
JOURNAL OF COMMUTATIVE ALGEBRA
Volume 7, Number 3, Fall 2015

MORE PROPERTIES OF ALMOST
COHEN-MACAULAY RINGS

CRISTODOR IONESCU

ABSTRACT. Some interesting properties of almost Cohen-
Macaulay rings are investigated, and a Serre type property
connected with this class of rings is studied.

1. Introduction. A flaw in the first edition of [5] in the chapter
dedicated to Cohen-Macaulay rings was corrected in the second edition.
This led to the study of the so-called almost Cohen Macaulay rings, first
by Han [1] and later by Kang [2, 3]. Since the first of these papers
is written in Chinese, the others two are the main references for the
subject.

Remark 1.1. Let A be a commutative Noetherian ring, P ∈ Spec (A)
and M ̸= 0 a finitely generated A-module. Then depthP (M) ≤
depthPAP

MP .

Definition 1.2. (cf. [1, 2]). Let A be a commutative Noetherian ring.
A finitely generated A-module M ̸= 0 is called almost Cohen-Macaulay
if depthPM = depthPAP

MP , for any P ∈ Supp (M). A is called
an almost Cohen-Macaulay ring if it is an almost Cohen-Macaulay A-
module, that is, if for any P ∈ Spec (A), depthPA = depthPAP

AP .

Several properties of almost Cohen-Macaulay rings are proved in [2],
and several interesting examples are given in [3]. In the following, we
are trying to complete the results in [2] and to introduce a Serre-type
condition that we call (Ck), for any k ∈ N condition that is to be to
almost Cohen-Macaulay rings what the classical Serre condition (Sk)
is to Cohen-Macaulay rings.
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2. Properties of almost Cohen-Macaulay rings. All rings con-
sidered will be commutative and with unit. We start by reminding the
reader about some basic properties of almost Cohen-Macaulay rings.

Remark 2.1. Let A be a Noetherian ring. Then:

(a) A is almost Cohen-Macaulay if and only if ht (P ) ≤ 1 + depthPA,
for all P ∈ Spec (A) ([2, 1.5]);

(b) A is almost Cohen-Macaulay if and only if AP is almost Cohen-
Macaulay for any P ∈ Spec (A) if and only if AQ is almost Cohen-
Macaulay for any Q ∈ Max (A) if and only if ht (Q) ≤ 1+depthAQ

for any Q ∈ Max (A) ([2, 2.6]);
(c) If A is local, it follows from b) that A is almost Cohen-Macaulay

if and only if dim(A) ≤ 1 + depth(A).

Our first result is a stronger formulation of [2, 2.10] and deals
with the behavior of almost Cohen-Macaulay rings with respect to flat
morphisms.

Proposition 2.2. Let u : (A,m) → (B,n) be a local flat morphism of
Noetherian local rings.

(a) If B is almost Cohen-Macaulay, then A and B/mB are almost
Cohen-Macaulay.

(b) If A and B/mB are almost Cohen-Macaulay and one of them is
Cohen-Macaulay, then B is almost Cohen-Macaulay.

Proof.

(a) We have

dim(A) = dim(B)− dim(B/mB) ≤ 1 + depthB − dim(B/mB)

≤ 1 + depthB − depth(B/mB) = 1 + depthA.

We also have

dim(B/mB)− depth(B/mB) = (dim(B)− depthB)

− (dim(A)− depthA)

≤ 1− (dim(A)− depthA) ≤ 1.
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(b) Since u is flat, we have

dim(B) = dim(A) + dim(B/mB) ≤ 1 + depth(A) + depth(B/mB)

= 1 + depth(B). �

Question 2.3. We do not know of any example of a local flat morphism
of Noetherian local rings u : (A,m) → (B,n) such that A and B/mB
are almost Cohen-Macaulay and B is not almost Cohen-Macaulay.1

Corollary 2.4. Let A be a Noetherian local ring, I ̸= A an ideal

contained in the Jacobson radical of A and Â the completion of A in
the I-adic topology. Then A is almost Cohen-Macaulay if and only if

Â is almost Cohen-Macaulay.

Proof. Since I is contained in the Jacobson radical of A, the canon-

ical morphism A → Â is faithfully flat and Max (A) ∼= Max (Â). More-
over, if m ∈ Max (A) and m̂ is the corresponding maximal ideal of

Â, the closed fiber of the morphism Am → Âm̂ is a field. Now apply
Proposition 2.2. �

Corollary 2.5. (see [2, 1.6]). Let A be a Noetherian ring and n ∈ N.
Then A is almost Cohen-Macaulay if and only if A[[X1, . . . , Xn]] is
almost Cohen-Macaulay.

Proof. Suppose that A is almost Cohen-Macaulay. We may clearly
assume that A is local and n = 1. By [2, 1.3], we get that A[X](X)

is almost Cohen-Macaulay. Now apply Corollary 2.4. The converse is
clear. �

For the next corollary, we need some notation.

Notation 2.6. If P is a property of Noetherian local rings, we de-
note by P(A) := {Q ∈ Spec (A) | AQ has the property P} and by
NP(A) := {Q ∈ Spec (A) | AQ does not have the property P} =
Spec (A) \P(A).
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Definition 2.7. Let A be a Noetherian ring. According to Nota-
tion 2.6, the set

aCM (A) := {P ∈ Spec (A) | AP is almost Cohen-Macaulay}

is called the almost Cohen-Macaulay locus of A.

Corollary 2.8. Let u : A → B be a morphism of Noetherian local rings
and φ : Spec (B) → Spec (A) the induced morphism on the spectra. If
the fibers of u are Cohen-Macaulay, then φ−1(aCM (A)) = aCM (B).

Proof. Obvious from Proposition 2.2. �

In Cohen-Macaulay rings, chains of prime ideals behave very well,
in the sense that Cohen-Macaulay rings are universally catenary (see
[5]). This is no longer the case for almost Cohen-Macaulay rings.

Example 2.9. There exists a local almost Cohen-Macaulay ring which
is not catenary.

Proof. Indeed, by [2, Example 2], any Noetherian normal integral
domain of dimension 3 is almost Cohen-Macaulay. In [6], such a ring
which is not catenary is constructed. �

The next result shows that some of the formal fibers of almost Cohen-
Macaulay rings are almost Cohen-Macaulay. A stronger fact will be
proved in Proposition 2.13.

Proposition 2.10. Let A be a Noetherian local almost Cohen-Macaulay

ring, P ∈ Spec (A), Q ∈ Ass (Â/P Â). Then ÂQ/PÂQ is almost Cohen-
Macaulay.

Proof. We have

dim(ÂQ/PÂQ) = dim ÂQ − dimAP

≤ depthÂQ + 1− dimAP

≤ depthÂP + 1− dimAP

= depth(ÂQ/PÂQ) + 1. �
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The following result shows that the almost Cohen-Macaulay prop-
erty is preserved by tensor products and finite field extensions.

Proposition 2.11. Let k be a field and A and B two k-algebras such
that A ⊗k B is a Noetherian ring. If A and B are almost Cohen-
Macaulay and one of them is Cohen-Macaulay, then A⊗k B is almost
Cohen-Macaulay.

Proof. Let P ∈ Spec (A). We have a flat morphism B → B⊗k k(P ).
Let Q ∈ Spec (B). Set T := A/P⊗kB/Q = A⊗kB/(P⊗kB+A⊗kQ).
Then k(P ) ⊗k k(Q) is a ring of fractions of T , hence Noetherian by
assumption. By [7, Proposition 5], it follows that k(P ) ⊗k k(Q) is
locally a complete intersection. Now let Q ∈ Spec (B) and P = Q ∩A.
By the above, the flat local morphism AP → (B ⊗k k(P ))Q has a
complete intersection closed fiber; hence, the ring (B ⊗k k(P ))Q is
almost Cohen-Macaulay by Proposition 2.2. Now consider the flat
morphism A → A⊗kB and let Q ∈ Spec (A⊗kB) and P = Q∩A. Then
the flat local morphism AP → (A ⊗k B)Q has a complete intersection
closed fiber, whence (A⊗k B)Q is almost Cohen-Macaulay. �

Corollary 2.12. Let k be a field, A a Noetherian k-algebra which is
almost Cohen-Macaulay and L a finite field extension of k. Then A⊗kL
is almost Cohen-Macaulay.

As for the Cohen-Macaulay property, the formal fibers of factoriza-
tions of almost Cohen-Macaulay rings are almost Cohen-Macaulay.

Proposition 2.13. Let B be a local almost Cohen-Macaulay ring, I
an ideal of B and A = B/I. Then the formal fibers of A are almost
Cohen-Macaulay.

Proof. We have Â = B̂ ⊗B A = B̂/IB̂; hence, the formal fibers
of A are exactly the formal fibers of B in the prime ideals of B
containing I. Let P be such a prime ideal, let S = B \ P and let

C := S−1(B̂/IB̂). Also let Q ∈ Spec (C). There exists Q′ ∈ Spec (B̂)
such that Q = Q′C and Q′ ∩ B = P . Thus, we have a local flat

morphism BQ → B̂Q′ . But B is almost Cohen-Macaulay; hence, B̂Q′
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and consequently CQ
∼= B̂Q′/PB̂Q′ are almost Cohen-Macaulay, by

Proposition 2.2. �

3. The property (Cn). Recall that, given a natural number n, a
Noetherian ring A is said to have Serre property (Sn) if depth(AP ) ≥
min(htP, n) for any prime ideal P ∈ Spec (A). Moreover, A is Cohen-
Macaulay if and only if A has the property (Sn) for any n ∈ N (see [5,
(17.I)]). We will try to characterize almost Cohen-Macaulay rings in a
similar way.

Definition 3.1. Let n ∈ N be a natural number. We say that a
Noetherian ring A has the property (Cn) if depth(AP ) ≥ min(htP, n)−
1, for all P ∈ Spec (A).

Remark 3.2. (a) It is clear that (Cn) ⇒ (Cn−1) and that (Sn) ⇒
(Cn), for all n ∈ N.

(b) It is also clear that if A has (Cn), then AP has (Cn), for all
P ∈ Spec (A).

Theorem 3.3. A Noetherian ring A is almost Cohen-Macaulay if and
only if A has the property (Cn) for every n ∈ N.

Proof. Assume that A is almost Cohen-Macaulay, and let P ∈
Spec (A). Then AP is almost Cohen-Macaulay; hence, depth(AP ) ≥
ht (P ) − 1. If n ≥ ht (P ), then min(ht (P ), n) = ht (P ). Hence,
depth(AP ) ≥ min(n, ht (P ))−1. If n < ht (P ), then min(n,ht (P )) = n,
so that depth(AP ) ≥ ht (P )− 1 > n− 1 = min(ht (P ), n)− 1.

For the converse, let P ∈ Spec (A), ht (P ) = l. Then

depth(AP ) ≥ min(l,ht (P ))− 1 = ht (P )− 1. �

Proposition 3.4. Let k ∈ N. A Noetherian ring A has the property
(Ck) if and only if AP is almost Cohen-Macaulay for any P ∈ Spec (A)
with depth(AP ) ≤ k − 2.

Proof. Let P ∈ Spec (A) be such that min(k, ht (P ))−1 ≤ depth(AP ) ≤
k − 2. If ht (P ) ≤ k, then depth(AP ) ≥ ht (P )− 1. And, if ht (P ) > k,
then it follows that k−2 > depth(AP ) ≥ k−1. This is a contradiction.
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Conversely, let P ∈ Spec (A). If depth(AP ) ≤ k − 2, then AP

is almost Cohen-Macaulay, hence ht (P ) − 1 ≤ depth(AP ) ≤ k − 2.
Thus, min(ht (P ), k) = ht (P ), whence depth(AP ) ≥ min(k, ht (P ).
If k − 2 < depth(AP ), then ht (P ) > k − 2. Hence, depth(AP ) ≥
min(k, ht (P ))− 1. �

Proposition 3.5. Let A be a Noetherian ring, k ∈ N and x ∈ A a non
zero divisor. If A/xA has the property (Ck), then A has the property
(Ck).

Proof. Let Q ∈ Spec (A) be such that depth(AQ) = n ≤ k−2. If x ∈
Q, then depth(A/xA)Q = n−1 ≤ k−3. Then ht (Q/xA) ≤ n−1+1 =
n; hence, ht (Q) ≤ n+1 = depthAQ+1. If x /∈ Q, let P ∈ Min (Q+xA).
Then (Q+xA)AP is PAP -primary and depth(AP ) ≤ depth(AQ)+1 =
n+ 1. Then depth(A/xA)Q = n− 1; hence, ht (P/xA) ≤ n. It follows
that ht (P ) ≤ n+ 1 = depth(AP ) + 1. �

Definition 3.6. We say that a property P of Noetherian local rings
satisfies Nagata’s criterion (NC) if the following holds: if A is a
Noetherian ring such that, for every P ∈ P(A), the set P(A/P )
contains a non-empty open set of Spec (A/P ), then P(A) is open in
Spec (A).

An interesting study of the Nagata criterion is performed in [4].

Theorem 3.7. Let k ∈ N. Property (Ck) satisfies (NC).

Proof. Let Q ∈ Ck(A). Then depth(AQ) ≥ min(k, ht (Q))− 1.

Case a). ht (Q) ≤ k. Then min(k, ht (Q)) = ht (Q); hence,
depth(AQ) + 1 ≥ ht (Q) and AQ is almost Cohen-Macaulay. Let
f ∈ A \Q be such that

dim(AP ) = dim(AQ) + dim(AP /QAP )

and
depth(AP ) = depth(AQ) + depth(AP /QAP )

for any P ∈ D(f) ∩ V (Q) ∩NTk(A). Then

depth(AP ) � min(k, ht (P ))− 1.
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Case a1). ht (P ) ≤ k. Then min(k, ht (P )) = ht (P ); hence,
depth(AP ) + 1 < ht (P ). Then

depth(AP /QAP ) + 1 = depth(AP )− depth(AQ) + 1

< ht (P )− depth(AQ) ≤ ht (P )− ht (Q) + 1.

Then depth(AP /QAP ) < dim(AP /QAP ) = dim(AP ) − dim(AQ), and
it follows that AP /QAP is not (Ck).

Case a2). ht (P ) > k. Then min(k, ht (P )) = k; hence, depth(AP ) <
k − 1. It follows that

depth(AP /QAP ) = depth(AP )− depth(AQ)

< k − 1 + 1− ht (Q) = k − ht (Q).

This implies that AP /QAP is not (Ck).

Case b). ht (Q) > k. Then min(k, ht (Q)) = k and depth(AQ) +
1 ≥ k. Since ht (P ) > k, it follows that min(k, ht (P )) = k and
depth(AP ) + 1 < k. Let x1, . . . , xr be an AQ-regular sequence.
Then there exists f ∈ A \ Q such that x1, . . . , xr is Af -regular. If
P ∈ D(f) ∩ V (Q), it follows that AP is (Ck). �

Corollary 3.8. The property almost Cohen-Macaulay satisfies (NC).

Theorem 3.9. Let A be a quasi-excellent ring and k ∈ N. Then Ck(A)
and aCM (A) are open in the Zariski topology of Spec (A).

Proof. Let P ∈ Spec (A). Then aCM (A/P ) and Ck(A/P ) contain
the non-empty open set Reg (A/P ) = {P ∈ Spec (A) | AP is regular}.
Now apply Theorems 3.7 and 3.8. �

Corollary 3.10. Let A be a complete semilocal ring and k ∈ N. Then
Ck(A) and aCM(A) are open in the Zariski topology of Spec (A).

Corollary 3.11. Let A be a Noetherian local ring with Cohen-
Macaulay formal fibers. Then aCM (A) is open.

Proof. Follows from Corollaries 2.8 and 3.10. �
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Proposition 3.12. Let u : A → B be a flat morphism of Noetherian
rings and k ∈ N. If B has (Ck), then A has (Ck).

Proof. We may assume that A and B are local rings and that u is
local. Let P ∈ Spec (A) and Q ∈ Min (PB). Then dim(BQ/PBQ) = 0;
hence,

depth(AP ) = depth(BQ) ≥ min(k, dim(BQ))− 1

= min(k, dim(AP ))− 1. �

Proposition 3.13. Let u : A → B be a flat morphism of Noetherian
rings and k ∈ N.

a) If A has (Ck) and all the fibers of u have (Sk), then B has (Ck).
b) If A has (Sk) and all the fibers of u have (Ck), then B has (Ck).

Proof. a) Let Q ∈ Spec (B), P = Q∩A. Then, by flatness, we have

dim(BQ) = dim(AP ) + dim(BQ/PBQ),

depth(BQ) = depth(AP ) + depth(BQ/PBQ).

By assumption, we have

depth(AP ) ≥ min(k, ht (P ))− 1,

depth(BQ/PBQ) ≥ min(k, dim(BQ/PBQ).

Hence, we have

depth(BQ) = depth(AP ) + depth(BQ/PBQ)

≥ min(k, ht (P ))− 1

+ min(k, dim(BQ/PBQ))

= min(k, ht (BQ))− 1.

b) The proof is the same. �

As a corollary we get a new proof of a previous result.

Corollary 3.14. Let u : A → B be a flat morphism of Noetherian
rings.

a) If B is almost Cohen-Macaulay, then A is almost Cohen-Macaulay.
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b) If A is almost Cohen-Macaulay and the fibers of u are Cohen-
Macaulay, then B is almost Cohen-Macaulay.

Example 3.15. Let k be a field, and let X0, X1, X2, Y1, Y2 be inde-
terminates. Set B = k[[X0, X1, X2]]/(X0) ∩ (X0, X1)

2 ∩ (X0, X1, X2)
3

and A := B[[Y1, Y2]]. It is easy to see that A is a Noetherian local ring
with dim(A) = 5, depth(A) = 2. It is also not difficult to see that A
has property (C3) and not property (C4). Other similar examples can
easily be constructed.

Example 3.16. Let k be a field, X and Y indeterminates and consider
the ring A = k[[X,Y ]]/(X2, XY ). Then A has (C2) and not (S2).

ENDNOTES

1. An example was given by M. Tabaâ, Sur le produit tensoriel
d’algèbres, preprint, arXiv:1304.5395.
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