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RIGID MONOMIAL IDEALS

TIMOTHY B.P. CLARK AND SONJA MAPES

ABSTRACT. In this paper we investigate the class of
rigid monomial ideals and characterize them by the fact that
their minimal resolution has a unique Zd-graded basis. Fur-
thermore, we show that certain rigid monomial ideals are
lattice-linear, so their minimal resolution can be constructed
as a poset resolution. We then give a description of the min-
imal resolution of a larger class of rigid monomial ideals by
appealing to the structure of L(n), the lattice of all lcm-
lattices of monomial ideals on n generators. By fixing a stra-
tum in L(n) where all ideals have the same total Betti num-
bers, we show that rigidity is a property which propagates
upward in L(n). This allows the minimal resolution of any
rigid ideal contained in a fixed stratum to be constructed
by relabeling the resolution of a rigid monomial ideal whose
resolution has been constructed by other methods.

Introduction. Giving a construction for the minimal free resolution
of a monomial ideal is a question which has motivated a wide variety of
projects in commutative algebra. Various methods are known for com-
puting the Zd-graded Betti numbers in the general case, and there are
numerous strategies for constructing maps in free resolutions. Despite
this diversity of results, it is still not known how to construct the maps
in a minimal Zd-graded free resolution, except for several subclasses of
monomial ideals (generic and Borel are examples).

In this paper we explore the class of rigid monomial ideals which were
introduced to us by Ezra Miller [10]. By definition, a rigid ideal has the
following two properties; (R1) every nonzero Zd-graded Betti number
equals one, and (R2) Zd-graded Betti numbers which are nonzero in
the same homological degree correspond to incomparable monomials
in the lcm-lattice of the ideal. Generic monomial ideals and monomial
ideals whose minimal resolution is supported on their Scarf complex [1]
are two well-studied subclasses of rigid ideals. Furthermore, rigid ideals
are a generalization of the class of monomial ideals in three variables
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studied by Miller in [9], who constructed their minimal resolution using
a rigid embedding into a grid surface.

The first result presented herein is Theorem 1.1, which was communi-
cated [10] along with Definition 1.1. This characterizes rigid monomial
ideals as having a minimal resolution with unique Zd-graded basis. As
such, the Zd-graded maps in such a minimal resolution should be ex-
plicitly describable. Our interest in studying rigid ideals stems from a
desire to identify combinatorial objects which encode the data of these
maps.

More precisely, since the Zd-graded Betti numbers of a monomial
ideal can be computed from the lcm-lattice, it seems that a description
of the maps in a rigid ideal’s minimal resolution using the relations in
the lcm-lattice should be possible. We aim toward this goal by taking
advantage of the construction described by the first author in [5]. This
construction takes as its input the lcm-lattice of a monomial ideal and
produces an approximation to the minimal resolution of the ideal. In
the case when the minimal resolution is indeed obtained, the ideal is
said to be lattice-linear. More generally, if a Zd-graded poset is used
as input for this construction and the resulting sequence is an exact
complex of Zd-graded free modules, it is called a poset resolution.

In this paper we focus attention on a subclass of rigid ideals which
we call concentrated. An ideal is said to be concentrated if the mono-
mials corresponding to the Zd-degrees of basis elements in the minimal
resolution are less than, or incomparable to, those monomials in the
lcm-lattice which do not contribute a basis element to the minimal res-
olution. Theorem 2.1 states that a concentrated rigid monomial ideal
is lattice-linear, which allows the construction of a minimal poset res-
olution for any concentrated rigid monomial ideal.

Next, we develop a method for transferring the resolution informa-
tion of a rigid monomial ideal to related rigid ideals which have the
same total Betti numbers. In particular, we consider rigid ideals in
relation to their neighbors in L(n), the set of all finite atomic lattices
(or lcm-lattices) with n ordered atoms. In [14], Theorem 4.2 shows
that under an appropriate partial order, L(n) is itself a finite atomic
lattice. Furthermore, Theorem 3.3 in [7] implies that total Betti num-
bers increase along chains in L(n). It is therefore natural to study the
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subposets of L(n) with fixed total Betti numbers, which we refer to in-
dividually as Betti stratum. Within a fixed Betti stratum, we classify
certain families of monomial ideals with non-isomorphic lcm-lattices
which have minimal resolutions that are the same up to relabeling.
Precisely, Theorem 3.2 states that any two comparable rigid monomial
ideals in a fixed Betti stratum must have minimal resolutions which are
relabelings of one another. This allows us to extend Theorem 2.1 and
construct a minimal resolution for a larger subclass of rigid monomial
ideals. We close the paper by briefly viewing rigid ideals through the
lens of known topological construction techniques for resolutions.

The notion of a partially ordered set (poset), its order complex, and
related notions from combinatorial algebraic topology are assumed to
be familiar to the reader.

1. Rigid monomial ideals. Let R = k[x1, . . . , xd], taken with the

standard Zd grading, where k is a field. We write xb = xb1
1 · · ·xbd

d

for a monomial in R and refer to b = (b1, · · · , bd) as the Zd-degree
of the monomial xb, which we write mdeg(xb). When the context is
clear, we abuse notation and refer to a monomial and its Zd-degree
interchangeably. We consider only ideals M ⊂ R which are generated
by monomials and refer to F , a minimal Zd-graded free resolution of
R/M , simply as a minimal resolution.

Recall that for a monomial ideal M , the lcm-lattice LCM(M) is the
set of least common multiples of the minimal generators m1, . . . ,mn ∈
M . The monomials in LCM(M) are ordered by divisibility, the maxi-
mal element of LCM(M) is lcm(m1, . . . ,mn), and the minimal element
is 1 (considered as the lcm of the empty set of monomials). In the case
where m < m′ ∈ LCM(M) and there is no monomial m′′ ∈ LCM(M)
such that m < m′′ < m′, we say that m′ covers m and write m lm′.
Throughout the paper, the notation l is used in the same way when
considering the coverings in any poset.

Gasharov, Peeva and Welker [7] first defined the lcm-lattice and
derived a formula for the Zd-graded Betti numbers βi,b of M based on
the homology of its open intervals. Furthermore, a result of Bruns and
Herzog [4, Theorem 3.1a], guarantees that if a Zd-graded Betti number
βi,b is nonzero, then the monomial xb ∈ LCM(M).
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Figure 1. The lcm-lattices of the rigid monomial
ideal M and the non-rigid monomial ideal N .

With an eye on the lcm-lattice, we turn to the class of monomial
ideals which are the main topic of study for this paper. The following
definition was communicated [10] to the second author by Miller.

Definition 1.1. A monomial ideal M is a rigid monomial ideal if its
Zd-graded Betti numbers satisfy the following two properties:

(R1) βi,b is either 1 or 0 for all i and all b ∈ Zd.

(R2) If βi,b = 1 and βi,b′ = 1 then xb and xb′
are incomparable in

LCM(M).

Note that since (Zd-graded) Betti numbers are dependent on the
characteristic of the field k, the condition of an ideal being rigid is
as well. In fact, the well-known example of the monomial ideal arising
from a triangulation of the real projective plane is rigid in characteristic
other than 2 and not rigid when the characteristic is 2.

Example 1.1. The monomial ideal M = (a2, ab, b2) is rigid since the
Betti numbers β1,a2b = β1,ab2 = 1, but a2b and ab2 are incomparable
monomials in LCM(M). The monomial ideal N = (bc, ac, a2b) is not
rigid since the Betti numbers β1,abc = β1,a2bc = 1, but abc and a2bc are
comparable monomials in LCM(N). These lcm-lattices are shown in
Figure 1.

For a rigid ideal, the existence of a nonzero Betti number in Zd-
degree b precludes the existence of another nonzero Betti number in
Zd-degree b from appearing in a different homological degree.
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Corollary 1.2. Let M be a rigid monomial ideal. If βi,b(R/M) = 1
then βj,b(R/M) = 0 for all j ̸= i.

Proof. For any monomial ideal, if i = 1 then b corresponds to xb, a
minimal generator of the ideal. The monomial xb therefore only covers
the monomial 1 in the lcm-lattice, so that the order complex ∆(1,xb) is
the empty simplicial complex. Hence, using the formula for Zd-graded
Betti numbers in [7], we have βj,b = 0 for j ̸= 1.

Next, let i > 1 and assume that M is a rigid monomial ideal with
minimal resolution F . Suppose that there exists j > i with the property
that βj,b = 1. The Zd-graded strand F≤b therefore extends to at least
homological degree j. This means that F≤b contains free modules in
homological degree i so there must exist a ∈ Zd such that xa < xb,
but βi,a = 1. This contradicts condition (R2) in Definition 1.1.

Assuming the reverse inequality j < i and modifying the above argu-
ment also produces the same contradiction to condition (R2). Hence,
such a j cannot exist and βj,b(R/M) = 0 for all j ̸= i when M is
rigid. �

Our main interest in studying rigid monomial ideals follows from the
existence of a unique Zd-graded basis in their minimal free resolution,
which was communicated to the second author by Miller [10]. We
restate this result with proof since it does not appear in the literature.

Remark 1.1. When referring to a unique Zd-graded basis, we assume
a fixed monomial ordering and imply that this basis is unique with
respect to this monomial ordering. Furthermore, any scaling of Zd-
graded basis elements by scalars of R does not affect the underlying
Zd-grading. Hence, when we use the term unique basis to mean unique
up to scaling by elements in k.

Proposition 1.1. Let M be a monomial ideal. The minimal resolu-
tion of R/M has a unique Zd-graded basis if and only if M is a rigid
monomial ideal.

We note that in particular, every Zd-degree which appears in the
resolution of a rigid ideal does so as the Zd-degree of a basis element
for exactly one free module of rank one. Furthermore, when considering
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the minimal resolution of a rigid ideal with respect to a fixed monomial
ordering, any minimal resolution corresponding to a different monomial
ordering may be obtained by permuting this unique Zd-graded basis.
This structure gives hope that the minimal resolution of a rigid ideal
is supported on a unique combinatorial object.

In order to prove Proposition 1.1, we first establish the following
technical result.

Lemma 1.1. Fix i > 0 and suppose that we have chosen Zd-graded
bases for the free modules of the minimal resolution of R/M in every
homological degree less than i.

There is a unique choice of Zd-graded basis for the free R-module Fi

if and only if βi,b = 1 or 0 for all b ∈ Zd and βi,b = βi,b′ = 1 implies
that b and b′ are not comparable in LCM(M).

Note that the conditions in Lemma 1.1 are relaxed instances of the
conditions in the definition of a rigid monomial ideal, as they only hold
for a specific i. In the case when M is rigid, then the conditions on
Betti numbers described in Lemma 1.1 hold for all i.

Proof of Lemma 1.1. (⇐). Suppose that the conditions on Zd-graded
Betti numbers hold and let {ei1, · · · , eiβi

} and {f i
1, · · · , f i

βi
} be distinct

Zd-graded bases of Fi, the free module of rank βi appearing in the
minimal resolution. For every 1 ≤ ℓ ≤ βi we may write

f i
ℓ =

βi∑
j=1

ni
j · eij

in terms of the basis {ei1, · · · , eiβi
} where ni

j ∈ R. Preservation of Zd-

degrees under this change of basis guarantees mdeg(f i
ℓ) = mdeg(ni

j) +

mdeg(eij) for every j and as such, xmdeg(eij) ≤ xmdeg(fi
ℓ ) ∈ LCM(M) for

those eij with the property that ni
j ̸= 0. Unless xmdeg(eij) = xmdeg(fi

ℓ ),
this comparability in LCM(M) contradicts the hypothesis that if βi,b =
βi,b′ = 1 then b and b′ are not comparable. When equality holds, the
assumption that βi,b = 1 or 0 implies that ni

j = 0 for all but one j.

Hence, f i
ℓ = ni

j · eij for some j, which forces mdeg(ni
j) = 0. Thus, f i

ℓ is

a scalar multiple of a unique eij for every ℓ, proving the uniqueness of

Zd-graded basis for Fi.
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(⇒, by contrapositive). If there is not a unique Zd-graded basis for
Fi then we will show that one of the conditions fails.

Suppose that there are distinct Zd-graded bases so that using the
notation established above, there exists ℓ such that

f i
ℓ =

βi∑
j=1

ni
j · eij ,

where at least two of the ni
j are nonzero. Write f for the Zd-degree of

f i
ℓ . If two or more of the eij appearing in the expansion are of Zd-degree
f , then βi,f > 1, so that the first condition fails. On the other hand,
if the first condition holds, and f is the Zd-degree of any one of the
eij in the expansion, then there is another nonzero term of Zd-degree

e ̸= f having the property that xf > xe ∈ LCM(M). This causes
the failure of the second condition. If the linear combination does not
include basis elements of Zd-degree f , then the second condition fails,
for there would be nonzero Betti numbers in the same homological
degree corresponding to comparable monomials in the lcm-lattice. �

Remark 1.2. Note that in the proof of Lemma 1.1, we do not explicitly
use the bases of the modules Fj where j < i. Since we show that
the basis of Fi is unique after making choices in a lower homological
degree, it is unnecessary to use the bases of Fj in the proof. We give
an example of a non-rigid ideal that demonstrates the conclusion of the
lemma, even though the basis for one of the Fi is not unique.

Consider the ideal J = ⟨abef, cdef, b2def, ab2df, a2cef, a2bce⟩ in the
ring R = k[a, · · · , f ]. The ideal J is not rigid, but satisfies the hypothe-
ses of Lemma 1.1 for i = 3, since β3,ab2cdef = β3,a2bcdef = 1. There
are several choices for the basis elements of F2, each of which forces a
unique choice of basis for F3. For example, for the monomial ab2def ,
we have β2,ab2def = 2, so one can choose any two of the elements from
the set

{(bd, 0,−a, 0, 0, 0), (bd, 0, 0,−e, 0, 0), (0, 0, a,−e, 0, 0)}

to form a basis. Choosing the second and third elements corresponds
to a unique choice of basis for F3, whose Zd-degree is ab2cdef . Either
of the other two choices give rise to a different (but unique) choice for
Zd-degree ab2cdef basis element of F3.
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Proof of Proposition 1.1. Let M be an ideal in R minimally generated
by q monomials and write F for the minimal resolution of R/M .

The minimal resolution F has F0 = R, a free module of rank one,
appearing in homological degree zero. This module has a unique basis
element of Zd-degree 0 = (0, . . . , 0).

Since the q minimal generators of a monomial ideal are unique, the
free module F1 is of rank q and has basis elements which are Zd-graded
to match the Zd-degrees of the monomial generators. Any choice of
basis for F1 which corresponds to an R-linear combination of these gen-
erators gives a non-monomial generating set for the monomial ideal M .
As we have not yet assumed rigidity, it follows that for any monomial
ideal, the modules F0 and F1 in the minimal resolution have unique
Zd-graded bases.

If the minimal resolution of R/M has a unique Zd-graded basis, then
Lemma 1.1 guarantees the conditions of rigidity for every i > 1, and
therefore, M is a rigid monomial ideal.

Conversely, let i > 1 and suppose that M is a rigid monomial ideal.
We proceed by strong induction. Suppose that there is a unique choice
of Zd-graded basis for each free module Fj , where j < i. This is a
special case of the assumptions in Lemma 1.1, so that we are guaranteed
a unique choice of Zd-graded basis for Fi. Hence, each free module in
F has a unique Zd-graded basis. �

2. Zd-graded minimal poset resolutions. The benefit of looking
at rigid monomial ideals instead of the entire class of monomial ideals is
that the unique Zd-graded basis gives a hope of writing down a closed
form description of the minimal resolution.

We aim at this goal by introducing a notion that describes the Zd-
degrees contributing to the minimal resolution in the context of the
order relations of the lcm-lattice. We call a monomial ideal M concen-
trated if every Zd-degree from LCM(M) which does not contribute a
free module to the minimal resolution appears in a non-obstructive way
in relation to all the contributing Zd-degrees in LCM(M). Precisely,
every Zd-degree which is smaller than a contributing Zd-degree must
itself contribute. Formally, we have the following.
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Definition 2.1. A monomial ideal M is said to be concentrated if
it has the property that for every xa such that βj,a(R/M) = 0 for
all j then xa ̸< xb ∈ LCM(M) for any xb ∈ LCM(M) which has
βi,b(R/M) ̸= 0 for some i. A monomial ideal which is not concentrated
is said to be dispersed.

The class of lattice-linear monomial ideals, whose minimal resolution
was constructed in [5], consists of those monomial ideals whose lcm-
lattice serves as combinatorial support for the mapping structure in
their minimal free resolution.

Definition 2.2. A monomial ideal M is lattice-linear if Zd-graded
bases Bk of the free modules Fk appearing in the minimal resolution
of R/M can be fixed for all k so that for any i ≥ 1 and any b ∈ Bi the
differential

di(b) =
∑

b′∈Bi−1

mb,b′ · b′

has the property that if the coefficient mb,b′ ̸= 0 then xb′
is covered by

xb in the lcm-lattice LCM(M).

The rigid concentrated monomial ideal M in Example 1.1 is lattice-
linear, while the non-rigid ideal N is not lattice-linear. More generally,
the property of being concentrated does not characterize rigid mono-
mial ideals which are lattice-linear. We have, however, the following
result.

Theorem 2.1. If a rigid monomial ideal is concentrated, then it is
lattice-linear.

Proof. (By contrapositive). Suppose that M is a rigid monomial ideal
which is not lattice-linear and write (F , ∂) for the minimal resolution of
M . For each ℓ, let Bℓ be the unique choice of basis for the free module
Fℓ appearing in the resolution.

Our supposition that M is not lattice-linear implies that for some i,
there exists a basis element c ∈ Bi of Z

d-degree c whose expansion un-
der the differential does not mirror the covering relations in LCM(M).
Precisely, there exists some basis element a of Zd-degree a with the
property that the coefficient ma,c in the expansion of ∂i(c) is nonzero,
but that xa is not covered by xc in LCM(M). Hence, there exists
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xb ∈ LCM(M) such that xa � xb � xc. This comparison guarantees
the existence of Zd-graded strands within the free resolution F which
have the following containment structure;

F≤a ⊂ F≤b ⊂ F≤c.

This containment of complexes is contradicted unless the degree b
strand terminates in homological degree i or i − 1, for otherwise the
degree c and a strands would not terminate in homological degrees i−1
and i, respectively.

If indeed, the degree b strand terminates in either homological de-
gree i or i − 1, we have identified two Zd-degrees which contribute in
the same homological degree but correspond to comparable monomials
in LCM(M). This contradicts the property (R2) in the definition of
rigidity. Hence, the strand F≤b cannot terminate in any homological
degree and therefore, no degree b strand can exist within F . In other
words, βℓ,b(R/M) = 0 for every ℓ, so that any rigid ideal which is not
lattice-linear cannot be concentrated. �

Example 2.1. The converse of Theorem 2.1 is false. For example, the
monomial ideal K = ⟨defgh, befgh, cefgh, afh, abcdh, abcde⟩ is lattice-
linear and rigid, but has a dispersed lcm-lattice due to the existence of
the noncontributing element abcdefhl abcdefgh ∈ LCM(K).

3. Similarity of resolutions within a subset of L(n). Theorem
2.1 gives a way to construct minimal free resolutions for a small class
of rigid monomial ideals. In this section, we extend this construction
to write minimal resolutions for a larger class of rigid monomial ideals
by giving a partial converse to Theorem 3.3 in [7]. Central to this
discussion is a lattice of finite atomic lattices, first introduced by Phan
[14].

Let L(n) be the set of all finite atomic lattices with n ordered atoms.
Phan defines a partial order on L(n) as P ≥ Q if there exists a join
preserving map f : P → Q which is a bijection on atoms. Theorem
4.2 in [14] shows that under this partial order, L(n) is itself a finite
atomic lattice. Moreover, Theorem 3.3 in [7] indicates that total Betti
numbers weakly increase as one moves up chains in L(n). Furthermore,
Proposition 5.1 in [14] shows that every finite atomic lattice is the
lcm-lattice of some monomial ideal. Thus, L(n) can be thought of
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as the lattice of all monomial ideals with n ordered generators up to
equivalence of lcm-lattices.

From the work of Gasharov, Peeva, andWelker [7] we know that for a
monomial xb ∈ LCM(M) the Zd-graded Betti numbers in homological
degree i are:

βi,b(R/M) = dim H̃i−2(∆(0̂,xb),k),

where ∆(0̂,xb) is the order complex of the open interval (0̂,xb) ⊂
LCM(M). Equivalently, if p ∈ P where P is a finite atomic lattice
(and therefore is isomorphic to the lcm-lattice of some monomial ideal)
then we write

βi,p(P ) = dim H̃i−2(∆(0̂, p),k).

Moreover, since rigid monomial ideals are defined by the behavior of
their Zd-graded Betti numbers, we classify a finite atomic lattice as
rigid (or not) using the properties of Definition 1.1. In this section, we
interchangeably refer to the Betti numbers βi,p of a finite atomic lattice
P and the Betti numbers βi,b of an associated monomial ideal.

Let βi =
∑

βi,b be the total Betti number of the ideal M in ho-
mological degree i and write β = (β0, β1, . . . , βt) for the vector of total
Betti numbers. We focus on subposets of L(n) which consist of all finite
atomic lattices having the same total Betti numbers and refer to these
subposets as Betti strata, denoting them L(n)β for a fixed β. Given a
rigid monomial ideal M with total Betti numbers β, we now examine
the relationship between M and ideals with lcm-lattices in L(n)β .

Proposition 3.1. Let P,Q ∈ L(n)β for some β such that P < Q. If
P is rigid then Q is rigid.

Proof. We first prove the proposition in the case when P lQ ∈ L(n)β .
See Figure 2 for a pictorial comparison of the relevant portions of these
posets.

From Proposition 5.1 in [8] we know that if Q covers P , then as a
set, Q = P ∪{q} for some q. Moreover, since P is a finite atomic lattice,
we know that this unique q ∈ Q must be meet-irreducible (it is not the
meet of any two elements in P ). So there is a unique element p′ ∈ Q
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which covers q. To show that Q is rigid, we must verify conditions
(R1) and (R2). Note that for all p < q in Q, the interval (0̂, p) in Q is

identical to the interval (0̂, p) in P , leaving the associated Betti number
unchanged. Similarly, the Betti number is unchanged for all elements
which are not comparable to q.

For any p > p′ in Q (or P for that matter), we claim that the
associated Betti number is also unchanged. To see this, consider the
join preserving bijection on atoms Q → P . The fiber over a point p ∈ P
is {p} for p ̸= p′. Restricting this map to the intervals (0̂, p) in Q where
p 
 p′, we see that the fibers of this map are contractible. By Quillen’s
Fiber Theorem (see Theorem 10.5 in [3]) the order complexes of these
intervals in the lattices P and Q are homotopy equivalent.

It is therefore only necessary to check the conditions of rigidity for
p′ and q in Q. When considering Betti number computations relative

to different lattices, we introduce the notation βP
i,p and βQ

i,p to indicate
the Betti number in P and Q, respectively. By hypothesis, the total
Betti numbers of P and Q are the same, and for all other p ∈ Q we

have seen that βQ
i,p is the same as in P . Hence, if βP

i,p′ = 0 for all i then

βQ
i,p′ and βQ

i,q are both 0. Otherwise, if βP
i,p′ ̸= 0 then either βQ

i,q or βQ
i,p′

is 1, but not both. Thus, condition (R1) is satisfied.

To see that condition (R2) holds, we must verify the case where

βP
i,p′ = 1 for some i. If βQ

i,p′ = 1 then since P is rigid, condition (R2)

is satisfied for Q as well. Alternatively, if βQ
i,q = 1 and condition (R2)

is not satisfied then there is some p ∈ Q distinct from p′ such that

βQ
i,p = 1 and q and p are comparable in Q. By the above argument

however, we know that βP
i,p = 1. Moreover, if p and q are comparable

in Q then p must also be comparable to p′ in Q. This implies that p
and p′ are comparable in P , which contradicts the fact that P is rigid.
As such, (R2) must be satisfied for Q.

The general statement for P < Q is easily verified by induction on
the length of a chain connecting P to Q in L(n)β . �

We now work to extend the result of Theorem 2.1 to construct the
minimal resolution of dispersed rigid monomial ideals within a Betti
stratum which are greater than a concentrated rigid monomial ideal ap-
pearing in the same stratum. We use frames and theM -homogenization
of [13], and include a description here for the convenience of the reader.
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Figure 2. Relevant portions of the Hasse diagrams of
the posets P and Q which are referred to in the proof
of Proposition 3.1.

Definition 3.1. [13, Construction 3.1]. An n-frame is a complex U of
finite k-vector spaces with differential ∂U and a fixed basis such that

(1) Ui = 0 for all i < 0 and all i >> 0,
(2) U0 = k,
(3) U1 = kn, and
(4) ∂U (wj) = 1 for each basis vector wj in U1 = kn.

Let F be a resolution of of R/M with a fixed Zd-graded basis where
M is a monomial ideal in a polynomial ring R. We find the frame of F
by tensoring it with R/(x1 − 1, . . . , xd − 1). Alternatively, to go from
a frame to a complex of R-modules, we recall Construction 3.2 from
[13].

Construction 3.1. Let U be an n-frame and M be a monomial ideal
with n generators {m1, . . . ,mn} in a polynomial ring R. The M-
homogenization of U is a complex F of free R-modules with differential
∂F , which under certain conditions will be a resolution of R/M . Denote
the Zd-degree of the monomial generator mi as bi for each 1 ≤ i ≤ n.
First, define F0 = R and F1 = R(−b1)⊕ · · · ⊕R(−bn).

Now, inductively define the remainder of the complex. Let v̄1, . . . v̄e
and ū1, . . . ūf be the bases for Ui and Ui−1 respectively. Let u1, . . . , uf

denote the basis for Fi−1 = Rf (which we assume has been chosen in
the previous step of the induction). Define in the following way the ele-
ments v1, . . . , ve which will be the basis for Fi. If ∂(v̄j) =

∑
1≤s≤f αsj ūs
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then define the Zd-degree of vj to be mdeg(vj) = lcm(mdeg(us) |αsj ̸=
0). Thus Fi = ⊕1≤j≤eR(−mdeg(vj)) and the differential ∂F (vj) =∑

1≤s≤f αsj
mdeg(vj)
mdeg(us)

us.

Remark 3.1. Let P,Q be the lcm-lattices of monomial ideals IP and
IQ in rings RP = k[x1, . . . , xd] and RQ = k[y1, . . . , yd′ ] respectively.
Note that by Theorem 4.13 in [13], if one starts with the minimal free
resolution FQ of RQ/IQ and if Q > P ∈ L(n) then the relabeling
construction (Construction 3.2 in [7]) is the IP -homogenization of the
frame of FQ.

Now, Corollary 4.15 in [13] gives a general version of a converse to
Theorem 3.3 in [7]. In particular, if Q > P in L(n)β for a fixed β then
there exists a Zd-graded basis of a minimal free resolution FP of RP /IP
such that the IQ-homogenization of the frame of FP is a minimal free
resolution of RQ/IQ. The following proposition is a version of this
result in the case when IP is rigid.

Proposition 3.2. Let P be the lcm-lattice of monomial ideal IP in
the polynomial ring RP . If IP is rigid, then for any Q > P in L(n),
where Q is the lcm-lattice of the monomial ideal IQ in the ring RQ,
the IQ-homogenization of the frame of the minimal resolution FP of
RP /IP is the minimal resolution of RQ/IQ.

Remark 3.2. The discussion in [13] suggests that in order to give a con-
structive method for minimal resolutions of monomial ideals, one first
needs to answer the question of how to construct “good” frames. The
main consequence of Proposition 3.2 is that when constructing “good”
frames for rigid monomial ideals using their lcm-lattices, we can limit
our focus to those rigid monomial ideals whose lcm-lattices are minimal
in the sense that there are no rigid monomial ideals with smaller lcm-
lattices in the same Betti stratum. The new data of Proposition 3.2
is the underlying uniqueness of the Zd-graded basis for each resolution
which results.

Proof of Proposition 3.2. By Corollary 4.15 in [13] we know that there
exists a Zd-graded basis for the minimal free resolution FP of RP /IP
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Figure 3. Unlabeled lcm-lattices of rigid monomial ideals.

such that the IQ-homogenization of the frame of FP is a minimal res-
olution of RQ/IQ. However, by Theorem 1.1 we know that since IP is
rigid, there is a unique choice of Zd-graded basis for FP . This unique
basis must be the basis guaranteed by Corollary 4.15. �

In the following example we see how Theorem 2.1 and Theorem 3.2
combine to construct minimal resolutions of certain rigid monomial
ideals that are not concentrated.

Example 3.2. Figure 3 depicts unlabeled finite atomic lattices in the
Betti stratum L(4)(1,4,4,1). The lattice at the bottom of the figure is iso-
morphic to the lcm-lattice of a concentrated rigid monomial ideal, and
therefore its minimal resolution can be constructed using Theorem 2.1.

The three lattices above the bottom lattice represent lcm-lattices of
dispersed rigid monomial ideals, since the maximal element in all of the
lattices corresponds to a single nonzero Betti number in homological
degree 2. Theorem 3.2 guarantees that each of these ideals admit a
minimal resolution whose maps mirror those of the concentrated rigid
ideal pictured at the bottom of this interval in the stratum.

Remark 3.3. One can reinterpret Theorem 2.1 and Proposition 3.2 in
the context of strata in L(n). Define B(LCM(M)) to be the subposet
of LCM(M) consisting of xb ∈ LCM(M) such that βi,b(R/M) ̸= 0
for some i, and call it the Betti poset of LCM(M).
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In the situation where M is concentrated rigid, B(LCM(M)) is the

union of closed intervals [0̂,xb] ⊂ LCM(M) which have nonzero Betti
numbers. Thus, one can compute the ranks of the free modules in the
minimal free resolution by using either LCM(M) or B(LCM(M)),
as the pertinent information has not changed. Furthermore, if M ′ is
an ideal such that LCM(M ′) > LCM(M) within in the same Betti
stratum, then Proposition 3.1 guarantees the rigidity of M ′. Therefore,
the minimal free resolution of M ′ can be viewed as a relabeled poset
resolution supported on B(LCM(M)). Extensions of this approach are
the subject of ongoing research.

4. Rigid ideals and topological resolutions. We now establish a
connection between several well-studied topological resolutions and and
the class of rigid monomial ideals. Recall the Scarf simplicial complex
[1] associated to a monomial ideal N . This complex has its n vertices
in one-to-one correspondence with the monomial generators of N , and
is defined as

∆N = {I ⊆ {1, · · · , n} : mI ̸= mJ for all J ⊆ {1, · · · , n} other than I},

where mI = lcm(mi : i ∈ I). The ideal N is called a Scarf ideal if
its minimal free resolution is supported on the reduced simplicial chain
complex of ∆N . For instance, generic ideals [1, 11] are Scarf.

Using the fact that the monomial label of any face I ∈ ∆N is
uniquely determined frommI as I = {i : mi < mI}, it is clear that each
Zd-degree appears as the label of exactly one simplex, so that rigidity
condition (R1) is satisfied for any Scarf monomial ideal. Suppose that
rigidity condition (R2) does not hold for a Scarf ideal, so that there
exist two simplices I, J ∈ ∆N such that mI divides mJ . Considering
the simplex mI∪J within the full simplex on n vertices, we see that
mI∪J = mJ , contradicting the inclusion of the simplex J in ∆N . We
have therefore shown the following consequence of the definition of rigid
monomial ideals.

Corollary 4.1. Every Scarf ideal is a rigid monomial ideal.

A generalization of this simplicial notion is the cellular resolution
approach introduced in [2]. Using the language of frames, this ap-
proach can be described as using the augmented chain complex of a
cell complex on n vertices as an n-frame for a monomial ideal with n
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generators. The following shows how some cellular resolutions can be
understood through the lens of rigidity.

Proposition 4.1. Let PX be the augmented face poset of a regular CW
complex X. If PX is a finite atomic lattice and X is acyclic, then PX

is rigid. Moreover, if Q > PX in the stratum L(n)β, then Q has a
minimal resolution supported on X.

Proof. By Proposition 6.5 in [8] we know that a minimal resolution of
the ideal whose lcm-lattice is PX is supported on X. Each cell α ∈ X
contributes a unique Zd-degree, satisfying condition (R1). Since no
two cells of the same dimension are contained in one another, the non-
comparability condition (R2) is satisfied. Hence, PX is rigid. The
second statement is a special case of Theorem 3.2. �

Example 4.1. Let E = (v1, . . . , vs) ∩ (w1, . . . , wt) be the edge ideal
of a complete bipartite graph, considered in the polynomial ring in
s + t variables, k[v1, . . . , vs, w1, . . . , wt]. Visscher in [16] constructs a
regular CW-ball which supports the (linear) minimal resolution of E.
Furthermore, the face poset of this CW-ball is the lcm-lattice LCM(E)
so that the edge ideal of a complete bipartite graph is a rigid, concen-
trated monomial ideal.

It is natural to ask whether every rigid ideal is minimally resolved
on a (regular) CW-complex. However, even rigid ideals are too com-
plicated to be resolved using purely topological methods. Recall the
nearly Scarf ideals, introduced by Peeva and Velasco in [13]. The fol-
lowing result shows that certain ideals which do not admit topological
resolutions are rigid, concentrated, and therefore lattice-linear. In par-
ticular, the example of a nearly Scarf ideal given by Velasco [15] which
admits no CW resolution falls into this class.

Proposition 4.2. If Ω is a pure simplicial complex which is a homol-
ogy sphere over k, then the nearly Scarf monomial ideal IΩ is rigid and
concentrated.

Proof. By construction, any simplex of Ω has a unique Zd-degree, and
no two simplices of the same dimension can be contained in one another.
Hence, rigidity conditions (R1) and (R2) hold for the associated Betti
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Figure 4. The regular CW-complex of Example 4.2,
with monomial generators of I labeling its vertices.

numbers. Since Ω is a pure homology sphere, the conditions for rigidity
are trivially satisfied for the Zd-degree corresponding to a generator
of the homology of Ω. Furthermore, the lcm-lattice of IΩ consists of
the face poset of Ω with a top element adjoined. Hence, the lcm-
lattice has no noncontributing elements, guaranteeing that the ideal is
concentrated. �

We close the paper by providing an example of a rigid ideal whose
minimal resolution is supported on a regular CW-complex, but which
cannot be resolved by obtaining resolution information from concen-
trated rigid ideals appearing lower in the same Betti stratum. Indeed,
for a given ideal, a comparable concentrated rigid ideal need not exist.
We are unaware of conditions which guarantee the existence of such an
ideal.

Example 4.2. The rigid monomial ideal I = ⟨bd, cd2, ac, c2d, ab⟩ is
minimally resolved on the three-dimensional regular CW complex X,
pictured in Figure 4. Note that X has (1, 5, 7, 4, 1) as its face vector.

The face poset PX is not a lattice since the quadrilateral 2-cells on
the sets of vertices {ab, ac, bd, c2d} and {ab, ac, bd, cd2} intersect in the
union of 1-cells {ab, ac}∪{ab, bd}. Therefore, PX is not contained in any
Betti stratum of L(5). In fact, the lcm-lattice LCM(I) is isomorphic
to the poset PX ∪ {abcd}. The element abcd ∈ LCM(I) does not
contribute a free module to the minimal free resolution and therefore
I is a dispersed rigid monomial ideal. Since removing the element
abcd from LCM(I) produces a poset which is not a lattice, there is
no finite atomic lattice less than LCM(I) appearing in the stratum
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L(5)(1,5,7,4,1) which is the lcm-lattice of a rigid concentrated monomial
ideal. We therefore cannot apply the combination of Theorem 3.2 and
Theorem 2.1 to construct a poset resolution of I supported on its lcm-
lattice. However, we can realize the minimal resolution of this ideal as
a CW-poset resolution supported on PX . Indeed, removing the element
abcd does not change the homology of the order complex for intervals
(0̂,m) where m > abcd in LCM(I). We are currently studying the
class of rigid ideals which are incomparable to concentrated rigid ideals
in the same stratum.
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