to the valuation
overrings whose center is a maximal ideal of R. Assertion (ii) is then a
consequence of Corollary 3.2.
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By equality (3.3), R is contained in any ring of the form Rp g. By
continuity of the rational functions, if 5 € Z, is the limit of a sequence
{an}n>0 of elements of E, then V,, 5 O M, cxy Voian O Nack Voar As a
consequence, if E is dense in Z,(R), then (e p Voo = Nacz, () Voas
and hence, once more by equality (3.4), Rp. g = R.

Let us now prove the converse assertion of (iii). Assume first that
P2 Piip(R). Then, there exists r € P,,, \ P without any root in Z,(R).
Let m = sup{v,(r(a)) | « € Z,(R)}. Since Z,(R) is closed, m is finite
since otherwise there would exist a sequence {a, },>0 of elements of
Zp(R) such that vp(r(ay)) > n, and, by compactness of Z,(R), there
would exist a subsequence which converges to an element 3, which then
would be a root of r(X) in Z,(R). Consider now the rational function
o(X) = p™/r(X). For every a € Z,(R), vy(r(a)) < m, and hence,
¢ € Vpa. Consequently, ¢ € [, cp Q[X]y N ﬂaezp(R) Vp,a, while
clearly ¢ ¢ Q[X](). Thus, R C Rp .

Assume now that E is not p-adically dense in Z,(R). It remains to
prove that again we have a strict containment: R C Rp g. For this, it
is enough to prove that:

re () Xl )n( ) Vha) = () QX1 £(B) £ 2,

qE€Pirr a€cE

This strict containment is a clear consequence of Proposition 3.10
below. O

Remark 3.4. By Remark 2.7 and, by the fact that Pfﬁ’ - PZP(R)

for each overring R of Int(Z,)), it follows that Pff(R) is always non-
empty. Note though, that the complement of PirZr”(R) may be empty, for
example, if Z,(R) is formed by elements of Z, which are transcendental

over Q.

As for Int(Z) or for Int(Z,)), an overring R does not have in general
an irredundant representation as intersection of valuation overrings.
There does exist an irredundant representation in some particular cases,
as the next result shows.
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Corollary 3.5. A polynomial overring R of Int(Z,)) admits an irre-
dundant representation if and only if Z,(R) contains a p-adically dense
subset E formed by isolated points.

Proof. Assume that Rp g is an irredundant representation of R. By
Proposition 3.3 (iii), P = P2 and E is dense in Zy(R). Moreover,
for each ag € E, R = Rp g & Rp p\{a}; thus, the topological closure
of E\ {ap} is strictly contained in that of E, which means that «ag is

isolated in E. The reverse implication is obvious still by Proposition
3.3 (iii). |

For instance, we can consider E to be equal to the set of distinct
elements of a convergent sequence {ay,}n,>0 with limit «, so that
Zy,(R) = EU{a}.

3.2. Polynomial overrings of Int(Z,)) as integer-valued poly-
nomials rings. Contrary to equality (3.4), equality (3.3) shows that
a polynomial overring R depends only on Z,(R). In order to describe
how a polynomial overring R of Int(Z,)) is characterized by its asso-
ciated set Z,(R), we recall the following definition (for example, see
[10, 11]).

Definition 3.6. For every subset E of Z,, the ring formed by the
polynomials of Q[X] whose values on E are p-integers is denoted by:

Intg(E.Zy) = {f € QIX] | f(E) C Z,}.

In particular, for E = Z,, we set Intg(Z,) = Intg(Z,, Zp).

By definition (or by convention) we set Intg (0, Z,) = Q[X] (after all,
any polynomial is integer-valued over the empty-set). Note also that
Intg(E,Z,) = QX]|NInt(E,Z,), where Int(E,Z,) = {f € Q,[X] |
f(E) € Z,}. The following equality follows from a continuity-density
argument:

(36) Int(Z(p)) = IntQ(Zp).
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Proposition 3.7. Let R be a polynomial overring of Int(Z,)), and let
Zy(R)={a €Z,| M, R C R}. Then

R =TIntg(Z,(R),Z,).

Proof. The containment R C Intg(Z,(R),Z,) follows from Proposi-
tion 3.1: a € Z,(R) if and only R(«) C Z,. Thus, we have the chain
of inclusions

Int(Zp)) € R € Intg(Z,(R), Zy) € QX].

In order to prove the converse containment, it is sufficient to show
that each prime ideal of Int(Z,)) which survives in R also survives in
Intg(Z,(R),Z,). In fact, since we are dealing with Priifer domains, if
a prime ideal B of Int(Z,)) is such that PR C R, then ‘PR is a prime
ideal of R and these extensions comprise the whole spectrum of R by
Proposition 2.1 (iv). We then use the well-known fact that an integral
domain is equal to the intersection of the localizations at its own prime
ideals.

For what we have already said, all the prime non-unitary ideals
survive in both rings since they survive in Q[X]. Let 91, , be a maximal
unitary ideal which survives in R. By definition of Z,(R), o € Z,(R).
Now, M, , survives in Intg(Z,(R),Z,) if and only if Intg(Z,(R),Z,)
is contained in V, ,, that is, each polynomial of Intg(Z,(R),Z,) is
integer-valued on a. Since o € Z,(R), the conclusion follows. O

In particular, from Proposition 3.7, we have a complete characteri-
zation of the family R, of polynomial overrings of Int(Z,)):

Corollary 3.8. If F(Z,) denotes the family of closed subsets of Z,,
then
Ry = {Intq(F,Zy) | F € F(Zyp)}.

Proposition 3.7 says how R is characterized by the closed subset
Zy(R) C Zy. In order to prove that, for different closed subsets of Z,
we get different polynomial overrings of Int(Z,)), we recall the notion
of polynomial closure introduced by Gilmer [5] and McQuillan [8].

Definition 3.9. For any subset E C Z,, (E is not necessarily closed),
the p-polynomial closure of E is the largest subset E of Z,, (containing
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E) such that
Intg(E, Zp) = IntQ(E, Zp).

Equivalently,

E={a€Z,| Intg(E,Zp)(a) C Zy}
={a€Z, | Intg(E,Zp) C Vpa}
= ZP(IntQ(Evzp))’

where the last equality follows by Proposition 3.1.

Proposition 3.10. For any subset E C Z,, the following subsets are
equal:

(i) the p-polynomial closure of E,
(ii) the p-adic topological closure of E,
(i) Zy(Intg(E.Z,)).

For equivalence between the polynomial closure and the topological
closure, see for instance, [1, Theorem IV.1.15].

The next theorem shows that the closed subsets of Z,, are in one-to-
one correspondence with the polynomial overrings of Int(Z,)).

Theorem 3.11. Let R, be the set of polynomial overrings of Int(Z ),
and let F(Zy) be the family of closed subsets of Z,. The following maps
which reverse the containments are inverse to each other:

vp:Rp>R+— Zy(R) € F(Zp)
and

Yy F(Zy) 3 F — Intg(F,Z,) € Rp.

Proof. By Proposition 3.7, ¢,0¢, = idg,. Now, considering y,01,, :
for every F' € F(Z,), one has ¢, (¢,(F)) = Z,(Int(F,Z,)) = {a € Z, |
for all f € Int(F,Z,) f(a) € Zp} = F by Proposition 3.10 since F' is
assumed to be closed. Consequently, p, 09, =idrz,). |
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We end this section with the characterization of minimal ring exten-
sions of the family R,. Recall that Ry C Ry € R, forms a minimal
ring extension if there is no ring in between R; and Rs.

Proposition 3.12. Let R = Intg(F,Z,) where F = Z,(R) is a closed
subset of Z,. There is a bijection between the minimal ring extensions
of R in R, and the subset Fy formed by the isolated points of F', which
is given by:

Fy 3 avr— Intg(F \ {a},Z,).

We stress that we are interested only in polynomial ring extensions
of R, that is, elements of the family R,. Note that the proposition says
that R has no minimal ring extension in R, if and only if Z,(R) has
no isolated points.

Proof. Let S € R, be a proper extension of R. Then, by Theo-
rem 3.11, S = Intg(E, Z,) where E = Z,(S) is a closed subset strictly
contained in F'. For every a € F\ E, the subset FU{a} is closed and the
ring T' = Intg(EU{a}, Z,) satisfies R C T C S since E C EU{a} C F.

Therefore, the extension R C S is minimal if and only if there is no
closed subset G such that £ C G C F. Consequently, if the extension
R C S is minimal, then necessarily ' = E U {a}. The fact that E
is closed in F'U {a} = F implies that « is isolated in F. Conversely,
if @ € F is isolated in F, then F'\ {a} is closed in F, and clearly
there is no closed subset G properly lying between F'\ {a} and F.
Thus, we may conclude that S is a minimal extension of R if and
only if S = Intg(F \ {a},Z,) where a € F is an isolated point. If
a # o are two distinct isolated points of F', then by Theorem 3.11,
the corresponding minimal ring extensions of R are distinct because

F\{a} # F\ {a'}. 0

4. Valuation overrings of an intersection of valuation do-
mains. The aim of this section is to characterize whether a valuation
overring of Int(Z) as described in Section 1 contains a given intersection
of valuation overrings of Int(Z). We will apply the obtained results to
describe the representations of every polynomial overring of Int(Z) as
intersections of valuation domains. In order to do this, we will exten-
sively use Proposition 2.3. To ease the notation, we set V, = Q[X](,),
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for ¢ € P,,,. Moreover, since now we are going to consider arbitrary
intersections of unitary valuation domains for different p € P, we gen-
eralize the notation Rp g, used in formula (3.5) in the following way:
if P C P, and if, for each p € P, £, C Z,, then we set

Respe = (Vi () ) Voo

q€P pePack,

If the subset E, of Z,, is empty for some p € [P, then the corresponding
intersection ﬂaeEp Voo is set to be equal to Q(X). We consider a
similar convention for the set of non-unitary valuation overrings V if
P = (. In particular, if E, is empty for all p € P except po, then the
intersection corresponds to the ring Rp g, .

We want to determine which are the valuation overrings of a ring
Rp (E,),e; as above. We distinguish the case of a unitary valuation
overring V,, o (whose center is a unitary prime ideal of Int(Z)) from a
non-unitary valuation overring V, (whose center is non-unitary).

4.1. Unitary valuation overrings. We begin to determine unitary
valuation overrings of an arbitrary intersection of V,, o, for a fixed prime
p, and possibly some non-unitary valuation domains V,’s. We remark
first that, given a subset E of Z,,, if V), o, is an overring of NaegVp.a,
where py € P and «g € Zy,, then py = p. In fact, if that were not true,
then 1/pg, which is in NaepVp,o would also belong to Vj,, «,, which
is a contradiction. Therefore, we can just consider valuation overrings
which lie above the same prime p.

The next result is an obvious consequence of Proposition 3.10 (see
also [7, Lemma 26]; although [7, Section 5] is entitled Owerrings of
Int(Z), the author’s point of view is quite different from ours).

Lemma 4.1. Letp e P, E C Z,, P C P, and g € Zp. The following
assertions are equivalent:

(1) R'P,E g V ,00 1
(11) IntQ(Ea ZP) - Vp,ao;
(iii) g belongs to the topological closure E of E in Z,.

In particular, Rp p = Rp 5 and Z,(Rp g) = E.

Proof. (i) — (ii). Intg(F,Z,) is contained in Rp g.
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(ii) « (iii). (ii) means that, for every f € Intg(E,Z,), f(ag) € Zy,
that is, ag belongs to the p-polynomial closure of F; thus, we may
conclude with Proposition 3.10.

(ii) — (i). Assume that V,, o, is an overring of R = Intg(E,Z,). We
use Proposition 2.3 to get the claim. Let I C R be a finitely generated
ideal contained in M, o, and let J = I + (p). Since J is not contained
in any non-unitary prime ideal of R, then it follows from (3.4) that
J is contained in some unitary prime ideal 9, , of R where a@ € E.
In particular, I is contained in this ideal 9, , and we conclude that
Voo 2 Nacr Voo 2 Br. o

The last claims follow immediately. O

Lemma 4.2. For each p € P, let E,, C Z,,. Let pg € P and o € Zp,.

Then
ﬂ ﬂ Voo € Vppao <= m Viosa € Voo
peEP ackE, a€Ep,

Proof. One implication is obvious. Conversely, assume that Vj, o,
is an overring of the intersection (\,cp(Naerp, Vpa- Let I be a finitely
generated ideal contained in M, o,, and let J = I+ (po). Since for all
p # po and, for all o« € E,, we have J ¢ M, ,, it follows that J C M, o
for some o € E,,. In particular, I C 9, . By Proposition 2.3, we
may conclude. ]

Both previous lemmas lead to the following proposition.

Proposition 4.3. For each p € P, let B, C Z,. Let pg € P, let
oy € Zyp, and let P be any subset of P,... Then the following conditions
are equivalent:

1) ﬂPGP naeE VP’ - ‘/;70;040

/) Eyp pelP - Vpoyao
ll) ﬂ PO,OC - Vpo’ao

(H/) R’P Ep, C Vpo Qg+

(iil) ag s in the topological closure of Ep, in Zy,.
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Corollary 4.4. Let P C P, and, for each p € P, let E, C Z,.
Then, Vp,,ao where pg € P and ag € E,, is not a superfluous valuation
overring of Rp (g,),c, i and only if ag is an isolated point of Ep,.

Proof. Vp, a, is not a superfluous valuation overring of Rp (g,),.;
if and only if the intersection of the valuation domains of the family
Vo lqe PYU{V,ala € By p € PI\{Vpy.a0 ) is Dot contained in Vo, -
By Proposition 4.3, this condition is equivalent to oy ¢ Ep, \ {0}, that
is, ag is an isolated point of E,,. O

4.2. Non-unitary valuation overrings. Now we consider the case
of a non-unitary valuation domain V, = Q[X](,, ¢ € P.., containing
an arbitrary intersection of unitary and non-unitary valuation domains.

Lemma 4.5. Let P C P, and qo € P.... Then

(Vi S Ve <= a0 €P.
qeP

Proof. One direction is obvious. Conversely, suppose Vg, is an
overring of the intersection of the V,’s, ¢ € P. If qo ¢ P, we have
a contradiction since

1 1
—e (Ve and — ¢V,
do gEP q0

O

Theorem 4.6. Let g € P, and, for each p € P, let F, C Z, be a
(possibly empty) closed set of p-adic integers. Then

) [ Vo CVa=3ap) € [[ B

peEP acF, peP

such that va(q(ap)) = +o0.
peP

Note that the latter condition means that: either there exist p € P
and «, € F, such that g(a,) = 0, or there exist infinitely many primes
pn, € P and some «p, € F,, such that v, (q(ap,)) > 1. Example 4.7
below shows that the latter condition can really occur.
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Proof. Since B, = {qf € Int(Z) | f € Q[X]} and Q[X] is countable,
we may fix a sequence {f,},>0 of polynomials in Q[X] such that the
qfn’s generate *B,. We also consider the set

Py = {p € P| there exists o, € F}, such that ¢ € M, o, }.

Assume that there exists (a;) € [[,cp £} such that > pvp(g(ay))
= oo. If, for some prime p and some « € F,, g(a) = 0, then V;, DV, 4,
and hence, V; D (,cp ﬂaeF Suppose that, for each p € P,
¢(X) has no roots in F,. It follows that the set P, is infinite. Let
I C B, be any finitely generated ideal. There exists n such that I C
(¢f1,---,qfn). Since, for almost all p € P, the polynomials fi,..., fn
are in Z, [ X], there exists p € P, such that fi,..., fn € Z¢,)[X], and
hence, for the above o, € F), v,(q(ap)fi(ap)) > vp(g(ay)) > 0, for
1 < j < n. Consequently, I C I, , , which shows by Proposition 2.3

that ‘/;1 D) mpe]p ﬂaer vaa'

Conversely, assume that P, = {p1,...,ps} and m; = sup{v,, (¢(a)) |
a € F,} <oofori=1,...,s (& ¢g(a) # 0, for cach a € F),,
i=1,...,s since Fj, is closed.) Then, consider the rational function:

sz ot

For every p; € Py and every a,, € Fp,, vp(g(cp,)) < m;, and hence,
¢ € Vpi,a,, - For every p € P\ Py and every a;, € Fj, vp(g(ay)) = 0, and
hence, ¢ € V} o,. Consequently, ¢ € ﬂpep ﬂaper Vp,a,, while clearly
¢ & Vg O

Example 4.7. This example shows that a minimal non-unitary valua-
tion overring of some ring Rp (f,), ., can be superfluous. Let ¢(X) = X.
Suppose B, = U,en In, where {I,},>0 is an increasing sequence
of ideals, each of them generated by X f1(X),..., X fn(X), for some
fi € Q[X]. Let p, be the nth prime. For each n € N, there exists
an € N large enough such that I,, C 9, ,an, exactly by the same
argument as the above proof. Then, by Proposmon 2.3, V, is an over-
ring of (), cn V., pen, even though, by (1.2), V,, ,an ¢ V for each
n € N. Hence, V; is a minimal overring of [,y V,., pen N V which is

neN "pn
superfluous. Or, if we want to consider integer- valued polynomlals let
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E = Upen{p%}. Then we have

Int E, Z ﬂ Q (q) N ﬂ ﬂ PP

qEPirr peEP neN

where the minimal valuation overring Vx of Int(E,Z) is superfluous.

Remark 4.8. Let P C P,..,q € P.., and, for each p € P, let F}, be a
closed subset of Z,,.

(i) Theorem 4.6 may be generalized to an arbitrary intersection of
unitary and non-unitary valuation domains:

Rp (r,)er C Vo < either go € P

or

there exists (a;) € H F,
pEP

such that va(qo(ap)) = +4o0.
pEP

In fact, if Vg, is an overring of Rp (g ) ., and there is no (a,) €
[I,ep Fp such that 3 pv,(go(cy)) = 400, then, by Theorem 4.6,
Vgo is not an overring of (\,cp(Nacp, Vp.a- Hence, by the tech-
niques of Proposition 2.3, V,, is easily seen to be an overring of
ﬂqu Vg, and so, by Lemma 4.5, ¢o € P, as desired. Conversely,
by Theorem 4.6, each condition on the right-hand side implies
that Vg, is an overring of Rp (r), .-

(i) If F, is an empty set for all but finitely many primes {p1,...,pn}
(for example, overrings Rp r, of Int(Z,))), then V is an overring
of Rp (p,),c, if and only if ¢(X) has a root in some F,, i =
1,...,n, or ¢ € P. Therefore, a minimal non-unitary valuation
overring Vg of Rp (p, ),_, is not superfluous.

RN

5. Polynomial overrings of Int(Z) as intersections of valua-
tion domains. We consider now a polynomial overring R of Int(Z).
Analogously to the previous case of overrings of Int(Z,)), we consider
the subset Z,(R).
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Notation. For every ring R such that Int(Z) C R C Q[X] and
every p € P, let Z,(R) be the following subset of Z,:

(5.1) Zp(R) ={a € Zy | My o R C R}

We already introduced Z,(R) in (3.1) for polynomial overrings of
Int(Zy). Fortunately, both notations agree with each other since,
clearly, Z,(R) = Z,(R)):

(6.2) a€Zy(R) <= RCVya <= Ry € Vpu &= a € Zy(Ryy).

Analogously to Proposition 3.3, we now consider the representations
of R as an intersection of valuation overrings.

Proposition 5.1. Let R be any polynomial overring of Int(Z). We
have the following representations of R as an intersection of valuation
0VETTINGS.

(i) The intersection of all the valuation overrings:
(5.3) R= () QXIpn() () Vows
qEPirr peP aEZp(R)
(ii) The intersection of all the minimal valuation overrings:

(5.4) R= () @XIpn[] () Ve

gepZ™ pEP a€Z,(R)

irr

where 731rr ) denotes the set of irreducible polynomials of Z[X]
which have no roots in Z,(R) whatever p € P.

(iii) For every P C P,, and every E, C Z,(R)(p € P), the following
intersection of valuation overrings of R:

Eper = [1AXT N () [ Voo

qeP pEP a€E,

(5.5)

is equal to R if and only if

(a) P2 PiiO(R) where Pff(R) is formed by the irreducible poly-
nomials q of Z|X| such that, for every p € P, ¢ has no root in
Zp(R), and there do not exist two infinite sequences {p;}jen
and {a;}jen where p; € P, o € Z, (R), and vy, (q(a;)) > 0,

(b) for every p € P, E, is p-adically dense in Z,(R).
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Proof. Formula (5.3) is clearly a consequence of Proposition 3.3 (i).
Analogously to formula (3.4), formula (5.4) follows from the globaliza-
tion of Corollary 3.2: a prime ideal B3, of Int(Z) is maximal in R if and
only if, for each p € P, ¢(X) has no roots in Z,(R).

It remains to prove assertion (iii). If (a) and (b) hold, then, by
Proposition 4.3 and Theorem 4.6, the right-hand side of formula (5.5)
is equal to the right-hand side of formula (5.3), and hence to R.

Assume now that (a) does not hold. There exists r € i \ P.
Since E, C Z,(R) for every p € P and r ¢ P, it follows from
Theorem 4.6 that V,. = Q[X]y 2 Rp (g,),..; in particular, Q[X] 2

RP;(Ep)peu” and hence, R g RP)(Ep)pEﬂ”'

Finally, assume that (b) does not hold. There is some py € P such
that E,, is not pg-adically dense in Z, (R); in other words, there is
some ag € Z,,(R) which is not in the topological closure of E,,. By
Proposition 4.3, (,cp Nacr, Voo N QIX] € Vig,a0, and hence, once
more, R C Rp (g,) O

pEP’

Remark 5.2. We can generalize Corollary 3.5 to overrings of Int(Z)
in the following way: a polynomial overring R of Int(Z) admits an
irredundant representation if and only if, for each p € P, Z,,(R) contains
a p-adically dense subset formed by isolated points.

6. Polynomial overrings of Int(Z) as integer-valued polyno-
mial rings over subsets of 7. Inthis section, we give another point of
view about polynomial overrings R of Int(Z), in order to represent them
as rings of integer-valued polynomials. We know that R = NycpRp)
and that R,y = Intg(Z,(R),Z,). Consequently, R is equal to an inter-
section of different integer-valued polynomial rings as p runs through
the set of prime numbers:

(6.1) R = () Intg(Zy(R), Zp).
peP

However, it seems to be more convenient to consider all the p-adic
completions Z,, at the same time. Classically, the way to do that is via
the ring of finite adeles A;(Q) (‘finite’ refers to the fact we forget the
Archimedean absolute value). A finite adele is an element o = (), of
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the product HpG]P’ Qp such that, for all but finitely many p’s, o, belongs
to Z, (for instance, see [9, subsection 6.2, page 286]).

Note that Q embeds diagonally into Hpep Q, and its image is in
A¢(Q). Actually, Q embeds into the group of units of A¢(Q). Recall
that this group, denoted by Z;(Q) and called finite ideles, is formed by
the elements a = (ay)p € [[,p Q, such that v,(a,) = 0, for all but
finitely many p. Given a = (ap), € Af(Q) and f € Q[X], we clearly

have
fl@) = (fap))p € AF(Q) € ] @p,

peP

that is, every polynomial with rational coefficients maps an adele into
an adele. For this reason, the ring of integer-valued polynomials over
the ring of finite adeles is trivial:

Q[X] = Intg(A;(Q))
={f € QIX] | f(a) € As(Q), for all o € As(Q)}-

However, note that A;(Q) contains as a subring the product [ p Zy,
which is isomorphic to Z, the profinite completion of Z with respect
to the fundamental system of neighborhoods of 0 consisting of all the
non-zero ideals of Z.

Given f € Q[X] and a € A;(Q), we say that f is integer-valued at o
if f(a) = (flayp))p € Z= [I,Z,. Then, analogously to Definition 3.6,
we introduce the following:

Definition 6.1. For every subset E of Z, the ring of integer-valued
polynomials on F is

Intg(E,Z) = {f € Q[X] | f(e) € Z, for all o € E}.

Notation. For each polynomial overring R of Int(Z), we consider
the following set of finite adeles:

Zp=]]2®R) <]z =2
p p
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Clearly, Zp = {(ap)p € Z | Mo, R S R, for all p € P}. With the
previous notation, equality (6.1) may then be written:

~

(6.2) R =Intg(Zy,7Z),

which means that every polynomial overring R of Int(Z) may be
considered as the ring formed by polynomials which are integer-valued
over a subset of Z. Note that since, for each p € P, Z,(R) is a closed
subset of Z,, and hence, is compact, the subset Z is also compact in

Z where Z = HpeP Z,, is endowed with the product topology.

The following theorem is the globalized version of Theorem 3.11.

Theorem 6.2. Let R be the set of polynomial overrings of Int(Z), and
let F(Z) be the family of compact subsets of 7 of the form HpeIP F,
where F), is a closed subset of Z,. The following maps which reverse
the containments are inverse to each other:

9:R3R— Zy=[]2(R) € F(Z)
peP

and

¢: F(Z) 5 F — Intg(F,Z) € R.

Proof. By equality (6.2), 1o = idg. Now consider o). For every
F=1]],F, € F(Zp), one has

@(Z/J(E)) = ZID'C@(E,ZP)
= {(ap)p € HZP | for all f € Int(F,Z),
P

for all p € P, f(oyp) € Zp}

= {(ap)y € [] 2 | t(E,2) C Vya,, for all p € P},
p

which is equal to F' by Proposition 4.3. (|
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Remark 6.3. Let F be a generic compact subset of Z, and consider
the following ring of integer-valued polynomials:

R =Inty(F,Z).

For each p € P, let 7, : 7 — Z,, be the canonical projection. Then,

for each f € Intg(F, 2), and for each o, € mp(F), p € P, we have
f(ap) € Zy,. Consequently, f € Intg(m,(E),Z,). Therefore,

R C (Intg(my(E), Zy) = IntQ(Hﬂ'p HZ > C Intg(F,Z) = R,
p
since 2 C [, mp(F). Finally,

Intg(F,Z) = Intg < @&, 2) .

Since the projections 7, are closed maps, each m,(F) is a closed subset
of Z,. Therefore, by Theorem 6.2, we have proved that ZInt@( F7) =
[, 7p(£), which is an element of F(Z). In other words, J[, m,(F) is
precisely equal to Athe subset of Z of those a such that f(a) € Z, for
each f € Intg(F,Z). Generalizing the terminology of subsection 3.2,

one could say that the polynomial closure of F C 7 is the compact
subset [ [, m,(F).

Remark 6.4. Let E C Z be an infinite subset. We denote by E the
Z,, by L, the topological closure

uct [T,ep By C Z.
By Remark 6.3, E is the polynomial closure of E in Z. It is easy to see
that

topological closure of F in 7= Hp P

of E in Z,,, for each prime p and by E the direct product ||

ECE,

since the canonical embedding of E into Z is contained in HpeJP’ E (in
fact, strictly contained if Card (F) # 1) whose topological closure is E.
Moreover, for each prime p, m,(E) = m,(£) = E,. In particular,

Int(E,Z) = Intg(E, Z) = Intg(E, Z).
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We know that, locally, for a subset E2 C Z,), the polynomial closure
of E in Z, coincides with its topological closure in Z, (Proposition
3.10 and Theorem 3.11). The global situation can be different: as the
next example shows, in general, E can be strictly contained in £. By
definition, an element o € E has the property that, for each finite set of
primes {p1,...,px} and finite set of non-negative integers {k1, ..., ks},
there exists a; € E such that a; = «a,, (mod pf")7 fori =1,...,s.
In order for « to belong to E, there should exist @ € E which is a
simultaneous solution of all the previous congruences.

Example 6.5. Let E =Z\{-7+8-9k | k € Z}. It is easy to see that
E is dense in Z,, for each prime p, so the polynomial closure of E in Z

is equal to Z. However, since there is no a € E such that the following
congruences are satisfied:

a=1 (mod 8), a=2 (mod9),

it follows that £ CE.

Example 6.6. Let us consider the ring Int(Z). Since
Int(Z) = () Int(Zy)),
p€eP
by (3.6), we have

Int(Z) = () Intg(Z,) = Into(Z, Z) = Intg(Z).
peP

Note the analogy of the previous equation with (3.6).

Corollary 6.7. For each p € P, let R(p) be a polynomial overring of
Intq(Zp)). Then, there exists a polynomial overring R of Int(Z) such
that R,y = R(p) for each p € P.

Proof. By Theorem 3.11, the choice for each p € P of an overring
R(p) of Int(Z,)) corresponds to a closed subset F, = Z,(R(p)) C Zy.

Moreover, R(p) = Intq(Fp,Zp). Let F =] pF, C 7, and let

R =Tntg(F,Z) = () R(p)-
peP



POLYNOMIAL OVERRINGS OF Int(Z) 27

We claim that R is the desired polynomial overring of Int(Z). Since
Ry and R(p) are elements of the family R,, by Theorem 3.11, it is
sufficient to show that Z,(R,)) = F,. Proposition 4.3 and (5.2) allow
us to conclude. |

Remark 6.8. With our interpretation in terms of finite adeles, we may
formulate Theorem 4.6 in another way. Let R be a polynomial overring
of Int(Z). Let Rp z, be a representation of R as an intersection of
valuation overrings (Proposition 5.1). Theorem 4.6 says that, for every
q € P, V, is superfluous if and only if there exists a € Z such that ¢(a)
is not invertible in Af(Q). The valuation domain V; is surperfluous in
all representations of R if and only if ¢(Zz) Z Z¢(Q).

To end our study, we now show under which conditions a polynomial
overring R of Int(Z) is of the simple form Int(E,Z) where E is a subset
of Z.

Corollary 6.9. A polynomial overring R of Int(Z) is a ring of integer-
valued polynomials on a subset of Z if and only if, for each prime p, the
subset E = N,(Z,(R)NZ) is dense in Z,(R) for the p-adic topology. If
this condition holds, then R = Int(FE,Z).

Proof. Clearly, E = {a € Z | R(a) C Z} and, if R is a ring of
integer-valued polynomials on a subset of Z, the subset E is convenient.
Moreover, the equality R = Int(F,Z) holds if and only if both rings
have the same localizations at each prime p. For every p, Int(E, Z),) =
Intg(F,Zy) and R, = Intg(Z,(R),Z,) by Proposition 3.7. Thus, by
Proposition 3.10, both localizations are equal if and only if E' is dense
in Z,(R). |

Example 6.10. For each p, let us consider the following closed subset
of Zy: Fp = {p}U(Zy\pZy). Let F =[], F, € Z and R = Intg(F, Z).
Does there exist an F C Z such that R = Int(E, Z)? Yes, R = Int(PP, Z)
since, for each p, the topological closure of IP in Z,, is F},. Actually, the
subset E suggested in Corollary 6.9 is PU{%1}, namely, the polynomial
closure of P in Z (about Int(P,Z) see [2]).
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