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TRIPLETS OF PURE FREE SQUAREFREE COMPLEXES

GUNNAR FLØYSTAD

Dedicated to Jürgen Herzog on the occasion of his 70th birthday.

ABSTRACT. On the category of bounded complexes of
finitely generated free squarefree modules over the polyno-
mial ring S, there is the standard duality functor D =
HomS(−, ωS) and the Alexander duality functor A. The
composition A ◦D is an endofunctor on this category, of or-
der three up to translation. We consider complexes F• of
free squarefree modules such that both F•,A ◦D(F•) and
(A ◦D)2(F•) are pure, when considered as singly graded com-
plexes. We conjecture: i) the existence of such triplets of
complexes for given triplets of degree sequences, and ii) the
uniqueness of their Betti numbers, up to scalar multiple. We
show that this uniqueness follows from the existence, and we
construct such triplets if two of its degree sequences are linear.

Introduction. Pure free resolutions are free resolutions over the
polynomial ring S of the form

S(−d0)
β0 ← S(−d1)

β1 ← · · · ← S(−dr)
βr .

Their Betti diagrams have proven to be of fundamental importance in
the study of Betti diagrams of graded modules over the polynomial ring.
Their significance was put to light by the Boij-Söderberg conjectures,
[2]. The existence of pure resolutions were first proved by Eisenbud, the
author and Weyman in [7] in characteristic zero, and by Eisenbud and
Schreyer in all characteristics, [8]. Later, the methods of [8] were made
more explicit and put into a larger framework, called tensor complexes,
by Berkesch et al. [1].

The Boij-Söderberg conjectures, settled in full generality in [8], con-
cerns the stability theory of Betti diagrams of graded modules, i.e.,
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it describes such diagrams up to multiplication by a positive rational
number, or alternatively the positive rational cone generated by such
diagrams. The Betti diagrams of pure resolutions are exactly the ex-
tremal rays in this cone. Two introductory papers on this theory are
[9, 11].

Homological invariants. The Betti diagram is, however, only
part of the story when it comes to homological invariants of graded
modules. A complex F• of free modules over the polynomial ring
S, for instance a free resolution, comes with three sets of numerical
homological invariants:

• B: The graded Betti numbers {βij},
• H : The Hilbert functions of the homology modules Hi(F•),

• C: The Hilbert functions of the cohomology modules. These
modules are the homology modules of the dual complex HomS(F•, ωS),
where ωS is the canonical module.

It is then natural to approach the stability theory of the triplet data
set (B,H,C): Up to rational multiple, what triplets of such can occur?
The recent article [6] has partial results in this direction. It describes
the Betti diagrams of complexes F• with specified nondecreasing codi-
mensions of the homology modules. We do not investigate here the
above question directly, but we believe the following will be of rele-
vance.

Squarefree modules. The notion of pure resolution or pure com-
plex, has a very natural extension into triplets of pure complexes, in
the setting of squarefree modules over the polynomial ring. Square-
free modules are Nn-graded modules over the polynomial ring S =
k[x1, . . . , xn] and form a module category including squarefree mono-
mial ideals, and Stanley-Reisner rings. Both the category of singly
graded S-modules as well as squarefree S-modules have the standard
duality functor D = HomS(−, ωS). However, for squarefree modules
there is also another duality functor, Alexander duality A. The com-
position A ◦D becomes an endofunctor on the category of bounded
complexes of finitely generated free squarefree S-modules. (This is in
fact the Auslander-Reiten translate on the derived category of com-
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plexes of squarefree modules, see [3].) There are two amazing facts
concerning this endofunctor.

• The third iterate (A ◦D)3 is isomorphic to the nth iterate of the
translation functor on complexes, a result of Yanagawa [21].

• The composition functor cyclically rotates the homological invari-
ants: If F• has homological invariants (B,H,C), then

A ◦D(F•) has homological invariants (H,C,B), and

(A ◦D)2(F•) has homological invariants (C,B,H). This is also
implicit in [21].

Thus, the various homology modules of F• are transferred to the various
linear strands of A ◦D(F•), and the cohomology modules of F• are
transferred to the linear strands of (A ◦D)2(F•).

The main idea of this paper is to consider complexes F• of free
squarefree modules such that (when considered as singly graded mod-
ules)

• F• is pure,

• A ◦D(F•) is pure,

• (A ◦D)2(F•) is pure.

We call this a triplet of pure complexes. That F• is a pure resolution of
a Cohen-Macaulay squarefree module, the classical case, corresponds
to

• F• is pure,

• A ◦D(F•) is linear,

• (A ◦D)2(F•) is linear.

Construction of triplets. Squarefree complexes are Zn-graded
or, equivalently, they are equivariant for the action of the diagonal
matrices of GL(n). That pure resolutions come with various group
actions is the rule in the various constructions we have, [1, 7]. Sam
and Weyman pursue this [18] in the context of other linear algebraic
groups. However, being squarefree is something more than being Zn-
graded. In particular, for a squarefree complex F•, it may happen
that the only multidegree b such that F•(−b) is squarefree, is the zero
degree. It is therefore a priori not clear, even in the classical case, how
to construct such complexes F•. As it turns out the tensor complexes
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of [1] make the perfect input for a construction, see in particular
Remark 4.6. These tensor complexes are over a large polynomial ring
S(V ⊗W ∗

0 ⊗ · · · ⊗W ∗
r+1). Letting V be the linear space 〈x1, . . . , xn〉

and taking a general map

V ⊗W ∗
0 ⊗ · · · ⊗W ∗

r+1 −→ V,

equivariant for the diagonal matrices in GL(n), we may construct all
cases of complexes F• corresponding to the classical case, Theorem 4.8.
The existence of triplets of pure complexes in full generality, we state
as Conjecture 2.11. In a subsequent paper, [12], we give a conjecture
on the existence of certain complexes of coherent sheaves on projective
spaces, which implies Conjecture 2.11.

Uniqueness of Betti numbers. In the classical case the singly
graded Betti numbers of F• (and also of the linear complexesA ◦D(F•)
and (A ◦D)2(F•) are uniquely determined up to scalar multiple, by
the degree sequence of F•. These Betti numbers are determined by the
Herzog-Kühl equations [14], see also [11, subsection 1.3].

It now turns out that, for a triplet of pure complexes, given the
degree sequences of each of the three complexes, the Betti numbers
fulfill a number of homogeneous linear equations which is one less than
the number of variables, i.e., the number of Betti numbers. We thus
expect there to be a unique solution up to common rational multiple.
Under the assumption that triplets of pure complexes exist (for all
triplet of degree sequences fulfilling a simple necessary criterion), we
show that the Betti numbers are uniquely determined up to common
rational multiple, Theorem 3.10.

Pure resolutions in the squarefree setting have previously
been considered by Bruns and Hibi for Stanley-Reisner rings. In [4]
they describe all possible degree sequences 0 = d0, d1, . . . for pure
resolutions of Stanley-Reisner rings with d1 = 2 and classify the
simplicial complexes where this occurs. When d1 = 3, they give a
thorough investigation of possible degree sequences and the possible
simplicial complexes, as well as interesting examples when d1 ≥ 4.
They also give a complete classification of simplicial complexes where
d1 = m and d2 = 2m−1 form ≥ 2. In [5] they classify Cohen-Macaulay
posets where the Stanley-Reisner ring of the order complex has pure
resolution. In [10] the author considers Cohen-Macaulay designs which,
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in the language of the present article, correspond to Cohen-Macaulay
Stanley-Reisner rings with pure resolution and exactly three linear
strands (so the Stanley-Reisner ideal has exactly two linear strands).
Examples of such are cyclic polytopes and Alexander duals of Steiner
systems.

However, from the perspective of the present article, approaches in
those directions are severely hampered by the fact that, only for few
degree sequences, by simple numerical considerations, can one hope
that the first Betti number β0 may be chosen to be 1. For degree
sequences where this value may be achieved these articles also testify to
the difficulty in constructing pure resolutions of Stanley-Reisner rings.
Our construction avoids the restriction β0 = 1, rather making β0 large.

Organization of the article. In Section 1 we give the setting of
squarefree modules and the functors A and D. We show that they
rotate the homological invariants of squarefree complexes. In Section 2
we develop the basic theory of triplets of pure complexes. We find a
basic necessary condition, the balancing condition, on the triplet of
degree sequences of such complexes. We conjecture the existence of
triplets of pure complexes for all balanced triplets of degree sequences,
and the uniqueness of their Betti numbers, up to common scalar
multiple, Conjecture 2.11. In Section 3 we show this uniqueness of
Betti numbers, under the assumption that triplets of pure complexes
do exist. In Section 4 we use the tensor complexes of [1] to construct
triplets of pure complexes F•,A ◦D(F•) and (A ◦D)2(F•) when the
last two complexes are linear.

1. Duality functors and rotation of homological invariants.
In this section we recall the notion of a squarefree module over the
polynomial ring, S = k[x1, . . . , xn], and the two duality functors we
may define on the category of complexes of such modules, standard
duality D and Alexander duality A.

A striking result of Yanagawa [21] says that the composition (A◦D)3

is naturally equivalent to the nth iterate of the translation functor on
the derived category of squarefree modules. A complex of squarefree
modules comes with three sets of homological invariants, the multi-
graded homology, cohomology modules and multigraded Betti spaces.
We show thatA◦D cyclically rotates these invariants (which is a rather
well-known fact to experts).
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1.1. Squarefree modules and dualities. Let S be the polynomial
ring k[x1, . . . , xn] where k is a field. Let εi be the ith coordinate
vector in Nn. An Nn-graded S-module is called squarefree, introduced
by Yanagawa in [20], if M is finitely generated and the multiplication

map Mb
·xi→ Mb+εi is an isomorphism of vector spaces whenever the

ith coordinate bi ≥ 1. We denote the category of finitely generated
squarefree S-modules by sq−S.

There is a one-one correspondence between subsets R ⊆ [n] =
{1, 2, . . . , n} and multidegrees R in {0, 1}n, by letting R be the set
of coordinates of R equal to 1. By abuse of notation, we shall often
write R when strictly speaking we mean R. For instance, the degree
R part of M , which is, MR may be written MR. Also, if R is a set,
we shall, if no confusion arises, denote its cardinality by the smaller
case letter r. We also denote (1, 1, . . . , 1) as 1. Note that a squarefree
module is completely determined, up to isomorphism, by the graded
pieces MR and the multiplication maps between them

MR
xv−→ MR∪{v}

where v /∈ R.

If M is a squarefree module and 0 ≤ d ≤ n, its squarefree part of
degree d is ⊕

|R|=d

MR.

Note that taking squarefree parts is an exact functor from squarefree
modules to vector spaces. In particular, note that the squarefree part
of S(−b) in degree d has dimension

(n−|b|
d−|b|

)
=

(
n−|b|
n−d

)
.

For a squarefree moduleM there is a notion of Alexander dual module
A(M), defined by Römer [17] and Miller [16]. For R a subset of [n],
let Rc be its complement. Then A(M)R is the dual Homk(MRc , k). If
v is not in R, the multiplication

A(M)R
·xv−→ A(M)R∪{v}

is the dual of the multiplication

M(R∪{v})c
·xv−→ MRc .
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By obvious extension, this defines A(M)b for all b in Nn and all
multiplications.

Example 1.1. If S = k[x1, x2, x3, x4], then the Alexander dual of
S(−(1, 0, 1, 1)) is S/(x1, x3, x4). The Alexander dual of S(−1) is the
simple quotient module k.

For a multidegree b in Zn, the free S-module S(−b) is a squarefree
module if and only if b ∈ {0, 1}n, i.e., all coordinates of b are 0 or 1.
Direct sums of such modules are the free squarefree S-modules. Denote
by fsq−S the category of such finitely generated modules.

Let Cb(sq−S) and Cb(fsq−S) be the categories of bounded com-
plexes of finitely generated squarefree, respectively, free squarefree
modules. There is a natural duality

D : Cb(fsq−S) −→ Cb(fsq−S)

defined by
D(F•) = HomS(F•, S(−1)),

so in particular D(S(−b)) = S(b − 1). We would also like to define
Alexander duality on the category Cb(fsq−S). However, there is a
slight problem in that Alexander duality as defined above does not
take free modules to free modules.

To remedy this, any bounded complex of squarefree modules X•
has a minimal resolution F• → X• by free squarefree modules. This
defines a functor res : Cb(sq−S) → Cb(fsq−S). (There is of course
also a natural inclusion ι : Cb(fsq−S) → Cb(sq−S).) We now define
Alexander duality

A : Cb(fsq−S) −→ Cb(fsq−S)

by letting A be the composition res◦A where A is the Alexander duality
defined above.

Example 1.2. Continuing the example above, a free resolution of
S/(x1, x2, x4) is

S ←− S3 ←− S3 ←− S

(0,0,0,0) (1,0,0,0) (1,0,1,0) (1,0,1,1)

(0, 0, 1, 0) (1, 0, 0, 1)

(0, 0, 0, 1) (0, 0, 1, 1)
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where we have written below the multidegrees of the generators. Then
the Alexander dual A(S(−(1, 0, 1, 1))) is the above resolution.

By composing with the resolution we may also consider A and D as
functors on Cb(sq−S)

Cb(sq−S)
res−→ Cb(fsq−S)

A,D−→ Cb(fsq−S).

For a complexX•, letX•[p] be its pth translate, i.e., (X•[p])q = Xq−p.
Yanagawa [21], shows that (A ◦ D)3 is isomorphic to the nth iterate
[n] of the translation functor.

1.2. Homological invariants. The complex X• comes with three
sets of squarefree homological invariants. First there is the homology

Hi(X•)R

where i ∈ Z and R ⊆ [n]. For a vector space V , denote by V ∗ its dual
Homk(V,k). We define the cohomology as

Ci(X•)R := (H−i(D(X•))Rc)∗.

Note that, by local duality, if X• is a module M , then this relates to
local cohomology by

Cn−i(M)R = Hi
m(M)r−1

where r is the 0, 1-vector with support R. Thirdly a minimal free
squarefree resolution F• of X• has terms which may be written Fi =
⊕R⊆[n]S ⊗k Bi,R, and we define the Betti spaces to be

Bi(X•)R := (TorSi (X•, k)R) = (Bi,R).

Now a basic and very interesting fact is that the functors A and
D interchange the homology, cohomology and Betti spaces. First we
consider D.

Lemma 1.3. The functor D interchanges the homological invariants
of X• as follows.
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• Bi(D(X•))R = (B−i(X•)Rc)∗.

• Hi(D(X•))R = (C−i(X•)Rc)∗.

• Ci(D(X•))R = (H−i(X•)Rc)∗.

Proof. This is clear.

Before describing how the functor A interchanges the homological
invariants, we recall a basic fact from [21]. For a square-free module
M , one may define a complex L(M) (see [21, page 9] where it is denoted
by F(M)) by

Ln−i(M) =
⊕
|R|=i

(MR)
◦ ⊗k S

where (MR)
◦ is MR but considered to have multidegree Rc. The

differential is

m◦ ⊗ s 
−→
∑
j /∈R

(−1)α(j,R)(xjm)◦ ⊗ xjs,

where α(j, R) is the number of i in R such that i < j.

For a minimal complex F• of free squarefree S-modules, define its ith

linear strand F
〈i〉
• to have terms

F
〈i〉
j =

⊕
|R|=i+j

S ⊗k Bj,R.

Since F• is minimal, the ith linear strand is naturally a complex. The
following is [21, Theorem 3.8].

Proposition 1.4. The (−i)th linear strand of A ◦D(X•) is

L(Hi(X•))[i].

This gives the following.

Lemma 1.5. The functor A interchanges the homological invariants
of X• as follows (denoting the cardinality of R by r).

a. Bi(A(X•))R = (Cr−i(X•)R)∗.
b. Hi(A(X•))R = (H−i(X•)Rc)∗.

c. Ci(A(X•))R = (Br−i(X•)R)∗.
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Proof. Part b. is clear. By the proposition above,

(1) L(Hi(D(X•)))[i] ∼= A(X•)〈−i〉.

The first complex has terms which are direct sums over R of

(Hi(D(X•))R)◦ ⊗k S,

where the generating space has internal degree Rc and is in homological
position n− r− i = |Rc| − i. By Lemma 1.3, the generating space here
is

((C−i(X•)Rc)∗)◦.

Hence, by (1), this equals

B|Rc|+i(A(X•))Rc ,

which is equivalent to part a.

Part c. follows from a. by replacing X• by A(X•).

Putting these two lemmata together, we get the following.

Corollary 1.6. The composition A ◦D cyclically rotates the homo-
logical invariants as follows.

• Bi(A ◦D(X•))R = Hi−r(X•)Rc .

• Hi(A ◦D(X•))R = Ci(X•)R.

• Ci(A ◦D(X•))R = Bi−r(X•)Rc .

We may depict the rotation of homological invariants by the diagram:

B

�

A◦DH
�
�
�
��

A◦D

C

�
�
���

A◦D

.
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Remark 1.7. Composing A and D alternately, and applying it to F•,
we get six distinct complexes up to translation, corresponding to all
permutations of the triplet data set (B,H,C). In the squarefree setting,
we thus get a situation of perfect symmetry between the homological
invariants. In contrast, in the singly graded case we get a “symmetry
breakdown” where only H and C may be transferred into each other
by the functor D, while the Betti spaces have a distinct position.

Remark 1.8. For a positive multidegree a = (a1, a2, . . . , an), Alexan-
der duality may also be defined for the more general class of a-
determined modules, see [16]. (Squarefree modules are 1-determined.)
The composition A ◦ D then has order the least common multiple
lcm {ai + 2 | i = 1, . . . , n}, see [3]. In that paper all the multigraded
homology and Betti spaces of the iterates (A ◦D)i(S/I) are computed
for an a-determined ideal I ⊆ S.

The following will be of particular interest and motivation in the
following Section 2.

Lemma 1.9. The complexes A ◦D(F•) and (A ◦D)2(F•) are both
linear if and only if F• is a resolution of a Cohen-Macaulay module.

Proof. The various homology modules of F• are translated to the
various linear strands of (A ◦D)(F•). So F• has only one nonzero
homology module if and only if (A ◦D)(F•) is linear. Similarly the
cohomology of F• is translated to the Betti spaces of (A ◦D)2(F•) so
F• has only one nonzero cohomology module if and only if (A ◦D)2(F•)
is linear. But the fact that F• has only one nonzero homology module
M and D(F•) has only one nonzero homology module is equivalent to
M being a Cohen-Macaulay module.

1.3. The functor A◦D on a basic class of modules. For A ⊆ [n],
the module S(−A) is a projective module. Denote by S/A = S/(xi)i∈A.
(This is an injective module in sq−S.)

More generally, for a partition A∪B∪C of [n], the module (S/A)(−B)
will be a squarefree module. Let us denote it as S/A(−B;C). These
form a basic simple class of squarefree modules closed with respect to
the functors A and D when we identify modules with their minimal
resolutions.

Lemma 1.10. Let A ∪B ∪ C be a partition of [n].
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1. There is a quasi-isomorphism

D(S/A(−B;C))
	−→ S/A(−C;B)[−a].

2. There is a quasi-isomorphism

A(S/A(−B;C))
	−→ S/B(−A;C).

Proof. For A ⊆ [n], denote by kA the vector space generated by xi,
i ∈ A. The projective resolution of S/A(−B) is

P• : S(−B) ← S(−B)⊗ (kA) ← S(−B)⊗ ∧2(kA)ϕ ← · · ·
← S(−B)⊗ ∧a(kA).

The dual complex HomS(P•, S(−1)) is D(S/A(−B)). Since the last
term S(−B) ⊗ ∧a(kA) in P• is generated in degree A ∪ B, the dual
complex is

S(−C) ← S(−C)⊗ (kA) ← S(−C)⊗ ∧2(kA) ← · · ·
← S(−C)⊗ (kA)a,

a resolution of S/A(−C;B).

To see the second part of the lemma, it is not difficult to verify that
the Alexander dual module of S/A(−B;C) is S/B(−A;C).

We then get the following diagram.

S/C(−B;A)[−a− c]�
�
�
���

A

S/C(−A;B)[a]

�
�
�
��

D

S/B(−C;A)[a+ c]

�
D

S/A(−C;B)[−a]

�

A

S/B(−A;C)[−a− b− c]
�

�
�

�
��

A[−n]

S/A(−B;C)

��
�

��
��

D
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A particular case is the following diagram.

k[−n]�
�
��	
A

k
�
�
�
���

D

S(−1)[n]

�
D

S(−1)

�

A

S[−n]
�

�
�

�
��

A[−n]

S

�
�

�
��


D

2. Triplets of pure complexes. As stated in the introduction, the
importance of pure free resolutions of Cohen-Macaulay S-modules is
established with the Boij-Söderberg conjectures and their subsequent
demonstration in [8].

A complex of free S-modules F• is pure if it has the form

F• : S(−d0)
β0 ← S(−d1)

β1 ← · · · ← S(−dr)
βr

for some integers d0 < d1 < · · · < dr. These integers are the degree
sequence of the pure complex.

We shall investigate the condition that all three complexes F•, (A ◦
D)(F•) and (A ◦ D)2(F•) are pure when considered as singly graded
complexes. By Lemma 1.9, the special case that F• is a pure resolution
of a Cohen-Macaulay module corresponds to the case that F• is pure
while (A ◦D)(F•) and (A ◦D)2(F•) are both linear complexes.

2.1. Basic properties and examples. We now give an example
of a triplet of pure complexes, but let us first give a lemma telling how
A ◦D(F•) may be computed.

Lemma 2.1. Let

F• : · · · −→ Fi −→ Fi−1 −→ · · · .
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Then A ◦D(F•) is homotopy equivalent to the total complex of

· · · −→ A ◦D(Fi) −→ A ◦D(Fi−1) −→ · · · .

Proof. Recall the Alexander duality A on the category of squarefree
modules. The complex A ◦D(F•) is simply the complex of modules

· · · −→ A ◦D(Fi) −→ A ◦D(Fi−1) −→ · · · .

Now, if

(2) · · · −→ Mi −→ Mi−1 −→ · · ·

is a sequence of modules and Fi,• → Mi is a free resolution, we may
lift the differentials Mi → Mi−1, to differentials Fi,• → Fi−1,•. Then
the total complex of

· · · −→ Fi,• −→ Fi−1,• −→ · · ·

will be a resolution of (2), and hence it is homotopy equivalent to a
minimal free resolution of this complex. Whence the result follows
since A ◦D(Fi) is a free resolution of A ◦D(Fi).

Example 2.2. Let S = k[x1, x2, x3]. Consider the complex

F• : S
[x1x2,x1x3,x2x3]←− S(−2)3.

First we find (A ◦D)(F•). By the figures of subsection 1.3, A ◦D(S)
is isomorphic to k, and the resolution is the Koszul complex

S ← S(−1)3 ← S(−2)3 ← S(−3).

(It is really multigraded, but for simplicity we only depict it as singly
graded.) Also, A◦D(S(−([3]\{i}))) is isomorphic to S/(xi) and so has

resolution S
xi← S(−1).

Therefore, A ◦D(F•) is a minimal version of the total complex of

S3

�

S(−1)3

�

�

S S(−1)3� S(−2)3� S(−3)� .



TRIPLETS OF PURE COMPLEXES 115

It is easily seen that such a minimal version is

S2 S(−2)3�

[
x2x3 −x1x3 0
0 x1x3 −x1x2

]
S(−3)�

[
x1
x2
x3

]
.

Now consider (A◦D)2(F•). By Lemma 1.10, (A◦D)2(S) is isomorphic
to S(−3)[3] and (A ◦ D)2(S(−{1, 2})) is isomorphic to S/(x1, x2)
(−{3})[1]. Therefore, (A ◦ D)2(F•) is a minimal version of the total
complex of

S(−1)3 S(−2)6� S(−3)3�

�

S(−3).

Such a minimal version is then

S(−1)3 S(−2)6�

[
x1 x2 0 0 0 0
0 0 x2 x3 0 0
0 0 0 0 x3 x1

]
S(−3)2�

[
x2 −x1 −x3 x2 0 0
0 0 x3 −x2 −x1 x3

]t
.

In summary,

F• : S ← S(−2)3

A ◦D(F•) : S2 ← S(−2)3 ← S(−3)

(A ◦D)2(F•) : S(−1)3 ← S(−2)6 ← S(−3)2,

so all complexes are pure, and two of them are not linear.

Lemma 2.3. Let

F• : S(−a0)
α ← S(−a1)

α′ ← · · ·

be a pure complex of squarefree modules with final term S(−a0)
α in

homological position t. If A ◦D(F•) is also a pure complex, then

A ◦D(F•) : · · · ← S(−n+ a0)
α

where the initial term S(−n+a0)
α is in homological position n−a0+ t.

As a consequence the initial terms of D(F•) and its Alexander dual
A ◦D(F•) are both equal to S(−n+ a0)

α.
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Proof. Considered as a complex of graded modules, A ◦D(F•) is the
total complex of (we display only the last two rows)

Sα′

�

S(−1)α
′(n−a1)

�

�

· · ·�

Sα S(−1)α(n−a0)
� · · ·� S(−n+ a0)

α
� .

When making a minimal complex of the total complex, S(−n+ a0)
α

cannot cancel out, so it must be the last term. Since Sα is in
homological position t, the last term must be in homological position
n− a0 + t.

In a pure complex,

(3) F• : S(−a0)
α0 ← S(−a1)

α1 ← · · · ← S(−ar)
αr

an integer d is called a degree of this complex if d = ai for some i.
Otherwise, it is called a nondegree. If the nondegree is in [a0, ar], it is
an internal nondegree.

Now suppose we have a situation where (A ◦ D)i(F•) are pure
complexes for i = 0, 1 and 2. Write the complexes as:

F• : S(−a0)
α0 ← S(−a1)

α1 ← · · · ← S(−ar0)
αr0

A ◦D(F•) : S(−b0)
β0 ← S(−b1)

β1 ← · · · ← S(−br1)
αr1

(A ◦D)2(F•) : S(−c0)
γ0 ← S(−c1)

γ1 ← · · · ← S(−cr2)
γr2 .

We denote by A the set of degrees of F•, and similarly B and C
for the degrees of A ◦D(F•) and (A ◦D)2(F•). The triplet (A,B,C)
is the degree triplet of the triplet of pure complexes. Let eA be the
number of internal nondegrees of F•, and correspondingly we define
eB and eC . Let e be the total number of internal nondegrees for the
triplet, eA + eB + eC . As they turn out to be central invariants, we let
c = a0, a = b0 and b = c0.

Proposition 2.4. a. The degrees in the last terms of the complexes
above are ar0 = n− b, br1 = n− c and cr2 = n− a.

b. The number of variables n = a+ b + c+ e.
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Proof. Part a. is by Lemma 2.3 above. Also, by the lemma above,
if S(−a0)

α0 in F• is in homological position t, then S(−br1)
βr1 in

A ◦ D(F•) is in position t + br1 , and so the first term S(−b0)
β0 is

in position t + br1 − r1. But, r1 + eB = br1 − b0, and so this position
is t + a + eB. Applying the lemma again, we get that S(−c0)

γ0 in
(A ◦D)2(F•) is in position t + a + b + eB + eC . And then, again, we
get that S(−a0)

α0 in (A ◦D)3(F•) is in position t+ a+ b + c+ e.

But, since (A◦D)3 is isomorphic to the nth iterate of the translation
functor, we get that n = a+ b+ c+ e.

We can represent the degrees of the complex F• as a string of circles
indexed by the integers from a0 = c to ar0 = n − b by letting a circle
be filled • if it is at a position ai and be a blank circle ◦ otherwise.

Example 2.5. A complex

S(−1)6 ← S(−3)27 ← S(−4)24 ← S(−7)3

with n = 9 gives rise to the diagram

1
• ← 2◦ ← 3

• ← 4
• ← 5◦ ← 6◦ ← 7

•.

The dual complex D(F•) = HomS(F•, S(−1)), which is

S(−8)6 −→ S(−6)27 −→ S(−5)24 −→ S(−2)3,

gives a diagram by switching the orientation above and letting the
numbering be

8
• −→ 7◦ −→ 6

• −→ 5
• −→ 4◦ −→ 3◦ −→ 2

•.

All three complexes may be represented in a triangle, called the degree
triangle of the three complexes.

� � �
�

�
�

��

��

��
�
�

��

��

�

�

�

F•
c

a

b

A ◦D(F•) (A ◦D)2(F•)
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Note that the degrees of F• start with c, then proceed in ascending
order and end with n− b.

Lemma 2.6. In the degree triangle above, the following hold:

a. The length, i.e., the number of circles (both filled and blank), of the
side corresponding to the set A, the degree sequence of F•, is a+ e+1.
Similar relations hold for the other sides.

b. The number of circles in the degree triangle is a + b + c + 3e. In
particular at most a third of the circles are blank circles.

c. The Koszul complexes given in subsection 1.3 give all cases of
degree triangles where there are no internal nondegrees, i.e., no blank
circles.

Proof. a. This is because the number of circles is the cardinality
of the interval [c, n − b] which is this number by Proposition 2.4 b.
Part b. above follows immediately from part a. Concerning part c.,
there are three numerical parameters for these Koszul complexes, the
cardinalities of |A|, |B| and |C|, and these correspond to a + 1, b + 1
and c+ 1.

Example 2.7. The minimal complexes in Example 2.2 give rise to
the following degree triangle.

� �

�

�
�

��

��

0

0 1

2.2. A balancing condition. Suppose F•,A ◦D(F•) and
(A ◦D)2(F•) is a triplet of pure free squarefree complexes. The in-
terior nondegrees of these complexes cannot be arbitrarily distributed.
There is a certain balancing condition which we now give.

Let G• be one of the three complexes, so G• and its Alexander dual
A(G•) are pure complexes. In particular they have the same initial
term S(−n+ g)γ . We can display their degrees as
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�
�

�

� ��� ��

��

�

G•

A(G•)

g

The balancing condition is the following.

Proposition 2.8. Suppose G• belongs to a triplet of pure free
squarefree complexes, and let S(−n+ g)γ be the initial term of G• and
its Alexander dual A(G•). Then, for each 0 ≤ v ≤ n − g, the number
of degrees of G• in the interval [v, n− g] is greater than the number of
nondegrees of A(G•) in the interval [v, n− g].

Proof. We may let F• = D(G•), so F•,A ◦D(F•), and (A ◦D)2(F•)
is a triplet of pure free squarefree complexes. With this notation,

G• = D(F•) : S(−n+ c)α −→ · · · −→ S(−b)α
′

so

A(G•) = A ◦D(F•) : S(−n+ c)α −→ · · ·S(−a)α
′′
.

Let φ(v) be the sum of the number of degrees of G• in [v, n − c] and
the number of degrees of A(G•) in this interval. The statement of
the proposition is equivalent to: φ(v) is greater than the cardinality of
[v, n− c].

Case 1. In the range 0 ≤ v ≤ max{a, b}, the difference φ(v)−|[v, n−c]|
is weakly decreasing as v decreases. So, in order to prove the statement
in this range, it is enough to prove that

(4) φ(0) > |[0, n− c]| = n− c+ 1 = a+ b+ e+ 1.

But
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φ(0) = |A|+ |B|
= a+ e+ 1− eA + b+ e + 1− eB

= a+ b+ 2 + e+ eC ,

so clearly (4) holds.

Case 2. Now suppose v > max{a, b}. We may as well assume that
a ≥ b, so v > a. Let c = a0, a1, . . . be the degrees of F• = D(G•),
with S(−ai)

αi in homological degree i. The homology module Hi(F•)
is transferred to the (−i)th linear strand of A(G•) by Proposition 1.4.
Note that, if i > 0, the least nonzero degree of this homology module,
if this module is nonzero, is ≥ ai + 1. Hence, the largest degree
occurring in the −ith linear strand of A(G•), if this strand is nonzero,
is ≤ n− ai − 1.

Note that S(−(n−c)) belongs to the 0th linear strand of A(G•) (since
this term comes from H0(F•)). If v is a degree of A(G•), let −l be the
linear strand to which it belongs. We must have l ≥ 0. The number of
degrees of A(G•) in [v, n− c] is then n− c− v + 1− l.

Now, if v − 1 is an interior nondegree of A(G•), then

φ(v − 1)− |[v − 1, n− c]| ≤ φ(v) − |[v, n− c]|.

Therefore, we might as well prove the statement for v− 1. Since a is a
degree of A(G•), we may continue this way and in the end come to a
situation where v − 1 is a degree of A(G•). Let −l be its linear strand
in A(G•). When l > 0, by what was said above, v − 1 ≤ n− al − 1 or,
equivalently, al ≤ n − v. But this also holds when l = 0. Hence, the
degrees a0, a1, . . . , al of F• all belong to [c, n− v], and so

φ(v) ≥ (n− c− v + 1− l) + (l + 1) > n− c− v + 1.

Let there be a natural number n. For an integer d, let d = n−d and,
for a subset of integers D, let D = {d | d ∈ D}.

Definition 2.9. A triplet of nonempty subsets (A,B,C) of N0 is a
balanced degree triplet of type n if there are integers 0 ≤ a, b, c ≤ n such
that
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1.
A ⊆ [c, b], B ⊆ [a, c], C ⊆ [b, a],

and the endpoints of each interval are in the respective subsets A,B or
C.

2. Let eA be the cardinality of [c, b]\A and correspondingly define eB
and eC . Then n = a+ b+ c+ eA + eB + eC .

3. A and B are balanced with respect to the common endpoint c,
i.e., for each c ≤ v ≤ n, the number of elements of [c, v] in A is greater
than the number of elements of [c, v] not in B. Similarly for B and C
with respect to a and C and A with respect to b.

� � �
�

�
�

��

��

��
�
�

��

��

�

�

�

c

a

bA

CB

Remark 2.10. Note that parts a and b of Lemma 2.6 may be deduced
solely from the properties 1 and 2 above.

Conjecture 2.11. a. For each balanced degree triplet (A,B,C) of
type n, there exists a triplet of pure free squarefree complexes over the
polynomial ring in n variables whose degree sequences are given by A,
B, and C.

b. The Betti numbers of this triplet of complexes are uniquely
determined by the degree triplet, up to common scalar multiple.

3. Constraints on the Betti numbers. In this section we give
linear equations fulfilled by the Betti numbers in a triplet of pure
complexes. The number of equations is one less than the number
of Betti numbers, so we expect a unique set of Betti numbers up to
multiplication by a common scalar. We prove that this is the case,
provided part a of Conjecture 2.11 holds. In other words, we prove
that part a of the conjecture implies part b.
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3.1. Some elementary relations for binomial coefficients. For
nonnegative integers p, we have the binomial coefficient

(
x
p

)
. When p

is a negative integer, we set this coefficient to be zero. The following
identities hold in Q[x, y] and are repeatedly used in the proof of the
below lemma.

1.
(
x+y
p

)
=

∑p
i=0

(
x

p−i

)(
y
i

)
, [15, Example 4.3.3].

2.
(
x
p

)
= (−1)p

(
p−1−x

p

)
.

Let A = (aij) be the (n+ 1)× (n+ 1)-matrix with aij = (−1)j
(
n−j
i

)
for i, j = 0, . . . , n. For instance, when n = 2 this is the matrix

⎡
⎣ 1 −1 1
2 −1 0
1 0 0

⎤
⎦ .

Lemma 3.1. A3 = (−1)n · I.

Proof. First we show that A2 = (bij) where bij = (−1)j
(

j
n−i

)
. For

instance, when n = 2, this is

⎡
⎣ 0 0 1
0 −1 2
1 −1 1

⎤
⎦ .

The ith row in A is(
n

i

)
, −

(
n− 1

i

)
,

(
n− 2

i

)
, . . . .

Now (
n− j

i

)
=

(
n− j

n− j − i

)
= (−1)n−i−j

(
−i− 1

n− j − i

)
.

The ith row of A is then (−1)n−i multiplied with:

(
−i− 1

n− i

)
,

(
−i− 1

n− 1− i

)
,

(
−i− 1

n− 2− i

)
, . . . .
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The jth column in A is (−1)j multiplied with the following:

(
n− j

0

)
,

(
n− j

1

)
,

(
n− j

2

)
, . . . .

From this, bij is (−1)n−i−j multiplied with

(
n− j

0

)(
−i− 1

n− i

)
+

(
n− j

1

)(
−i− 1

n− 1− i

)
+ · · · ,

which, by property 1 in the beginning of this section, equals

(6)

(
n− j − i− 1

n− i

)
= (−1)n−i

(
j

n− i

)
.

Hence, bij = (−1)j
(

j
n−i

)
.

To find A3, note that the ith row in A2 is(
0

n− i

)
, −

(
1

n− i

)
,

(
2

n− i

)
, . . . .

Note that(
j

n− i

)
=

(
j

j + i− n

)
= (−1)j+i−n

(
i− n− 1

j + i− n

)
.

Hence, row i is (−1)n−i multiplied with

(
i− n− 1

i− n

)
,

(
i− n− 1

i− n+ 1

)
,

(
i− n− 1

i− n+ 2

)
, . . . .

The jth column in A is (−1)j multiplied with

(
n− j

0

)
,

(
n− j

1

)
,

(
n− 2

2

)
, . . . .

Since (
n− j

i

)
=

(
n− j

n− j − i

)
,
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this column becomes(
n− j

n− j

)
,

(
n− j

n− j − 1

)
,

(
n− j

n− j − 2

)
, . . . .

The first nonzero position in the ith row is n − i. The last nonzero
position in the jth column is n− j. Hence, if n− j < n− i, equivalently
i < j, the product of the ith row and jth column is zero. On the other
hand, if i ≥ j, the product is (−1)n−i−j , multiplied with(

i− 1− j

i− j

)
= (−1)i−j

(
0

i− j

)
=

{
1 i = j

0 i > j.

Hence, we obtain A3 = (−1)n · I.

3.2. Linear equations for the Betti numbers. Let F• be the
pure free squarefree complex

(7) F• : S(−a0)
α0 ← S(−a1)

α1 ← · · · ← S(−ar)
αr .

Let α̂ai = (−1)l(ai) · αi, where l(ai) is the linear strand containing the
term S(−ai)

αi , be the signadjusted Betti numbers. We set α̂d = 0 if
d ∈ [0, n] is not a degree of F•. Note that these signadjusted Betti
numbers are parametrized by the internal degrees. Note also that

(8) l(ai) = l(a0)− a0 + ai − i.

Assume, in addition, that A ◦D(F•) is a pure complex

S(−b0)
β0 ← · · · ← S(−br′)

βr′ .

Recall that the ith homology module of F• is transferred to the ith
linear strand of A ◦D(F•).

Suppose the ith homology module of F• is nonzero, and let d be
a degree for which the dth graded part of this module is nonzero.
This module is squarefree, and the dimension of its squarefree part
in degree d (recall this notion in subsection 1.1) is

(9) (−1)i+l(a0)−a0

[
α0

(
n− a0
n− d

)
− α1

(
n− a1
n− d

)
+ α2

(
n− a2
n− d

)
+ · · ·

]
.
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By Proposition 1.4, this will be equal to (−1)iβ̂n−d. Using (8), we see
that, when d varies, the equations (9) are the same as

(10) β̂ = A · α̂.

If, furthermore, (A ◦D)2(F•) is pure, we get in the same way

γ̂ = A · β̂(11) ̂̂α = A · γ̂,(12)

where ̂̂α = (−1)nα̂ due to the shift n of linear strands of the functor
(A ◦D)3.

If F•, A ◦D(F•) and (A ◦D)2(F•) are all pure, then clearly the
following equations hold:

α̂i = 0 for all nondegrees i of F• in [0, n],(13)

β̂i = 0 for all nondegrees i of (A ◦D)(F•) in [0, n],(14)

γ̂i = 0 for all nondegrees i of (A ◦D)2(F•) in [0, n].(15)

In addition, we must have the equations (10), (11) and (12) above
(where any two of these determine the third by Lemma 3.1).

Lemma 3.2. The equations α̂i = 0, for i = 0, . . . , c − 1, are
equivalent to the equations β̂n−i = 0, for i = 0, . . . , c− 1.

Similarly the equations β̂i = 0 and γ̂n−i = 0, for i = 0, . . . , a − 1
are equivalent, and γ̂i = 0 and α̂n−i = 0, for i = 0, . . . , b − 1, are
equivalent.

Proof. This is due to the transition matrix A having the triangular
form ⎢⎢⎢⎢⎣

· · · · ·
∗ ∗ ∗ 0 · · ·
∗ ∗ 0 · · ·
∗ 0 · · ·

⎥⎥⎥⎥⎦ .

Corollary 3.3. Given a balanced degree triangle, the 3n + 3
signadjusted Betti numbers α̂i, β̂i, γ̂i, i = 0, . . . , n, fulfill equations
(10) (15), which may be reduced to 3n+ 2 natural equations.
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Remark 3.4. We expect these equations to be linearly independent.
Hence, there would be a unique solution up to scalar multiple.

Proof. There are c+ b + eA equations of the form α̂i = 0. Similarly,
there are a+c+eB equations of the form β̂i = 0, and a+b+eC equations
of the form γ̂i = 0. This gives a total of 2a + 2b + 2c + e equations.
However, by the above Lemma 3.2, there are a + b + c dependencies
among them, giving a+ b+ c+ e = n equations. In addition, transition
equations (11) and (12) give 2n+2 further equations, a total of 3n+2.

The complex F• is

S(−n+ b)αr0 −→ · · · −→ S(−c)α0 .

Its Alexander dual A(F•) equals (up to translation) D ◦ (A ◦D)2(F•),
which is

S(−n+ b)γ0 −→ · · · −→ S(−a)γr2 .

(Note that γ0 = αr0 .) Let v1 < · · · < veC be the internal nondegrees of
A(F•).

The complex D(F•) is

S(−n+ c)α0 −→ · · · −→ S(−b)αr0 ,

and then its Alexander dual A ◦D(F•) is

S(−n+ c)βr1 −→ · · · −→ S(−a)β0 .

(Note that βr1 = α0.) Let u1 < · · · < ueB be the internal nondegrees
of A ◦D(F•).

Proposition 3.5. Given a triplet of pure free squarefree complexes,
let a0 < · · · < ar be the degrees of the first complex F• and ar < · · · < a0
the degrees of the dual D(F•). By transition equations (10) (12),
equations (13) (15) are equivalent to the following equations for the
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(r + 1) nonzero Betti numbers αi.

α0

(
a0
vi

)
− α1

(
a1
vi

)
+ · · ·+ (−1)rαr

(
ar
vi

)
= 0, i = 1, . . . , eC

(16)

α0

(
a0
ui

)
− α1

(
a1
ui

)
+ · · ·+ (−1)rαr

(
ar
ui

)
= 0, i = 1, . . . , eB

(17)

α0

(
a0
j

)
− α1

(
a1
j

)
+ · · ·+ (−1)rαr

(
ar
j

)
= 0, j = 0, . . . , a− 1.

(18)

The total number of these equations eC + eB + a equals r.

Remark 3.6. These equations then generalize the Herzog-Kühl equa-
tions of [14], see also [11, subsection 1.3], which determines the Betti
numbers of pure resolutions of Cohen-Macaulay modules.

Proof. The last part is because

r + eA = n− b− c, and a+ b + c+ eA + eB + eC = n.

By transition equation (10), the set of equations (17) is equivalent to

β̂ui = 0 for each nondegree ui of A ◦D(F•) in the interval [a, n − c].

The vanishing of β̂j for j ∈ [n− c+ 1, n] is, by Lemma 3.2, equivalent

to α̂j = 0 for j ≤ c− 1. The vanishing of β̂j for j ∈ [0, a− 1] is, again
by transition equation (10), equivalent to equation (18).

In the same way, the vanishing of γ̂j for each nondegree j of
(A ◦D)2(F•) in interval [b, n − a] is equivalent to the equation (16).
The vanishing of γ̂j for j in [n− a+ 1, n] is, by Lemma 3.2, equivalent

to the vanishing of β̂j for j in [0, a − 1] which is again equivalent to
equation (18).

Remark 3.7. It is easy to see that equation (18) with each ai replaced
by ai becomes an equivalent set of equations.

We also get corresponding equations for βi and γi.
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Corollary 3.8. Given a balanced degree triplet, if equations (10) (12)
for Betti numbers αi of the pure complex F• has a k-dimensional solu-
tion set, then the corresponding equations for Betti numbers βi of the
pure complex A ◦D(F•) has a k-dimensional solution set, and similarly
for Betti numbers γi of (A ◦D)2(F•).

Proof. By transition equations (10) (12), all these equation systems
are equivalent to equations (13) (15).

3.3. Uniqueness of Betti numbers. Given a balanced degree
triplet Δ = (A,B,C), set A is a subset of [c, n − b], containing the
end points of this interval. Let us suppose that there is an internal
nondegree of A, i.e., A is a proper subset of [c, n − b]. Let A contain
[c, c+ t− 1] but not c+ t. Set B is a subset of [a, n− c] containing the
endpoints. Let s ≥ 1 be maximal such that B ⊆ [c, n − a] is disjoint
from the interval [c+1, c+ s− 1]. Since the degree triangle is balanced
we have s ≤ t. Let Δ′ = (A′, B′, C) where

A′ = A ∪ {c+ t}\[c, c+ s− 1], B′ = B\{c}.

c b

a

A

B C

c+ s b

a

A′

CB′

Lemma 3.9. If Δ is a balanced degree triplet, then Δ′ is a balanced
degree triplet.

Proof. If Δ has e internal nondegrees, then clearly Δ′ has e−s internal
nondegrees. (We remove one nondegree from A and s−1 fromB.) Since
Δ′ has parameters c+s, b and a, the equation a+b+c+e = n continues
to hold when passing from Δ to Δ′. Viewing Δ′ from the corner c+ s,
we see it is balanced here since Δ was. Viewing Δ′ from corner a, we
see that it is balanced in the interval [v, n−a] for v ≥ max{c+s, b} since
Δ was, and when v ≤ max{c+ s, b}, we can use the same argument as
in Case 1 in the proof of Proposition 2.8. The last case of corner b goes
in the same way.
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Proposition 3.10. Let Δ be a balanced triplet, with an internal
nondegree on one of its sides, say side A. Then if: i) there exists a
triplet of pure free squarefree complexes for the degree triplet Δ′, and
ii) the equation system for Δ′ has a one-dimensional solution, then the
equation system for Δ also has a one-dimensional solution.

Proof. Let X be the coefficient matrix for the system of equations
given in Proposition 3.5 for Betti numbers αi, of a pure complex
associated to A, in the degree triplet Δ. Let X ′ be the corresponding
coefficient matrix for the triplet Δ′. By hypothesis, the solution
set of X ′ is one-dimensional. The coordinates of a solution vector
(α′

0, . . . , α
′
r′) may be taken as the minors of the matrix X ′. By

hypothesis, there exists a pure free squarefree complex F ′
•, part of a

triplet, whose Betti numbers are a multiple of this solution vector, and
hence all the α′

i will be nonzero.

Now note that the columns in X ′ have columns parametrized by the
degrees of A′ in [c+ s, n− b]. These are exactly the degrees of A which
are in [c + s, n − b], together with degree c + t. Write the coefficient
matrix X such that equation (17) are the first rows and equation (16)
the second group of rows, and then (18). If we remove the first column
in X , indexed by c, then X will have a form[

T 0
Z Y

]
,

where T is a triangular matrix of size (s−1)×(s−1). This is due to the
hypotheses we have on the forms of A and B in the interval [c, c+s−1].
If, on the other hand, we remove the column of X ′ indexed by c + t,
we will simply get matrix Y . Hence the determinant of Y , which is
one of the α′

i, is nonzero. So matrix X will have full rank, and hence a
one-dimensional solution set.

We then get the following.

Theorem 3.11. Part a of Conjecture 2.11 implies part b of the
conjecture: If there exist triplets of pure free squarefree complexes for
every balanced degree triplet, then the Betti numbers of each of these
triplets of complexes are uniquely determined up to a common scalar
multiple.
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Proof. This follows from the previous proposition once we know it
is true for the induction start. And the induction start is a degree
triplet with no internal nondegrees. But, in any degree triplet where
all internal nondegrees are on only one edge, the uniqueness of Betti
numbers follows by the Herzog-Kühl equations, see [11, subsection 1.3]
since, if this edge corresponds to a complex F•, then this complex is a
resolution of a Cohen-Macaulay module, Lemma 1.9. The uniqueness
of all Betti numbers up to common scalar multiple follows by transition
equations (10) (12).

Remark 3.12. We have not proved that if, for a given degree triplet,
there exists a triplet of pure free squarefree complexes, then their Betti
numbers are uniquely determined up to common scalar multiple. Our
proof is inductive so it relies on the existence of triplets of complexes
associated to all “smaller” triplets.

4. Construction of triplets when the internal nondegrees
are on only one side of the degree triangle. In this section we
construct triplets of pure squarefree complexes in the case that two of
the complexes are linear. These correspond to degree triangles where
two of the sides consists solely of degrees (so filled circles, no internal
nondegrees).

4.1. Auxiliary results on subspaces of vector spaces. Let E
be a vector space and E1, . . . , Er subspaces of E. For I a subset of
[r] = {1, . . . , r}, we let EI be the intersection ∩i∈IEi.

Lemma 4.1. Suppose E1, . . . , Er are general subspaces of E of
codimension one, where r ≤ dimkE. Then the E[r]\{i} as i varies
through i = 1, . . . , r, generate E.

Proof. By dividing out by E[r], we may as well assume that r =
dimkE. Then each E[r]\{i} corresponds to a one-dimensional vector
space. To construct the Ei, we may chose general vectors v1, . . . , vr
and let Ei be spanned by the (r − 1)-subsets of this r-set we get by
successively omitting the vi.
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Lemma 4.2. Let Ei be a subspace of E of codimension ei for
i = 1, . . . , r. Suppose for each proper subset J of I that the codimension
of EJ is

∑
i∈J ei. If codimEI <

∑
i∈I ei, then the EI\{i} do not

generate E as i varies through I.

Proof. Let the codimension of EI be (
∑

i∈I ei) − r where r > 0. By
dividing out by EI , we may assume EI = 0, and so this number is
the dimension of E. Then the dimension of EI\{i} is ei − r, and so if
|I| ≥ 2, these cannot generate the whole space E.

Notation. We shall in the following denote by Sr(E) the rth
symmetric power of E and by Dr(E) the rth divided power of E. Also,

let D̃r(E) = ∧dimk EE ⊗k Dr(E).

4.2. Construction of tensor complexes. We start with a degree
triplet (A,B,C) where B = [a, c] and C = [b, a] are intervals, i.e.,
contain no nondegrees. We partition the complement of A in [0, n] into
successive intervals

[u0 + 1, u0 + w0 − 1], [u1 + 1, u1 + w1 − 1], . . . ,

[ur + 1, ur + wr − 1], [ur+1 + 1, ur+1 + wr+1 − 1],

where for the first and last interval we have u0 = −1, w0 = c + 1
and ur+1 = n − b and wr+1 = b + 1, and for the middle intervals
c ≤ u1, ui + wi ≤ ui+1, and ur + wr ≤ n − b. Let Wi be a

vector space of dimension wi, and W = ⊗r+1
i=0Wi. Denote by 
W the

tuple (W0, . . . ,Wr+1). Let V be a vector space of dimension n and
S(V ⊗W ∗) the symmetric algebra. In the language of [1, Section 5],

(0;u0, . . . , ur+1) is a pinching weight for V, 
W .

Berkesch et al. [1] construct a resolution F•(V ; 
W ) of pure free
S(V ⊗W ∗)-modules with degree sequence A such that the term with
free generators of degree d ∈ A has the form:
(19)
d∧
V
⊗

(⊗d≤uiS
ui−d(Wi))

⊗
(⊗d≥ui+wiD̃

d−ui−wi(Wi))
⊗

S(V ⊗W ∗).

This complex is a resolution of a Cohen-Macaulay module and is
equivariant for the group

GL(V )×GL(W0)× · · · ×GL(Wr+1).
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The construction of this complex follows the method of Lascoux,
presented in [19, subsection 5.1]. Let P( 
W ) be the product P(W0) ×
· · · ×P(Wr+1). There is a tautological sequence:

0 −→ S −→ W ⊗OP( �W ) −→ OP( �W )(1, . . . , 1) −→ 0.

Dualizing this sequence and tensoring with V , we get a sequence (let
Q = S∗)

0 −→ V ⊗OP( �W )(−1, . . . ,−1) −→ V ⊗W ∗⊗OP( �W ) −→ V ⊗Q −→ 0.

Constructing the affine bundles over P( 
W ) of the last two terms in this
complex, we get a diagram

Z=V(V⊗Q)

�

� � V((V⊗W ∗)⊗OP( �W ))

�
π

V(V⊗W ∗)×P( 
W )

Y � � V(V ⊗W ∗)

where Y is the image of Z by projection π. The projection of the
structure sheaf π∗(OZ) is the sheaf on the affine space Y associated to

the S(V ⊗W ∗)-module H0(P( 
W ), Sym (V ⊗Q)).

Let p be the projection of V(V ⊗ W ∗) × P( 
W )) to the second

factor. Let L be the line bundle OP( �W )(u0, . . . , ur+1) on P( 
W ). Then

M = H0(P( 
W ), Sym (V ⊗ Q) ⊗ p∗L) is an S(V ⊗ W ∗)-module and

the complex F (V ; 
W ) is a resolution of this module, by [19, Prop.
5.1.2.b]. The sheafification of this module on the affine space is in fact
π∗(OZ ⊗ p∗L).

Fact. dimY = dimZ. This is argued for in [1], see for instance the
proof of Proposition 3.3. First note that

dimZ = dimP( 
W ) + n · rkQ.

Since F (V ; 
W ) is a resolution of a module supported on Y , the length
of this resolution is at least the codimension of Y . Hence,

dimY ≥ n dimkW − |A|+ 1

= ndim kW − n+
∑
i

(wi − 1).
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Since rkQ = dimkW − 1 and dimP( 
W ) =
∑

i(wi − 1), we get
dimY ≥ dimZ and we obviously also have the opposite inequality.

4.3. Degeneracy loci of bundles. Let E be a vector bundle, i.e.,
a locally free sheaf of finite rank e, on a scheme S. Let T be a subspace
of the sections Γ(S, E). The map T ⊗k OS → E defines a map and an
exact sequence

(20) T ⊗k Sym (E) −→ Sym (E) −→ R −→ 0,

where cokernelR is a quasi-coherent sheaf of OS-algebras. The space T
gives global sections of the affine bundle V = VS(E), and they generate
a sheaf of ideals of OV defining a subscheme X = SpecOSR.

Now we may stratify S according to the rank of the map T⊗kOS → E .
Let Ui be the open subset where the rank is ≥ dimkT − i. Then, if
x ∈ Ui\Ui−1, we get an exact sequence

T ⊗k Sym (Ek(x)) −→ Sym (Ek(x)) −→ Rk(x) −→ 0,

where Rk(x) is the quotient symmetric algebra generated by a vector
space of dimension e−t+i. Hence, the fiber Xk(x) has dimension e−t+i.
We observe that the dimension of X is less than or equal to the
maximum of

(21) max{dim(S\Ui−1) + e− t+ i}.

We adapt this to the situation of subsection 4.2 so S = P( 
W ). Let
V be a vector space with a basis x1, . . . , xn and E = V ⊗kQ. For each
xi, choose a general subspace Ei ⊆ W ∗ of codimension one. Let T be
the subspace ⊕

i

xi ⊗ Ei ⊆
⊕
i

xi ⊗W ∗ = V ⊗k W ∗.

Note that the dimension of T equals the rank of V ⊗k Q.

Proposition 4.3. Suppose that k is an infinite field. The locus
where the composition

α : T ⊗k OP( �W ) ↪→ V ⊗k W ∗ ⊗k OP( �W ) −→ V ⊗k Q

degenerates to rank dimkT − i, has codimension ≥ i.
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Proof. The map α is the direct sum of maps

αi : Ei ⊗k OP( �W ) −→ Q.

The rank of α is then the sum of the ranks of these maps. Now fix
a subset K of [n], and let EK = ∩i∈KEi. For each i ∈ K, also fix

a number qi ≥ 1. Let X be the locus of points in P( 
W ) where the
image of αi,k(x) has corank ≥ qi for i ∈ K. Let X ′ be the locus

of points in P( 
W ) where EK ⊗k OP( �W )

αK→ Q degenerates to corank

≥
∑

i∈K qi. We will show that: i) either X is empty, or X ⊆ X ′, and
ii) codimX ′ ≥

∑
i∈K qi. This will show the proposition.

i) Suppose X is nonempty, and let x ∈ P( 
W ) be a point where the
image of αi,k(x) has corank ≥ qi. Clearly, for any I ⊆ [n], the image of
αI,k(x) is contained in ∩i∈I imαi,k(x). Suppose there is an I ⊆ K such
that this intersection in Qk(x) does not have corank ≥

∑
i∈I qi, and let

I be minimal in K. Then, clearly, |I| ≤ rkQ+ 1 since all qi ≥ 1. The
image of EI\{j} is contained in the intersection ∩i∈I\{j}imαi,k(x), and
these do not generate Qk(x) by Lemma 4.2. By Lemma 4.1, this is not
possible since the EI\{j} generate W ∗, and the map W ∗⊗OP( �W ) → Q
is surjective. Hence, the image of EK

αK,k(x)→ Qk(x) must be of corank
≥

∑
i∈K qi. This proves part i).

ii) The image of EK ⊗k OP( �W )

αK→ Q is a sheaf of corank ≥
rkQ − dimkEK = |K| − 1 at all points x in P( 
W ). Since Q is
generated by its global sections, the locus of points where this map
has corank ≥ c+ |K| − 1, for some c ≥ 1, by [13, Example 14.3.2 (d)],

has codimension in P( 
W ) greater than or equal to

(22)
c(c+ rkQ− dimkEK) = c(c+ |K| − 1)

≥ c+ |K| − 1.

Hence, the locus of points where the corank is ≥
∑

i∈K qi = c+ |K|− 1
has codimension ≥

∑
i∈K qi.

Corollary 4.4. Let T be the sections of E = V ⊗k Q given by the
composition α. The subscheme X = SpecO

P( �W )
R of VP( �W )(E) defined

by the vanishing of T , see (20), has dimension less than or equal to the

dimension of P( 
W ).
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Proof. This follows by the above Proposition 4.3 and the expression
for the dimension given by (21).

4.4. Construction of pure free squarefree resolutions from
tensor complexes. Recall that x1, . . . , xn is a basis for V . Consider
the map

(23) V ⊗W ∗ =
n⊕

i=1

xi ⊗W ∗ −→
n⊕

i=1

xi ⊗ (W ∗/Ei) ∼= V.

This identifies V as the quotient space of V ⊗W ∗ by the subspace T .
It induces a homomorphism of algebras

S(V ⊗W ∗) −→ S(V ).

Recall the pure resolution F•(V ; 
W ) of subsection 4.2 whose degree
sequence is given by the set A.

Proposition 4.5. Let k be an infinite field. The complex

F• = F•(V ; 
W )⊗S(V⊗W∗) S(V )

is a pure free squarefree resolution of a Cohen-Macaulay squarefree
S(V )-module. Its degree sequence is A.

Remark 4.6. The essential thing about the tensor complex F•(V ; 
W )
that makes this construction work is that, in the generators of its
free modules in (19), the only representations of V that occur are the
exterior forms ∧dV . Choosing a basis x1, . . . , xn for V , this is generated
by (squarefree) exterior monomials. This is why the tensor complexes
are “tailor made” for our construction.

Remark 4.7. In our construction we could equally well have used the
GL(F ) × GL(G)-equivariant complex of [7, Section 4]. Again, in the
generators of the free modules, the ∧dF are the only representations of
F that occur. In contrast, all kinds of irreducible representations of G
are involved, and it also only works when char.k = 0, which is why we
focus on the tensor complexes of [1].
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From this we obtain as a corollary the following.

Theorem 4.8. For a balanced degree triplet (A,B,C) of type n,
where B and C are intervals, i.e., the only internal nondegrees are in
the interval associated to A, there exists a triplet of pure free squarefree
modules over the polynomial ring in n variables over an infinite field,
whose degree sequences are given by A, B and C.

Proof of Theorem 4.8. Let the endpoints of A be c and n − b. All
nondegrees of this triplet are in [c, n − b], so the number e of such is
the cardinality of [c, n − b]\A. Since a + b + c + e = n, we see that a
is determined by A. Hence, B and C are determined by A. Starting
with the complex F• in Proposition 4.5, by Lemma 1.9, (A ◦D)(F•)
and (A ◦D)2(F•) are both linear and so have degrees given by B and
C.

Remark 4.9. In the forthcoming paper [12] we consider the con-
struction of triplets of pure complexes in general. We transfer Con-
jecture 2.11 to a conjecture on the existence of certain complexes of
coherent sheaves on projective spaces. In the case of the above theo-
rem, these complexes reduce to a single coherent sheaf, the line bundle
OP( �W )(u0, . . . , ur+1) on the Segre embedding of P( 
W ) in the projec-

tive space P(W ).

Proof of Proposition 4.5. Let Z ′ be the pullback in the diagram

Z ′
�

�

� � V(V )×P( 
W )
�

�

Z � � V(V ⊗W ∗)×P( 
W ).

The subscheme V(V ) of V(V ⊗W ∗) is defined by the vanishing of the
subspace T of V ⊗W ∗. Since Z = VP( �W )(V ⊗k Q), we see that Z ′ is
the subscheme of Z defined by the vanishing of the sections T of V ⊗Q
given by the composition α in Proposition 4.3. By Corollary 4.4 the
dimension of Z ′ is less than or equal to dimP( 
W ). Since dimkT equals

the rank of V ⊗ Q, the dimension of Z is dimP( 
W ) + dimkT and so
dimZ ′ ≤ dimZ − dimkT .
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Let Y ′ be the pullback in the diagram

Y ′
� �

�

�

V(V )
�

�

Y � � V(V ⊗W ∗).

Since the image of Z is Y , the image of Z ′ is Y ′. This gives

dimY ′ ≤ dimZ ′ ≤ dimZ − dimkT = dimY − dimkT.

The complex F•(V ; 
W ) is a resolution of a Cohen-Macaulay module
M supported on Y . The module M ′ = M ⊗S(V⊗W∗) S(V ) where
S(V ) = S(V ⊗W ∗)/(T ) is supported on Y ′ and so

dimM ′ ≤ dimY ′ ≤ dimY − dimkT = dimM − dimkT.

Since M ′ = M/(T · M), a basis for T must form a regular sequence,
and so M ′ is a Cohen-Macaulay module with resolution given by F•.
Therefore, F• becomes a pure resolution of a Cohen-Macaulay where
the term with generators of degree d ∈ A is
(24)

d∧
V
⊗

(⊗d≤uiS
ui−d(Wi))

⊗
(⊗d≥ui+wiD̃

d−ui−wi(Wi))
⊗

S(V ).

The basis x1, . . . , xn of V induces a maximal torus D of GL(V ),
the diagonal matrices. The quotient map (23) is equivariant for the
torus action where t = (t1, . . . , tn) ∈ D acts on w =

∑
xi ⊗ w∗

i as
t.w =

∑
(ti.xi) ⊗ w∗

i . Thus the complex above is equivariant for the
torus action and so is Zn-graded. The action on term (24) in the
complex is given by the natural actions on ∧dV and S(V ) and the
trivial action on the rest of the tensor factors. Hence, the multidegrees
of the generators of the terms above are of squarefree degree, and so
the resolution is squarefree.
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invariants of free complexes, Arxiv preprint arXiv:1205.0449 (2012), 1 33.

7. D. Eisenbud, G. Fløystad and J. Weyman, The existence of equivariant pure
free resolutions, Ann. Inst. Fourier 61 (2011), 905 926.

8. D. Eisenbud and F.O. Schreyer, Betti numbers of graded modules and coho-
mology of vector bundles, J. Amer. Math. Soc. 22 (2009), 859 888.

9. , Betti numbers of syzygies and cohomology of coherent sheaves, Proc.
Inter. Cong. Math., 2010.

10. G. Fløystad, Enriched homology and cohomology modules of simiplicial
complexes, J. Alg. Combin. 25 (2007), 285 307.
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