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FINITE GROUPS OF LIE TYPE AS
GALOIS GROUPS OVER Fp(t)

DAMIAN STICHEL

ABSTRACT. In this paper a realization of all classical
and most exceptional finite groups of Lie type defined over
a field Fq (where q = pr is a prime power) as Galois
groups over rational function fields over the prime field Fp

is provided. Our approach runs by restricting the ground
field of the groups and using criteria for bounds for Galois
groups, derived from the theory of Frobenius modules.

1. Introduction. Let q = pr be a prime power. Classical Galois
theory solves the problem of finding the Galois group of a given Galois
extension (respectively, polynomial). Naturally, this also leads to the
related question of which group occurs as a Galois group of some
polynomial. This is known as the “inverse Galois problem.” An
overview of the known results and methods of receiving them is given
in [10].

Naturally, the answer to the inverse problem depends on the ground
field. Here the situation in positive characteristics is addressed. It is
well known that, by the various patching methods, every finite group
can be realized as Galois group over Fp(t) (see, e.g., [8, Theorem
4.6]). Hence, there exists a power pm of p such that the group can
also be realized over Fpm(t). However, the patching method gives no
information about m. Considerable progress in this area was made by
Abhyankar, who presented a number of nice equations for plenty of
the classical groups over function fields over Fq. In numerous papers
(e.g., [1, 2, 4]) he also established a Galois descent principle which
deforms previously constructed additive polynomials over Fqn(t) to
have incarnations over Fq(t) without changing their Galois groups,
where n is a positive integer and q is a prime power. In his approach
using generalized iterates of previously constructed polynomials, a
Galois group could be enlarged from GLm(Fq) to GLm(Fqn) and, under
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suitable conditions, this gives rise to the descent of a Galois group being
realizable over Fq to its realizability over Fp. However, his interest
mostly focused on the group GLm(Fq) and, unfortunately, there is no
obvious generalization to proper subgroups.

In this paper, a method to realize all finite groups of Lie type defined
over a field Fq (where q = pr is a prime power) as Galois groups over
rational function fields of the form Fp(t) is developed.

The techniques we use are based on the theory of Frobenius modules
due to Matzat [9]. This provides criteria for upper and lower bounds
of Galois groups. Matzat’s results were used by Albert and Maier in
[3] to realize finite groups of Lie type defined over Fq as Galois groups
over function fields over Fq. We extend this method to realize these
groups as Galois groups over function fields over Fp. To receive this
Galois descent, we firstly construct a homomorphism which, for groups
defined over Fq, delivers a representation as groups defined over Fp.
We also prove a formula describing the behavior of the characteristic
polynomial of matrices under this transformation (see Proposition 6.8).
By selecting suitable Frobenius modules over Fp, the criteria for bounds
can be applied in this more general case.

Finally, in Theorem 7.2, we prove that all classical groups and most
exceptional finite groups of Lie type with entries in Fpr occur as Galois
groups over smaller fields of characteristic p than had previously been
accomplished. We are able to present explicit representing matrices
of Frobenius modules over Fp(t) having the desired groups as Galois
groups. From the defining equation of the representing matrix, additive
polynomials realizing the groups of our interest as Galois groups over
Fp(t) can be found by solving a system of equations using Buchberger’s
algorithm. In the cases where it is possible to write these polynomials
in a short and well-arranged shape, we give some examples of these
polynomials.

Most results of this paper arose in [15], where more detailed proofs
can be found.

2. Frobenius modules. We present the most important definitions
and results on Frobenius modules and explain how they give rise to
Galois extensions of fields whose Galois groups are isomorphic to a
subgroup of GLm(Fq). Theorem 2.3 and Corollary 2.5 will be important
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in what follows. For more detailed information, see [9].

Let q = pr be a prime power. A Frobenius field (F, ϕq) is a field F
containing Fq, together with the Frobenius endomorphism ϕq : F → F ,
a 7→ aq. A Frobenius extension (E, ϕEq ) of (F, ϕq) is a field E ⊇ F

together with its Frobenius endomorphism ϕEq , extending ϕq. By

abuse of notation, we often write ϕq instead of ϕEq for the Frobenius
endomorphism on E, as well. A pair (M,Φq) consisting of a finite
dimensional F -vector space M and an injective ϕq-semilinear map
Φq :M →M is called a Frobenius module over a Frobenius field F . To
simplify our notation, we sometimes write Φ instead of Φq, in the case
where the base field is known.

We define the solution space of (M,Φq) as SolΦq (M) := {x ∈ M |
Φq(x) = x}. Simple calculations show that this set of vectors remaining
fixed under Φq is a vector space over Fq. (M,Φq) is said to be trivial

if SolΦq (M) already contains an F -basis of M .

For a Frobenius extension (E, ϕEq ) of F , the tensor product ME :=
E ⊗F M becomes a Frobenius module over E in a natural way. We

define the solution space of M over E as Sol
Φq

E (M) := SolΦq (E⊗F M).

It is called trivial over E, if SolΦE(M) contains an E-basis of ME .

If M is not already trivial over F , it is always possible to find a
suitable Frobenius extension E ≥ F of finite degree, such that M
becomes trivial over E. A minimal extension with this property is
called a solution field of M . It turns out to be essentially unique
and, in addition, Galois over F . We define the Galois group of the
Frobenius module (M,Φq) as the Galois group of the solution field:

GalΦq (M) := Gal (E/F ).

Let (M,Φq) have dimension m over (F, ϕq), and choose a basis
B = {b1, . . . , bm}. Let, further, x ∈ M be an arbitrary vector. By
semi-linearity, Φq(x) is already determined by the images of the basis
vectors.

Definition 2.1. The matrix whose jth column equals the coefficient
vector of Φq(bj) with respect to B is the representing matrix D of Φq
with respect to the basis B.

Thus, D = (dij)i,j∈{1,...,m}, where Φq(bj) =
∑m
i=1 dijbi. To see how
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the representing matrix of a semilinear map behaves under a change of
basis, let B′ be a second basis. The coordinate vectors of x with respect
to the two bases are related by xB′ = C−1xB , where C ∈ GLm(F ), is
the matrix describing the base change. Therefore, the representing
matrix of Φq with respect to the basis B′ is C−1Dϕq(C). We call the
matrices D and C−1Dϕq(C) Frobenius equivalent. Note that Frobenius
equivalent matrices define the same solution field. We consider a fixed
basis B and all coordinates and representing matrices are chosen with
respect to B. Let E be a solution field of M . We call a basis of
the solution space SolΦq (M) a fundamental system of solutions. A
matrix Y ∈ GLm(E) whose columns collect the coordinates of such
a fundamental system is called fundamental solution matrix. It is
characterized by the condition DϕqE(Y ) = Y .

Proposition 2.2. The Galois group GalΦq (M) of a finite Frobe-
nius module (M,Φq) of dimension m is isomorphic to a subgroup of
GLm(Fq).

Proof. See [9, Corollary 4.2]. �

2.1. Bounds for the Galois group. We have seen that it is possible
to interpret the Galois group GalΦq (M) of M as a subgroup of the
general linear group GLm(Fq). We now construct bounds for this group.

Theorem 2.3 (Matzat). Let (M,Φq) be a Frobenius module over a
Frobenius field (F, ϕq). Let G be a reduced connected linear algebraic
group defined over Fq. Assume that there exists a basis B such that

DB(Φq) ∈ G(F ). Then GalΦq (M) ⊆ G(Fq).

Proof. See [9, Theorem 4.3.]. �

After receiving a criterion for upper bounds of GalΦq (M), we now
want to obtain lower bounds.

Theorem 2.4 (Matzat). Let (M,Φq) be a finite Frobenius module of
dimension m over a valued field (F, ϕq) with F ≥ Fq. Let OQ ≤ F be
a valuation ring with valuation ideal PQ and with residue field FQ :=
OQ/PQ ≤ Fq, and set fQ := [FQ : Fq]. Assume that D = DB(Φq)
belongs to GLm(OQ) with residue matrix DQ ∈ GLm(FQ). Then
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GalΦq (M) ≤ GLm(Fq) contains a matrix CQ in GLm(Fq) conjugate
to

⟨D̂⟩Q := DQϕq(DQ) · · ·ϕf−1
q (DQ).

Proof. See [9, Theorem 4.5]. �

We apply Theorem 2.4 to the situation where q = p1 and F =
Fp(t1, . . . , tr) is a rational function field over Fp in several variables
ti which we are going to specialize to suitable elements ai ∈ Fp
to get a matrix D̃ belonging to a prescribed conjugacy class. Let
R = Fp[t1, . . . , tr], and let p = (t1 − a1, . . . , tr − ar) be the maximal
ideal of R corresponding to the planned specializations. We define
χ : R → Fp to be the specialization homomorphism sending ti to
ai ∈ Fp.

Corollary 2.5. Let (M,Φp) be a Frobenius module over the rational
function field F = Fp(t1, . . . , tr) and D = DB(Φp) ∈ GLm(Rp) the
representing matrix of Φp with respect to a basis B of M . Let χ denote
the specialization homomorphism mapping ti to ai for all i = 1, . . . , r,
where a1, . . . , ar are arbitrary elements of Fp. Then:

(i) GalΦp(M) contains a matrix CQ ∈ GLm(Fp) which inside

GLm(Fp) is conjugate to the specialized matrix χ(D) ∈ GLm(Fp).
(ii) If, furthermore, D ∈ G(Rp) for a connected linear algebraic

group G, defined over Fp, GalΦp(M) contains an element which

inside G(Fp) is conjugate to χ(D) ∈ GLm(Fp).

Proof. The homomorphism χ has a natural extension to a homomor-
phism from GLm(R) to GLm(Fp). By Chevalley’s extension theorem
([6, Theorem 3.1.1]) there exists a valuation ring OQ of F with max-
imal ideal PQ such that R ⊆ OQ and PQ ∩ R = p. The residue field
FQ = OQ/PQ equals Fp; therefore, fQ = 1. Hence, the statements of
Corollary 2.5 follow directly from the theorem. �

2.2. Cyclic Frobenius modules.

Definition 2.6. Let (M,Φq) be a Frobenius module of dimension m
over a Frobenius field (F, ϕq). We call M cyclic, if it possesses a Φq-
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cyclic basis, i.e., an element b ∈ M such that {b,Φq(b), . . . ,Φm−1
q (b)}

forms a basis of M .

An important result on cyclic Frobenius modules is:

Theorem 2.7 (Matzat). Let (F, ϕq) be a finite Frobenius field and
(M,Φq) a Frobenius module over F with dimF (M) = m. Assume F

contains more than
(
qm

2

)
elements. Then M is cyclic.

A proof of Theorem 2.7 can be found in [9, Theorem 2.1]. For our
purposes, we only need the following weaker result.

Proposition 2.8. Let F,M be as above. Assume F contains more

than
(
qm

2

)
elements. The Buchberger algorithm (see [5]) leads from the

defining matrix equation of a solution field E of (M,Φq) to a monic
separable and additive polynomial f(X) ∈ F (X) of degree qm.

Proof. Let E/F be a solution field of M and

x = By =
m∑
i=1

biyi ∈ SolΦE(M), i.e., y = Dϕq(y) = Dyq.

We apply the Buchberger algorithm with the variables y1, . . . , ym−1, z

in lexicographic ordering. Since F possesses more than
(
qm

2

)
elements,

there exists an F -linear combination z =
∑m
i=1 ciyi, where cm = 1,

such that z is a cyclic element. Thus, the algorithm leads to a

polynomial equation f(z) = 0 where f(X) =
∑m
i=0 aiX

qi ∈ F [X] is
monic separable and additive of degree qm, as claimed. �

Note that, in the present work, we consider (infinite) function fields
of the form Fp(t) implying that the condition of Proposition 2.8 is
always fulfilled.

3. Additive polynomials. Let G(Fq) be one of the finite classical
groups defined over Fq. The aim of this work is to realize G(Fq) as
a Galois group of Frobenius modules defined over the smaller ground
field Fp, respectively, as a Galois group over a rational function field
of the form Fp(t1, . . . , tm) over Fp. Firstly, we introduce the notion
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of additive polynomials. We consider polynomials of the special shape

f(T ) =
∑n
i=0 aiT

pi with ai ∈ F ≥ Fp. Precisely, all non-vanishing
terms have as an exponent a power of p. Consequently, the sum of two
roots of f is again a root, since we are working over a finite field F
containing Fp. Hence, we call these additive polynomials. Further, any
Fp-scalar multiple of a root is again a root. This yields: Let V (f) denote
the set containing all roots of f ; then V (f) forms a Fp-vector space in

the algebraic closure F . This is why these polynomials sometimes are
called “vectorial.” We consider the Galois group Gal (f) of an additive
(vectorial) polynomial f . It acts on the set of roots V (f) by permuting
the roots. However, since every element of the Galois group is an
automorphism of the splitting field of f , and since Gal (f) restricted on
F ≥ Fp is the identity map, it turns out that Gal (f) acts as a group of
Fp-linear transformations on V (f). Therefore, the Galois group of an
additive polynomial is represented as a linear group. The finite groups
of Lie type are linear groups. Hence, additive polynomials become very
useful in the realization of the these groups as Galois groups.

Remark 3.1. For a given additive polynomial f , it is possible to
construct a Frobenius module (M,Φ) over F such that

GalΦ(M) = Gal (f).

Proof. Let f =
∑n
i=0 aiX

i where ai = 0 for all i which are not
powers of p. Let (M,Φ) be the Frobenius module over F such that
representing matrix of Φ is the companion matrix of f . Then, by the
defining equation for the solution field of M , the following holds:

V (f) = SolΦ(M).

This implies GalΦ(M) = Gal (f). �

4. Strong generating sets. Each finite classical group G(Fq) is
generated by a pair of regular semisimple elements {Γ1,Γ2}, which
is proven in [11]. The only important properties of Γ1 and Γ2 are
regularity and that they lie in finite maximal tori of G with certain
prescribed orders. The essential fact for our application is that both of
these properties are invariant under conjugation.
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Definition 4.1. Let G be a reduced connected linear algebraic group
and G = G(Fq). Let {Γ1, . . . ,Γk} be a set of elements that generates
G. Suppose any set{

Γ̃1, . . . , Γ̃k | Γ̃i ∈ G is a GLn(Fq)-conjugate of Γi for i = 1, . . . , k
}

generates the whole group G, as well. Then we call {Γ1, . . . ,Γk} a
strong generating set.

Remark 4.2. Each finite classical group G(Fq) is generated by a strong
generating pair {Γ1,Γ2}.

Proof. Based on the results in [11] a generating pair of each group
is explicitly constructed in [3]. �

5. The cross section. In order to apply Corollary 2.5 to the groups
of interest, we need to construct a Frobenius module (M,Φ), whose
representing matrix can be specialized to a strong generating set for the
respective group. We present an important tool for obtaining these.

Let G be a connected semisimple linear algebraic group. Steinberg
presented a construction of a (closed, irreducible) system of represen-
tatives of the regular conjugacy classes of G (see [14]) which he calls
“cross section” (of the regular classes) of G. It is isomorphic to affine
k-space and thus can be parametrized by k variables. The cross sec-
tion is given as the product of certain root subgroups and Weyl rep-
resentatives corresponding to a system of simple roots of G, and its
construction reveals how to set up an explicit parametrization. From
this, we derive for each classical group a “generic matrix model” (with
a suitable number of indeterminates) for the elements in the cross sec-
tion. Specializing the indeterminates to elements of Fq yields matrices
over Fq, that generate the finite classical group G = G(Fq) with various
different specializations of the indeterminates to Fq. The construction
of the cross section matrices is described in Theorem 5.1.

Theorem 5.1 (Steinberg). Let G be a reduced connected semisimple
linear algebraic group of rank r. Let T be a maximal torus in G and
{αi | 1 ≤ i ≤ r} a system of simple roots relative to T . For each i, let
Xi be the root subgroup corresponding to the root αi, and let wi be a
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Weyl group representative corresponding to αi. Let

N =

r∏
i=1

(Xiwi) = X1w1X2w2 · · · Xrwr.

Then N is a cross section of the collection of regular conjugacy classes
of G.

Proof. See [14, 13, Appendix 1]. �

Remark 5.2. The cross section matrices for all groups of our interest
can be found in [3].

6. Restriction of the ground field. To be able to apply the cri-
teria for bounds for Galois groups, it is important to find a represen-
tation of a group G = G(Fq) over Fp. This requires the construction
of a homomorphism of groups which maps a classical group G(Fq) to
the Fp-rational points of a linear algebraic group defined over Fp. The
construction presented here is based on the following proposition.

Proposition 6.1.

(i) Let F be a field and E a finite extension of F . Let G be a
linear algebraic group over E. There exists an affine F -Variety
ΠG together with a surjective E-morphism χ : ΠG → G such
that the following holds: for any affine F -variety Y together
with an E-morphism ϕ : Y → G, there is a unique F -morphism
π : Y → ΠG with ϕ = χ ◦ π. The pair (ΠG, χ) is unique up to
isomorphism.

(ii) ΠG is a linear algebraic group over F . The morphism χ : ΠG →
G is a surjective homomorphism of linear algebraic groups over
E, with the following universal property: if H is a linear alge-
braic group over F and ϕ : H → G a homomorphism of linear
algebraic groups over E, there is an unique homomorphism π of
linear algebraic groups over F π : H → ΠG such that ϕ = χ◦π.

Proof.

(i) This follows from [16, Theorems 11.4.16 and 11.4.20 (1)].
(ii) This is a corollary from [16, Proposition 12.4.2]. �
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Now we give a somewhat more concrete description of the group ΠG.
Let F > E > F denote the algebraic closure of F . ΠG is given as the
point group ΠG(F ). From [16, Theorem 11.4.6], we conclude that there
exists a bijection of ΠG(F ) onto the group G(E⊗FF ) of (E⊗FF )-valued
points of G. There is a group homomorphism ΠG(F ) → G(E ⊗F F ).

We construct a representation of G(E) as linear group defined over
F . The universal property of Proposition 6.1 (ii) shows that there is a
homomorphism (of linear algebraic groups over E) G → ΠG.

Proposition 6.2. Let ΠG be as in Proposition 6.1. Assume E/F is
Galois.

(i) There exists an isomorphism

ρ :
∏

σ∈Gal(E/F )

Gσ(E) −→ ΠG(E).

(ii) The map χ ◦ ρ is the projection onto the factor defined by
(id) ∈ Gal(E/F ).

Proof. This is an immediate consequence of [16, Proposition 11.4.22]
and [16, 12.4.5]. �

Corollary 6.3. Let E[G] denote the affine algebra of G. The following
holds:

E[ΠG] ∼=
⊗

σ∈Gal(E/F )

E[G]σ.

Remark 6.4. If G is connected, then so is ΠG.

Proof. This follows from [16, 12.4.7 (3)]. �

Now we construct an explicit monomorphism providing the ground
field restriction. For further general information about restriction of
the ground field and theoretical details, see [16, Chapters 11, 12] and
[12, Section 4].

We consider the Galois extension Fq/Fp. Let α be a primitive
element of this extension. To construct a homomorphism embedding
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GLn(Fpr ) into GLrn(Fp), in fact a map ψ describing the embedding

GLn(Fpr )=
{
ϕ ∈ Aut(Fnpr ) |det(ϕ) ̸=0

} ψ
↩→

{
ϕ ∈ Aut(Frnp ) |det(ϕ) ̸= 0

}
= GLrn(Fp)

must be determined. Let P (T ) ∈ Fp[T ] of degree r be an irreducible
polynomial such that α is a root of P . Let A ∈ GLn(Fpr ). Due to the
fact that α is a primitive element for Fpr/Fp, we can rewrite A as a sum
A = A0 + αA1 + α2A2 + · · · + αr−1Ar−1, where A0, A1, A2, . . . , Ar−1

are matrices with entries in Fp.
For Fnpr , there is a Fpr -basis (e1, e2, . . . , en) and, since Fpr = Fp(α)

for Frnp , there is a Fp-basis (e1, e2, . . . , en, αe1, αe2, . . . , αen, . . . , αr−1e1,

. . . , αr−1en), depending on the primitive element α or, respectively, the
irreducible polynomial P .

We consider the map given by A and the images of the basis elements
of the “enlarged” basis; thus, the n × n-matrix A ∈ GLn(Fpr ) is
identified with a matrix in GLrn(Fp), which we denote by ψ(A). In
this way, an injective map ψ : GLn(Fpr ) → GLrn(Fp) is defined.

Remark 6.5. The map ψ defined as above is a homomorphism of
groups.

Corollary 6.6. Let G be a subgroup of GLn. Then ψ(G(Fpr )) is a
subgroup of GLrn(Fp) which is isomorphic to G(Fpr ).

Proposition 6.7. If G = GLn and E/F = Fpr/Fp in Proposition 6.1,
then ΠG(F ) is isomorphic to ψ(G(E)) =: H(F ) ⊂ GLrn(F ).

Proof. Let H := ψ(G(Fpr )) be the group obtained from the ground
field restriction, and let H be the constant group scheme for this group
H = H(Fp); hence, there is an injective homomorphism ϕ : H → G
of linear algebraic groups over E. If χ denotes the homomorphism (of
linear algebraic groups over E) χ : ΠG → G, then by Proposition 6.1,
there is a unique homomorphism π of linear algebraic groups over F ,
π : H → ΠG, such that ϕ = χ ◦ π.

We consider the corresponding homomorphism of abstract groups

H(F )
π̃−→ ΠG(F ) χ̃−→ G(E),
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where χ̃◦π̃ = ψ−1. Now let ΠG/Gal (E/F ) denote the set of Gal (E/F )-
orbits on ΠG(E). Then ΠG(F ) = ΠG(E)/Gal (E/F ) and, by Proposi-
tion 6.2, we have

ΠG(F ) ∼= G(E).

The fact that χ̃ and χ̃ ◦ π̃ are isomorphisms implies ΠG(F ) ∼= H(F ) ⊂
GLrn(F ). �

Proposition 6.8. Let A ∈ GLn(Fpr ) with characteristic polynomial
gA(T ). Then

gψ(A)(T ) =
∏

σ∈Gal(Fpr/Fp)

gAσ (T ).

Proof. Let Gal (Fpr/Fp) = {σ1, . . . , σr}. For all A ∈ GLn(Fpr ),
there exists a base change matrix S ∈ GLrn(Fpr ), so that S · ψ(A) ·
S−1 = diag (σ1(A), . . . , σr(A)) holds. (The base change over Fpr
does not depend on A and can be written down explicitly from the
construction above). Therefore, the statement follows directly from
Proposition 6.2, because the characteristic polynomial is invariant
under constant extensions and under change of basis. �

7. Finite groups of Lie type as Galois groups over Fp(t). Let
q = pr be a prime power. For a group G = G(Fq), let H = H(Fp) :=
ψ(G(Fq)).

Remark 7.1. If {Γ1,Γ2} is a strong generating pair of G = G(Fq),
then every pair of elements of H(Fp) which are ψ(GLn(Fq))-conjugates
of {ψ(Γ1), ψ(Γ2)} generates H(Fp).

Proof. The map ψ|G(Fq) is an isomorphism and does not change
conjugacy classes. �

Now let G(Fq) be one of the groups SLn(Fq), Sp2n(Fq), SO2k+1(Fq),
SO+

2k(Fq) (for odd q, k ≥ 2, (q, 2k) ̸= (3, 4)), SUn(Fq) (for n ≥ 3 and

(n, q) ̸= (3, 2)), SO−
2k(Fq) (for odd q), 2B2(Fq) (for q = 22m+1,m ≥ 0),

G2(Fq), 2G2(Fq) (for q = 32m+1,m ≥ 0), 3D4(Fq). By choosing
a suitable variant of the cross section as representing matrix of a
Frobenius module, Albert and Maier realized these groups as Galois
groups over fields of the form Fq(t). Let CG ∈ G(Fq(t)) denote the
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respective representing matrix in [3]. This matrix is called “cross
section matrix.” For example, the cross section matrix for SLn contains
k = n− 1 indeterminates and is given by

CSLn =


−t1 · · · −tk 1
−1

. . .

−1 0

 .

Our purpose is to find a suitable matrix in H(Fp(t)), which allows for
the right specializations (over Fp). Therefore, we choose a primitive
element α for the extension Fpr/Fp and modify CG by transforming

all indeterminates ti to t∗i =
∑r−1
j=0 ti,jα

j for all i ∈ {1, . . . , k}. The
matrix obtained by this transformation is called “modified cross section
matrix” for G and denoted by DG .

Theorem 7.2. Let (M,Φp) be the Frobenius module over F = Fp(t)
such that the representing matrix of Φp equals DB(Φp) = ψ(DG) with
respect to some basis B. Then

GalΦp(M) ∼= G(Fpr ).

Proof. The cross section matrix of the group G(Fq(t)) naturally
belongs to G(Fq(t)). Of course, the modified cross section matrix
belongs to G(Fq(t)), too. By Proposition 6.7, it holds that H(Fp) ∼=
(ΠG)(Fp), where ΠG is the variety defined in Proposition 6.1. The

isomorphism can be treated as basis change; thus, there is a basis B̃
such that DB̃(Φ) ∈ (ΠG)(Fp). Since (ΠG) is connected by Remark 6.4,
by Theorem 2.3 the Galois group of the Frobenius module defined by
ψ(D) as representing matrix is contained in the group (ΠG)(Fp). Thus,
we have

GalΦ(M) ⊆ (ΠG)(Fp) ∼= H(Fp) ∼= G(Fq).

We consider a strong generating pair {Γi, i = 1, 2} of the group
G = G(Fpr ). Let Γi ∈ {Γ1,Γ2}. In [3] it is proven that there is a
specialization homomorphism which maps the indeterminates t∗i in the
cross section matrix to elements a∗i ∈ Fq for all i ∈ {1, . . . , k} satisfying
that the matrix Ai obtained by the specialization of CG and Γi have
the same characteristic polynomial. (Naturally, the specializations
may be different for Γ1 and Γ2). We rewrite a∗i by setting a∗i =:
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∑r−1
j=0 ai,jα

j with coefficients ai,j ∈ Fp for i ∈ {1, . . . , k} and j ∈
{0, . . . , r − 1}. Now we consider DB(Φp) = ψ(DG). We define a
specialization homomorphism χ : ti,j 7→ ai,j for all i ∈ {1, . . . , k}
and j ∈ {0, . . . , r − 1}. Hence, ψ(Ai) is a specialization (over Fp) of
DB(Φp). By the lower bound theorem (Corollary 2.5), the Galois group
of the Frobenius module with representing matrix DB(Φ) contains
ψ(GLn(Fq))-conjugates of ψ(A1) and ψ(A2). From [11], it is known

that Γi is diagonalizable (over the algebraic closure Fq) and has pairwise
distinct eigenvalues; hence, Ai is diagonalizable, too, with the same
Jordan normal form. Therefore, Ai is conjugate to Γi in GLn(Fpr ). By
[7, Corollary 6.7.1], Ai is also conjugate to Γi in GLn(Fpr ). Hence,

there is an Si ∈ GLn(Fpr ), so that Si ·Ai · S−1
i = Γi. Thus,

ψ(Γi) = ψ(Si ·Ai · S−1
i ) = ψ(Si) · ψ(Ai) · ψ(Si)−1,

implying that ψ(Ai) and ψ(Γi) are conjugate in ψ(GLn(Fq)). By
Remark 7.1, ψ(A1) and ψ(A2) generate H(Fp). Hence,

H(Fp) ⊆ GalΦ(M). �

Theorem 7.3. It is possible to transform the defining equation ψ(DG)·
vp = v for a vector v ∈ M to an additive polynomial f depending on
only one indeterminate. The solution field of M is generated by the
roots of f , in particular,

GalΦp(f) ∼= G(Fpr ).

Proof. We recall the defining equation ψ(DG) · vp = v of a solution
field E of (M,Φp). In particular, it is a system of equations. Since F

possesses more than
(
prn

2

)
elements, the condition of Proposition 2.8 is

fulfilled. Thus, by eliminating variables using Buchberger’s algorithm,
the equation can be solved recursively (possibly using a transformation
of indeterminates as described in the proof of Proposition 2.8). This
leads to a single polynomial f whose splitting field coincides with the
solution field E. Since the Galois group of M is defined as Gal (E/F ),
it equals the Galois group of f . �

8. Explicit polynomials. By Theorem 7.3, we are finally able to
compute explicit polynomials in Fp(t)[Y ], whose Galois groups are finite
groups of Lie type defined over Fpr .
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Let DG be the respective modified cross section matrix. Let F be
a function field over Fp, and let (M,Φp) be the Frobenius module
over F . Let D = DB(Φp) := ψ(DG) be the representing matrix of
its Frobenius endomorphism Φp (with respect to some basis). The
fundamental equation to be solved is Dvp = v for a vector v ∈ M . In
fact, this is a system of equations which can be solved recursively using
Buchberger’s algorithm.

Explicit polynomials for SLn. Let G(Fq) = SLn(Fq), k = n − 1,
q = p2 = 4. Set ti,0 =: −si, ti,1 =: −ti for all i. Then, for a
vector x = (x1, . . . , xn, y1, . . . , yn) ∈ M , the fundamental equation
ψ(DSLn)v

p = v leads to the equation system:

s1 . . . sk 1 t1 · · · tk 0
−1

. . .

−1 0
t1 · · · tk 0 s1 + t1 · · · sk + tk 1

−1
. . .

−1 0


·



xp1
...
...
xpn
yp1
...
...
ypn


=



x1
...
...
xn
y1
...
...
yn


.

Example 8.1. Let

f(Y ) = Y 16 + (s41 + t41 + s21t
2
1) · Y 8 + (t61 + s21t

4
1 + t31 + 1 + s41t

2
1) · Y 4

+ (s1t
3
1 + t41 + s21t

2
1) · Y 2 + t31 · Y.

Then, GalF2(t1,s1)(f)
∼= SL2(F22) ∼= Sp2(F22).

Example 8.2. Let

f(Y ) = Y 26 + (t41s
2
2 + t21t

2
2s

2
1 + t1t

3
2 + t82 + t42s

4
2 + s82) · Y 25

+ (t81 + t61s
2
1 + t51t2 + t41t

4
2s

2
2 + t41s

6
2 + t21t

6
1s

2
1 + t21t

4
2s

2
1s

2
2

+ t21t
2
2s

2
1s

4
2+t1t

7
2+t1t

5
2s

2
2+t1t

3
2s

4
2+t

12
2 +t82s

4
2+t

6
2s

4
1+t

4
2s

8
2+s

8
1)

· Y 24 + (t81t
2
2 + t81s

2
2 + t71 + t61s

2
1s

2
2 + t51t2s

2
2 + t41t

8
2 + t41t

6
2s

2
2 + t41t

4
2s

4
2

+ t41s
4
1s

2
2 + t31t

4
2s

2
2 + t21t

8
2s

2
1 + t21t

6
2s

2
1s

2
2 + t21t

4
2s

2
1s

4
2 + t21t

2
2s

6
1 + t1t

9
2
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+ t1t
7
2s

2
2+t1t

6
2s

2
1+t1t

5
2s

4
2+t1t

3
2s

4
1+t

8
2s

4
1+t

7
2+t

6
2s

4
1s

2
2+t

4
2s

4
1s

4
2+1)

· Y 23 + (t101 + t81s
2
2 + t71s2 + t61t

4
2s

2
2 + t61s

4
1 + t51t2s

2
1 + t41t

6
2s

2
1

+ t41t
4
2s

2
1s

2
2 + t41s

2
2 + t31t

7
2 + t31t

4
2s

3
2 + t21t

6
2s

4
1 + t21t

4
2s

4
1s

2
2 + t21t

2
2s

2
1

+ t1t
7
2s

2
1 + t1t

6
2s

2
1s2 + t1t

5
2s

2
1s

2
2 + t1t

3
2 + t82 + t72s2 + t62s

6
1 + t42s

4
2)

· Y 22 + (t81 + t71s1 + t61s
2
1 + t51t2 + t41t

4
2s

2
2 + t31t

4
2s1s

2
2 + t21t

6
2s

2
1

+ t21t
4
2s

2
1s

2
2 + t1t

7
2 + t1t

6
2s

3
1 + t1t

5
2s

2
2 + t72s1 + t62s

4
1) · Y 2

+ (t71 + t31t
4
2s

2
2 + t1t

6
2s

2
1 + t72) · Y.

Then, GalF2(t1,t2,s1,s2)(f)
∼= SL3(F22).

Example 8.3. Let p > 2 and β = α2 ∈ Fp. Let

f(Y ) = Y p
4

+ (−sp
2

1 − sp1t
p(p−1)
1 ) · Y p

3

+ (−βtp(p+1)
1 + tp

2−1
1 + 1 + s2p1 t

p(p−1)) · Y p
2

+ (−s1tp
2−1

1 − sp1t
p(p−1)
1 ) · Y p + tp

2−1
1 · Y.

Then, GalFp(t1,s1)(f)
∼= SL2(Fp2).
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