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PRUFER DOMAINS WITH
CLIFFORD CLASS SEMIGROUP

WARREN WM. MCGOVERN

ABSTRACT. Bazzoni’s conjecture states that the Priifer
domain R has finite character if and only if R has the property
that an ideal of R is finitely generated if and only if it is
locally principal. In [5] the authors use the language and
results from the theory of lattice-ordered groups to show that
the conjecture is true. In this article we supply a purely ring
theoretic proof.

1. Bazzoni’s conjecture. Throughout all integral domains are
assumed to be commutative.

For an integral domain R, .#(R) denotes the semigroup of fractional
ideals of R (under ideal multiplication) while Z?(R) denotes the sub-
semigroup consisting of principal ideals. The class semigroup of R is
the factor semigroup #(R)/Z(R) and is denoted .#(R). A semigroup
S is called a Clifford semigroup when every element is regular in the
sense of von Neumann, that is, for every a € S there is an s € S for
which a?s = a. The domain R is called a Clifford reqular domain when
& (R) is Clifford regular.

In the article [1] Bazzoni proved that if a Priifer domain has finite
character (that is, every nonzero element belongs to a finite number
of maximal ideals), then .(R) is a Clifford semigroup, and in turn,
if #(R) is a Clifford semigroup, then R satisfies (%) (defined below).
In a later article, [2], she was able to show that if .#(R) is a Clifford
semigroup, then R has finite character. In [1] and then again in [2] she
proposed the following:

Conjecture. A Priifer domain satisfies property (%) if and only if
R has finite character.
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Recently, the authors of [5] proved using techniques from the theory
of lattice-ordered groups that the conjecture is indeed true. The main
road used in their proof was to translate the concepts discussed above
into the language of ¢-groups via the lattice-ordered group of invertible
ideals of a Priifer domain. Once the translations were made they used
several old and well-known results to finish the proof. In this article we
give a purely ring-theoretic proof of the validity of Bazzoni’s conjecture.
Our proof is mainly a translation from ¢-groups to ring theory of the
proof from [5] except in one crucial place. We elaborate on this matter.

Given a Priifer domain R and G, its ¢-group of invertible ideals,
any information about an ¢-homomorphic image of G can be trans-
lated to information about an appropriate localization of R. On the
other hand, and unfortunately, there is no known ring-theoretic con-
struction that allows one to gather information about the kernel of an
{-homomorphism on G. Fortunately, we have been able to discover the
correct localization (for our purposes) which allows us to mollify the
situation.

We end this section with definitions of the concepts discussed above
as well as lay down some rules and notational devices used throughout
the paper.

For a Priifer domain R we say R satisfies (x) if

(¥) An ideal I of R is finitely generated if and only if the localization
IR,y is principally generated for every maximal ideal M of R.

Notice that if I is a finitely generated ideal, then since Rj,; is a
valuation domain it follows that IRj,; is principal ideal for every
maximal ideal M of R. We let Max (R) denote the set of all maximal
ideals of R. For any ideal I of R, we let Vj;(I) denote the subset of
Max (R) consisting of those maximal ideals which contain I. Recall
that two ideals I and J are said to be co-mazimal if [ +J = R. If R
is a Priifer domain and I is a finitely generated ideal (and hence an
invertible ideal) we use I~! to denote its inverse. Recall that if I < .J
are invertible ideals of R, then IJ~! is also an ideal of R.

Our main references for this article are [6] for topics on localizations
of rings, [4] for the theory of invertible ideals and Priifer domains and
[3, 5] as the main sources for some of the ideas in our proof.
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2. Summits of integral domains.

Definition 1. Let I be a finitely generated (proper) ideal of R. We
say that I is a chained ideal of R if R/I is a chained ring; that is,
the collection of ideals containing I forms a chain. We shall always
assume that a chained ideal is a proper finitely generated ideal. Notice
that any proper finitely generated ideal containing a chained ideal is
itself a chained ideal. Moreover, when R is a Priifer domain and I is a
proper finitely generated ideal, I is a chained ideal precisely when it is
contained in a unique maximal ideal.

We call a set of finitely generated ideals, say S, a summit for R if
each element in § is a chained ideal and S is a maximal pairwise co-
maximal set of finitely generated ideals. We observe that to show a
set S is a summit it is necessary to show that for any (proper) finitely
generated ideal I not belonging to S there is some element of S which
is not co-maximal to I.

Our first result characterizes when a domain possesses a summit.

Theorem 2. The domain R has a summit if and only if every
(proper) finitely generated ideal of R lies below a chained ideal.

Proof. Necessity. Suppose R has a summit, say S. Let I be a proper
finitely generated ideal of R. We can assume that I ¢ S. Since §
is a maximal pairwise co-maximal set it follows that for some J € S,
I+ J < R. Since J is a chained ideal so is I +J and therefore I < I+ J
lies below a chained ideal.

Sufficiency. By assumption there are chained ideals of R. The
usual Zorn’s lemma argument ensures that every chained ideal can be
extended to a pairwise co-maximal set of chained ideals that is maximal
with respect to being a set of chained ideals which are pairwise co-
maximal. So let § be such a set of chained ideals. Notice that there
might exist an ideal J of R not belonging to & which is pairwise co-
maximal to every element of S; thus, J is not a chained ideal. We claim
that S is a summit for R. Suppose otherwise. This means that there is
some (proper) finitely generated ideal J of R for which J+1 = R for all
I € §. Now, by hypothesis we can extend .J to a chained ideal and so
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without loss of generality we assume that J is a chained ideal. But then
SU{J} is a pairwise co-maximal set of chained ideals contradicting the
maximality of S. O

Definition 3. We say the integral domain R satisfies Property (F)
if no proper finitely generated ideal lies beneath an infinite number
of pairwise co-maximal finitely generated ideals of R. We observe that
this is equivalent to the condition that no element of R lies in an infinite
number of pairwise co-maximal finitely generated ideals of R. It is our
intention to later show that if the Priifer domain R satisfies () then
it satisfies Property (F). For now we concentrate on showing that a
Priifer domain satisfying Property (F) has a summit.

Lemma 4. Suppose R is a Prifer domain. If J, K are incomparable
finitely generated ideals of R, then there are incomparable finitely
generated ideals J', K' of R which are co-mazimal and J < J' and
K<K'.

Proof. 1t is straightforward to check that
J=JJ+K)! and K' =K(J+K)!

satisfy the desired properties. ]

Theorem 5. Suppose R is a Prifer domain. If R satisfies Prop-
erty (F), then R has a summit.

Proof. Notice that by Theorem 2 it suffices to show that every proper
finitely generated ideal lies below a (finitely generated) chained ideal.
So, suppose by way of contradiction, that I is a (proper) finitely gener-
ated ideal which does not lie below a chained ideal. This means that, for
each finitely generated ideal I < J < R, there are incomparable finitely
generated ideals, Jy, Jo containing J. Furthermore, by Lemma 4, we
can assume without loss of generality that J; and J2 are co-maximal.

We recursively define a collection of ideals as follows. There are
two incomparable co-maximal finitely generated ideals containing I,
say I;,I;. For each natural number 1 < n € N choose I, I, to
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be two incomparable finitely generated ideals containing I,,_;. Then
T = {L, }nen is a set of finitely generated ideals each of which contains
I. Observe that {I,},cN is an increasing chain of ideals.

We prove by induction that, for each n € N, I,,; is co-maximal to I
for each k < n. Notice that Iy < Is. Therefore, since Iy + Iy = R
it follows that I5» + I;; = R. Now suppose the statement is true for
each m < n. Let £ < n. We know that I, + I = R and so since
I <I, 1 <1I, andweobtainthat R = I+ 1 < I, 1+1Ix < I, +1j,
whence I,» + Iy = R for every k < n. It follows that the set
T is an infinite set of pairwise co-maximal finitely generated ideals
each of which contains I, contradicting the hypothesis that R satisfies
Property (F). O

Definition 6. Let I be a finitely generated ideal of R, and set
Sr={a€R:1+aR = R}.

Observe that Sy is a saturated multiplicative subset of R and so we
can discuss the localization Rg,. It is the use of this localization which
enables us to give a complete purely ring-theoretic proof of Bazzoni’s
conjecture. In [5] the authors pass from the ¢-group G of invertible
ideals of R to a specific principally generated convex f-subgroup of G.
Such a translation is not possible.

Proposition 7. Suppose R is an integral domain, and let I be a
(proper) finitely generated ideal of R. The set of mazimal ideals of R
containing I is in one-to-one correspondence with the set of all mazimal
tdeals of Rsg,.

Proof. Recall the correspondence between the maximal ideals in a
localization and ideals in the original ring which are maximal with
respect to not meeting the multiplicative set. We leave it to the
interested reader to show that this is the case. O

Proposition 8. Suppose R is a Prifer domain satisfying Prop-
erty (F). Then for any (proper) finitely generated ideal I of R, Rg,
also satisfies Property (F).
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Proof. Suppose that on the contrary that there is a (proper) finitely
generated ideal I for which Rg, does not satisfy property (F). This
means that there is a (proper) finitely generated ideal of Rg,, say K,
that lies below an infinite set of pairwise co-maximal finitely generated
ideals. Let {K,},cr be such a set of distinct pairwise co-maximal
finitely generated ideals each lying above K. Let J be a finitely
generated ideal of R for which JRg, = K. Also, for each v € I, let
Jy be a finitely generated ideal of R for which J,Rs, = K,. Without
loss of generality, we can choose the ideals so that I C J, for each .
We claim that 7 = {J,}er is a set of pairwise co-maximal (proper)
ideals each containing the finitely generated ideal J. This contradicts
our assumption that R satisfies Property (F).

Let v1,v2 be distinct elements of our index set I'. Since K, + K, =
Rs, wecan find k1 € J,,, k2 € J,, and s € S| for which s = k1 +k2. By
the definition of Sy, it follows that for some r € Rand i € I, 1 = sr—+i.
Then 1 = kyr + kor + 4. Now, kyr + ¢ € J,, while kpr € J,,. Thus,
Jy, +Jy, = R, and so T is a pairwise co-maximal set of (proper) finitely

generated ideals each containing J. m]

Theorem 9. Suppose R is a Prifer domain satisfying (*). Then R
satisfies Property (F).

Proof. Suppose on the contrary that R does not satisfy Property (F).
Therefore, there is some (proper) finitely generated ideal I of R which
lies beneath an infinite number of pairwise co-maximal (proper) finitely
generated ideals. Enumerate such a set as 7 = {I, },cr and define

T ={L,1,,-- L, : for adistinct finite set v1,... ,7, € I'}.
Notice that, since the ideals in 7 are pairwise co-maximal,

L,L,-1

"/n:I’YlmI’Yzm”'mI

Tn?

and so I lies below each element 7. Furthermore, I lies properly
below each element of 7. To see this, suppose that on the contrary
that I = I, I,,---I,, for appropriate vi,...,v, € I'. Choose v € I'
differently from each ;. But since the lattice of ideals of a Priifer
domain is distributive it follows that

I,=I1+I,=(I,nI,Nn---NnL,)+I, = (I,,+I,)Nn---n(I,,+1I,) = R,

a contradiction.
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Next, define K to be the ideal generated by the set of ideals
{1J-1} se7- We will show that K is locally principal and, since R
satisfies (%), we can then conclude that K is a finitely generated ideal
of R. First of all we point out that K is a proper ideal. This is because
T is a downward directed set and therefore {IJ~'} Je7 1s an upward
directed set of finitely generated ideals. It follows that

K= U IJ-!
JEeT

and so, if 1 € K, then 1 € IJ ! for some J € T, a contradiction.

Let M € Max (R) and consider KRy,. If K j{ M, then KRy; = Ry
so without loss of generality we assume that K < M. Suppose v € I’
satisfies I, < M. Then since T is a set of pairwise co-maximal ideals,
it follows that for every other different 4" € I, I,» + M = R and so
there is at most one v € I' for which I, < M. We consider these two
cases separately.

In the first case suppose that I, £ M for all v € I'. Then, for each
v € I', we know that I,Ry = Ry, and therefore by properties of
extensions

(IT7Y )Ry = IRy (I Ry )™ = IRy

Consequently, for each I,, - -+ - I, =J € T,
(IJ YRy = (IL} - I, )Ry = IRy I 'Ry -+ - I, 'Ry = IRy

Therefore, K Ry; = I Ry; which is a finitely generated ideal. Since Ry,
is a valuation domain, it follows that K R, is a principal ideal.

In the second case denote by v the unique element in I' for which
I, < M. By the argument above for every other 7' € T, II;,IRM =

IRy;. Therefore, for each I, --- I, =J € T,
(IJ "Ry < (IJ'IJY)Ry = I 'Ry

from which we gather that KRy = 11, 1 a principal ideal of Ryy.

In both cases we showed that K R); is a principal ideal of Ry, and
so K is a locally principal ideal of R. As mentioned before since R
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satisfies (*) we conclude that K is a finitely generated ideal of R. But
we already pointed out that {IJ '} se7 1s an upward directed set so

K=1II

71

Ly L)

for appropriate v1,...,7v, € I'. But then, for any v € I different
than the v4,...,7v,, we have ILY_l < K. But once again we gather
that I, I,,---1,, < I,, a contradiction. Our only conclusion is
that there is no such (proper) finitely generated ideal I lying below
an infinite number of pairwise co-maximal (proper) finitely generated
ideals. Whence, R satisfies Property (F). O

Proposition 10. Suppose R is a Prifer domain satisfying Prop-
erty (F). If the Jacobson radical of R is non-zero, then R has a finite
summit. Moreover, R has a finite number of mazimal ideals.

Proof. Since R satisfies Property (F) we know by Theorem 5 R has
a summit, say S. By hypothesis, we choose I to be any non-zero
finitely generated ideal of R contained in the Jacobson radical of R.
Let T = {I+J:J € S}. Notice that each I + J is a proper ideal
since I lies below the Jacobson radical of R. Clearly, 7 is a pairwise
co-maximal set of ideals. Consequently, 7 is a finite set since R satisfies
Property (F). But then it must be true that S is a finite set, and so R
possesses a finite summit. (Alternatively, one can simply show that T
is a finite summit.)

Next, let Jq, ... ,J, be the distinct elements of S. Because each J; is
a chained ideal it follows that there is a unique maximal ideal, say M;
containing J;. Then the set {My,...,M,} is a set of distinct maximal
ideals. Suppose now that R has a maximal ideal different than each
M;. Call it M. Choose m; € M \ M; for each I = 1,... ,n and let
K=mR+---+m,R. Then K < M and K f M; foreachi=1,...,n.
By Theorem 2 there is a chained ideal above K, call it V. Notice that
V' does not lie inside any of the maximal ideals M; since K does not.
But since S is a summit it follows that V is not co-maximal to one
of the J;. Therefore, V + J; (and therefore V') lies below a maximal
ideal. But the only possible such maximal ideal is M;, a contradiction.
Therefore, the only maximal ideals of R are My,... , M,,. ]
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Theorem 11. For a Prufer domain the following statements are
equivalent.

i) R has finite character.

ii) R has a Clifford semigroup.
iii) R satisfies (x).

iv) R satisfies Property (F).

Proof. Bazzoni showed the equivalency of i) and ii), as well as the
implication ii) = iii). Theorem 9 is the implication iii) = iv).

(iv) = (i). Suppose R satisfies Property (F), and let I be a (proper)
finitely generated ideal of R. By Proposition 8, Rg, also satisfies
Property (F). By the proof of Proposition 7, IRy, is a non-zero finitely
generated ideal lying below the Jacobson radical of Rg,. Consequently,
by Proposition 10, Rg, has a finite number of maximal ideals. Finally,
by Proposition 7, there are only a finite number of maximal ideals of
R containing I. We conclude that R has finite character. O
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