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ON POSITIVE AFFINE MONOIDS

ERIC EMTANDER

ABSTRACT. For numerical monoids S the length of the
k[S]-module k[S]/k[S] is always finite. This is of course be-
cause the set of holes H(S) is finite, a property that does
not hold in general for positive affine monoids of higher rank.
We examine here in a combinatorial fashion positive affine
monoids S with H(S) finite, or equivalently, positive affine
monoids for which the length of k[S]/k[S] is finite. This class
of monoids turns out to behave in some respects like numeri-
cal monoids. In particular we describe the maximal elements
in certain posets whose elements are positive affine monoids.
This description provides natural “higher dimensional” ver-
sions of familiar classes of numerical monoids such as the class
of symmetric numerical monoids.

1. Preliminaries and notations. An affine monoid S =
(81,.-.,8n) is a finitely generated sub-monoid of Z" for some r € N,
r > 1. We denote by gp (S) the group inside Z" generated by S. Ob-
serve that every element x € gp (S) can be written as x = s — s’ for
some elements s and s’ in S and that gp (S) is free of rank at most r.
The rank of S, rank (S), is by definition the rank of gp (S). We assume
all affine monoids S are embedded in Z¢ where d = rank (S).

Our main concern will be positive affine monoids: an affine monoid is
called positive if zero is the only element whose inverse in gp (S) also lies
in S. A positive affine monoid S = (s1, ..., s,) of rank d is isomorphic
to an affine monoid T inside N?. Thus in the sequel all positive affine
monoids S will be considered to be inside N¢ where d = rank (S).

Assume S = (s1,...,5,) is a positive affine monoid of rank one such
that ged (s1,...,8,) = 1. Then S is called a numerical monoid.
Any affine (respectively positive affine) monoid S = (sq,... , s,) gives

rise to a cone (respectively pointed cone)

RZOS = Rzo{sl, - ,Sn} = {)\181 + - 4+ ApSn N\ € Rzo}.
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The dimension of R>(S is by definition the dimension of its linear
span and equals rank (S). Recall that such a cone is the intersection
of finitely many half-spaces in R?, where d = rank (S). Let HT be a
half-space in RS with bounding hyperplane H. Assume H intersects
R>0S and that RS lies entirely inside H*. Then F = H N R>oS
is called a face of R>¢S. The dimension of a face is by definition
the dimension of its affine hull. A face of dimension d — 1, where
d = dimR30S, is called a facet. The faces form a lattice under
inclusion. See [3] for details.

If S is a positive affine monoid the set Sy = S\ {0} is called the
maximal ideal of S.

The normalization of an affine monoid S, denoted S, is the monoid
S ={z €gp(S); mzx €S for some m € N, m > 1}.

We have S = R>0SNgp () and S is affine (respectively positive affine)
when S is affine (respectively positive affine). The normalization of S
is (by construction) a normal monoid. That is, a monoid 7" such that
if mx € T for some m € N, m > 1, and z € gp(T), then z € T.
An affine monoid is normal precisely when S = S, see [3, Proposition
2.22]. Sometimes normal affine monoids are called integrally closed
affine monoids. The terminology comes from commutative algebra, see
Remark 1.3 below.

As for numerical monoids we define the set of gaps of an affine monoid
S as H(S)=5\S. Also, we define a set T'(S) by

T(S)={zecgp(S); z¢S, v+ 5. C S}

Remark 1.1. For numerical monoids the cardinality of the set T'(S)
is called the type of S, denoted type (S), and agrees with the Cohen-
Macaulay type of the corresponding monoid ring.

Assume S is an affine monoid. Then, by considering the elements
s € S that lie in some bounding hyperplane of the cone R>¢S and the
affine form defining that hyperplane, we see that T'(S) C R>¢S and,
in fact, T'(S) C S. Thus for affine monoids S we have T'(S) C H(S).

We associate to an affine monoid S = (si,...,s,) its monoid ring
k[S], k being a field. This is the k-algebra k[t®; s € S] C k[ty,... ,td],
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d = rank (5), with multiplication
t°t" =t seS, s €8s

The dimension of k[S] coincides with the rank of S. The ring k[S]
is naturally S-graded. That is, it is a graded ring with non-zero
components only in degrees s € S.

Two important classes of numerical monoids are the classes of sym-
metric and quasi-symmetric numerical monoids. These classes of nu-
merical monoids are characterized by the fact that 7'(.S) consists of one,
respectively two, elements.

If R is the polynomial ring k[z1,... ,z,] we can define a homomor-
phism

R -2 k[S]

by xz; — t%. Since ¢ is surjective we have a kernel ker¢ = p, and
consequently an isomorphism k[S] 2 R/p. The ideal p is a prime ideal
generated by binomials.

Definition 1.2. A monoid ring k[S] = k[t*,... ,t°"] corresponding
to a positive affine monoid is called homogeneous if there is a vector
v € Q% with

si-v=1

forallie {1,...,n}.

It is well known that k[S] is homogeneous if and only if it is standard
graded with respect to the grading

(1) RIS)i = ) k(657 (65)" ),

bl=i

where |b] = by + -+ - + b, for any vector b € N™. For details, see [9,
Proposition 7.2.39].

Remark 1.3. Let S be an affine monoid. It is known that the integral

closure k[S] of k[S] in its field of fractions is precisely k[S]. For details,
see for example, [8, Proposition 7.25].
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2. Iterated Frobenius numbers. Recall from the introduction
that we assume all affine monoids S are embedded in Z¢ where d =
rank (S) is the rank of gp (S). Thus in this chapter whenever N¢ or
Z¢ occur without further explanation, d is the rank of S. Also recall
that d equals the dimension of the cone R>(.S generated by S. Positive
affine monoids S are assumed to be embedded in N¢, d = rank v.

In the sequel we will use the following partial ordering:

e If @ and b are two elements in a monoid S we say that a <g b if
and only if @ + s = b for some element s € S.

Since N4 is a monoid we obtain as a special case the familiar ordering
<n4, where for any two elements a = (a,... ,aq) and b = (by,... ,bq)
we have a <ya b if and only if a; < b; holds for every i € {1,...,d}.
Note that if a and b are elements of a positive affine monoid S and
a <g b, then a <y b.

Given an affine monoid S we defined in the introduction a set T'(S)
by
T(S)={zecegp(S); ¢S, 2+ 54 CS;}.

We may deduce that T'(S) is finite.

Lemma 2.1. Let S = (s1,...,8,) be an affine monoid. Then
|T(S)| < 0.

Proof. Let s be any non-zero element of S and consider the S-graded
ideal (t*7%; u € T(S)) of C k[S]. That T'(S) is finite follows since k[S]
is Noetherian and the minimal generators of the ideal (t57%; u € T(5))
are in one-to-one correspondence with the elements in 7°(S). The last
fact follows easily since if u; € T'(S) and ug € T'(S), then ug—us ¢ S. O

Remark 2.2. In the case of numerical monoids the above lemma yields
the fact (see Remark 1.1) that |T'(S)| equals the Cohen-Macaulay type
of k[S]. See [4] for details.

Example 1. We note that S being finitely generated need not imply
H(S) finite. Let S be the sub-monoid of N? generated by the elements

{(0,2),(1,0), (1, 1)}-
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Here T'(S) is the empty set but H(S) consists of all points (0, 2k + 1),
k e N.

Remark 2.3. For any subsets A and B of Z%, we denote by A — B the
set of differences {a — b a € A, b € B}. If the set A consists of only
one element, a say, we write a — B instead of A — B.

Let S be an affine monoid, and denote by Tp(S) = {ho,1,--- ,ho,r }
the set of maximal elements in T'(S) with respect to the partial order
<nd. We define sets T;(S) recursively as follows: assuming we have
already defined T}(S), j € {0,1,...,i — 1}, we define T;(S) to consist
of the elements z € R>0S Ngp (S) that are maximal relative <ya with
the properties

ex¢S.

e ¢ Ti(S)—S,jef0,... i1}

Remark 2.4. If T;(S) = @ for some number %, then T}(S) = @ for all
j > 1 as well. This follows readily from the definition of the sets T;(S).

Remark 2.5. Let S be an affine monoid of rank d. A finite subset
To C N? can satisfy Ty = Tp(S) only if Tp is an anti-chain in the poset
(Zd, SN"Z)‘

Example 2. Let S be the sub-monoid of N? generated by the
elements
{(1,k); k € N}.

Then T'(S) consists of all integer points on the y-axis so |T'(S)| = oo
but Tp(S) = @. According to Remark 2.5, T;(S) = @ for all ¢ > 0.

Definition 2.6. The elements in the set U;>¢T;(S) are called the
iterated Frobenius numbers of S.

We now display an important property of the iterated Frobenius
numbers.
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Proposition 2.7. Let S be a positive affine monoid with H(S) finite.

Then
7(S) = | 15(9).

=0

Proof. The elements of Ty(.S) belong to T'(S) by definition. Assume
all elements in U;;%]Tj (S) belong to T'(S) and consider an arbitrary
iterated Frobenius number h; € T;(S). If h; ¢ T(S) there is an
element s € Sy such that h; + s ¢ S;. By considering the maximal
property defining h; we conclude that h; + s € T,(S) — S for some
a € {0,...,i — 1}. This however yields a contradiction since if
ha € T,(S) and s’ € S we have

hi+s="hy—5§
R
hi=ho — (s +58) € hy — S.
Thus U,’Z()Ti(S) - T(S)

By the first part of the proof T;(S) can be non-empty only for
a finite number of integers i. Assume T;(S) = @ for j > 4. If
T'(S) # U;_oT;(S) the finite set

{mERZOSﬂgp(S); x¢ S, z¢ UT]-(S)—S}

is non-empty. This however would imply T;11(S) # @, which is a
contradiction. Thus T'(S) C U;>¢T;(S) and we are done. O

Corollary 2.8. Let S be a positive affine monoid, and assume
h; € T;(S) and hy, € Ty,(S). Then either h;+hy € S or hi+hy € T,.(S)
where 0 <7 < min{i, k}.

Proof. Assume h; + hi, ¢ S, and let s € S;. Then

hi+he+s=h;+ (hg +8)=h; +5 =5"

where s’ and s” belong to S. Hence h; + hy, € T'(S) so h; + hy, € T,.(S)
for some r > 0. It follows from the definition of the iterated Frobenius
numbers that 0 < r < min{i, k}. O
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Remark 2.9. The property in Corollary 2.8 of the iterated Frobenius
numbers will be used many times in the sequel.

Remark 2.10. For numerical monoids S the elements of the set T'(S)
are known as Pseudo-Frobenius numbers, see [6]. However, due to the
above proposition, the name iterated Frobenius numbers is motivated.

The following lemma describes for positive affine monoids T'(S) as
a subset of H(S). For numerical monoids the lemma is part of
Proposition 1.19 in [6].

Lemma 2.11. Let S be a positive affine monoid. Then we have the
following:
(i) T(S) consists of the elements of H(S) that are maximal with
respect to the partial order <g.

(i) To(S) consists of the elements of H(S) that are mazimal with
respect to the partial order <nad.

Proof. The elements of H(S) that are maximal with respect to the
partial order <g are precisely the elements that are characterized by
the fact that  + s € S for any s € S;. This proves (i). The second
assertion follows from the definition of Ty (S) and the fact that being
maximal with respect to <y« implies being maximal with respect to
<s. O

Proposition 2.12. Let S be a positive affine monoid. Then the
following are equivalent:

(i) H(S) is finite.
(ii) H(S) = (T(S) — S) N N<.
(iil) If x € H(S) there is an element s € S such that x + s € T(S).

Proof. The fact that (i) and (iii) are equivalent follows from
Lemma 2.11 and Proposition 2.7. (iii) clearly implies (ii) and (ii) im-
plies (i) since in this case H(S) lies in a bounded region of N¢. o
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Consider a positive affine monoid S with H(S) finite, and let z be
an arbitrary non-zero element in —S = {z € Z¢ —z € S}. Since
x € gp (S) we have z = s — & for some elements s and s(5) in S. Then
for any hg € Tp(S)

(2) 0<na ho <ya ho—z =ho—(s—5") = ho+s' —s =5"—s €gp(S).
Now, since H(S) is finite we have

(3) ho € To(S), ho <ne ¥,y €S =y € S,

and so hg — z € S by (2). This proves

Corollary 2.13. Let S be a positive affine monoid such that H(S)
18 finite. Then

(4) -Sc ) (ho-9).

Remark 2.14. The corollary provides a generalization of the fact that
all negative integers are in ¢ — S when S is a numerical monoid with
Frobenius number g. Also, we may view (3) as generalizing the fact
that every integer greater than the Frobenius number lies in S when S
is a numerical monoid.

It is well known that numerical monoids have Cohen-Macaulay
monoid rings, a property that does not hold in general for positive affine
monoids, in particular not if H(S) is finite non-empty and rank (S) > 2.
Indeed, Hoa and Trung have characterized the positive affine monoids
that have Cohen-Macaulay monoid rings, see Theorem 2.15 below. We
review the notions that are used in that theorem:

Let S be a positive affine monoid and denote by F;, i € {1,... ,m},
the set of facets of the cone R>¢S. Put

Si={zxe€gp(S); z+s€S, for some s € SN F;},
and S’ = N™,S;. Furthermore, for every subset J C {1,...,m} we

put
G,r=S\U s

igJ jeJ
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Finally, we let 77 be the abstract simplicial complex consisting of the
non-empty subsets I C J for which

(1SN F #{0}.

iel

Theorem 2.15 (Hoa and Trung [7]). The monoid ring of a positive
affine monoid S is Cohen-Macaulay if and only if

eS=29 and

e for every non-empty subset J C {1,... ,m}, either Gy is empty or
else the chain complex of m; has zero reduced homology, that is, 7y is
acyclic.

Remark 2.16. Let S be a numerical monoid. Then R>¢S = R,
so the only facet is {0}. Then S’ = S; = S so the first condition is
satisfied. The second condition is trivially satisfied since there are no
non-empty proper subsets of {1}. Thus follows the well-known fact
that all numerical monoids have Cohen-Macaulay monoid rings.

Remark 2.17. Assume S is a positive affine monoid and k[S] is not
Cohen-Macaulay. Then rank (S) > 2 and, as one easily sees, T'(S) C S'.

The following results, Proposition 2.19, Corollary 2.20 and Corol-
lary 2.21, are easy to come by in a purely algebraic way since the
length of the k[S]-module k[S]/k[S] is finite if H(S) is finite. However,
we prove them here using our combinatorial tools and the following
lemma.

Lemma 2.18. Let S be a positive affine monoids with rank (S) > 2,
and let F' be a facet of R>9S. Then there is a non-zero element
seSNF.

Proof. Assume S is minimally generated by {si,...,s,}, and let
R;, i € {1,...,t} be the set of one dimensional faces of R>¢S. Let
x; be any non-zero element in R;. By [3, Proposition 1.20] the finite
set of elements {z;}!_; is, up to scalar multiples, the unique set of
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minimal generators of R>¢S. Now, since {s1,...,s,} generate R>(S
we conclude that the elements z; can be chosen from S. ]

Example 3. The condition that S is finitely generated in the lemma
is crucial. Consider the monoid

S ={(n,m); n>1, m>1) C N%

The facets of R>S are the coordinate axes. Hence no non-zero element
of S can lie in a facet.

Lemma 2.18 lets us prove the following

Proposition 2.19. Let S be a positive affine monoid with rank (S) >
2 and assume H(S) is finite. Then S’ = S.

Proof. Let {Fy, ..., Fi} be the facets of R>oS, and let {wy,... ,wi}
be corresponding inner normal vectors. If z € S’ let s; € SN Fj,
i €{1,...,k}, be such that x + s; € S. Since w; - s; = 0 we see that
w; -z >0forie{l,...,k} sox liesin R>(S. But since z +s; € S it
follows that z € R>oSNgp(S)=Sso S CS.

Consider an element z € H(S). By Proposition 2.12 z = h — s for
some elements h € T(S) and s € S. Let s’ be an element in S N Fy,
for some facet Fy. Such an element s’ exists by the lemma. Now,
h—s+s =(h+s)—s=5"—secgp(S). If s —s does not already
lie in S we substitute s’ with ns’, n € N being a large integer. Then,
since H(S) is finite, we conclude that z = h — s € Sj. Since we only
have a finite number of facets, it follows that H(S) C S’ so S’ =S. ©

Corollary 2.20. Let S be a positive affine monoid with rank (S) > 2
such that k[S] is Cohen-Macaulay. Then T'(S) = @. If in addition
H(S) is finite, then H(S) = @.

Proof. Since k[S] is Cohen-Macaulay S = S’ by Theorem 2.15. If
x € T(S) we have z + s € S for all s € Sy, in particular if s € SN F;
for some facet F; of R>(S. Hence T'(S) C S’ so T'(S) must be empty.
The last claim follows from Lemma 2.11. |
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In particular, if S is as in Corollary 2.20, rank (S) = d, and H(S) is
infinite, then there are no <ya-maximal elements in H(S).

Hochster proved ([3, Theorem 6.10]) that normal affine monoids have
Cohen-Macaulay monoid rings. Using this we get

Corollary 2.21. Let S be a positive affine monoid with rank (S) > 2
such that k[S] is Cohen-Macaulay but not normal. Then H(S) is
infinite.

Let S be a positive affine monoid. If H(.S) is not finite we would like
to construct a positive affine monoid §, SCSc S, such that H(§)
is finite and T(S) = T(S). It is however not clear how to proceed to
obtain this. The last couple of results in this section, Proposition 2.24

and Proposition 2.25, provide a “partial answer” to this problem.

If S is a positive affine monoid with H(S) infinite we can always
embed S in a positive affine monoid S with H(S) finite; just take
S = S. Observe however that H(S) = @ so this choice of S is no good

if T(S) # @ since we wish for T'(S) to at least be a subset of T'(S). If
T(S) is non-empty we may however construct S so that S C S.

Lemma 2.22. Let S be a positive affine monoid with H(S) infinite
and T'(S) non-empty. Then there exists a positive affine monoid S with
H(S) finite such that S C S C S.

Proof. For any element = (x1,...,z4) €S, let |z| =1 + -+ + z4.

Put
a=1+max{|h|; h € T(S)}
and denote by H* the positive half-space
H+:{m€Rd; z1+ -+ xq>al.
Then P = R>¢S N H* is a polyhedron. Also, by construction, the
intersection
Q=R>0SNH

of the cone R>(S and the bounding hyperplane H of H*, is a convex
polytope. By [3, Proposition 1.28], P is the Minkowski sum

(5) P = Q+ RxoS.
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We claim that P Ngp (5) is finitely generated, by which we mean that
all z € PNgp(S) are positive integer combinations of a finite set
of vectors. To prove this, assume @ = conv {by,...,b:}. By (5), an
element z € P N gp (S) may be written as

(6) x=aiby + -+ by + Brsi 4+ + Busn

where > i, <, = 1land 0 < §; for all i € {1,...,t} and j €
{1,...,n}. Put S = (S, B) where B is the set of elements € PNgp (.5)
asin (6) with 0 < 3; < 1forall j € {1,...,n}. Clearly B is a bounded
set and thus B is finite. Hence S is positive affine. o

Lemma 2.23. Let S be a positive affine monoid, and let x € H(S).
Then S U {z} is a positive affine monoid if and only if 2z € S and
z e T(S).

Proof. If 2z € S and = € T(S) clearly SU{z} = (S, ) so in this case
S U{z} is a positive affine monoid. On the other hand, if SU {z} is a
positive affine monoid then, since 2z # z, 2z must belong to S and =
must belong to T'(.S). O

Proposition 2.24. Let S be a positive affine monoid with H(S)
infinite. Then there is a positive affine monoid S such that

(i)SCSCBS.

(ii) H(S) is finite.
(iii) T(S) C T(S).
(iv) To(S) = To(S).

Proof. 1f T(S) = @ we choose S = S and then S trivially satisfies
the conditions (i)—(iv). Thus assume 7°(S) is non-empty. We define a
set So by

So=SU{z€S; z £na h € T(S)}.

Adding any two elements from Sy yields a new element in Sy, so Sy is a
sub-monoid of NNd containing S. Also, Sy may differ from the positive
affine monoid S constructed in Lemma 2.22 only by a finite number
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of elements: all elements z € P Ngp (S) from Lemma 2.22 lie in S
since all such z satisfy  €na h € T(S). Thus Sy is positive affine with
H(S)) finite. It is easy to see that T'(S) C T'(Sp). If there is an element
h € To(So) \T(S) we put S1 =Sy U {h} Since 2h € Sy and h € T(So)
by Lemma 2.23 this is again a positive affine monoid with H(S7) finite
and by (3) we see that T'(S) C T(Sy). In this way we obtain in a
finite number of steps a positive affine monoid Sy with H(Sy) finite
and T'(S) C T'(S) and Tp(Sk) C T'(S). In fact, since the elements in

To(Sk) are N%-maximal in H(S}), we see that To(Sy) C Tp(S). Then
To(Sk) = To(S) since T'(S) C T(Sk). Put S = Sy and we are done. O

Proposition 2.25. Let S be a positive affine monoid with H(S)
finite, and let M C T;(S) for some i > 0. Then there exists a positive
affine monoid S such that S C S C S and Ty(S) = M.

Proof. If M = @ put S =S and we are done. Assume M # &. Then
by Lemma 2.23 and Corollary 2.8 we see that

50— (UT(®) usu @)\ m)

j<i

is a positive affine monoid and S C Sy. By Corollary 2.8 it follows that
M - T(So) Put BO = T(](So) \ M and Sl = <So,B0>. Again Sl is a
positive affine monoid. If m € M by (3) we see that {m+b; b € By} C
So and we already know that M C T'(Sp). Thus, M C T(S;) and
clearly S C Sp C Sy. Since H(S) is finite we obtain in a finite number
of steps a positive affine monoid Sy, such that S C S and M = Ty(Sk).
This in fact gives S C S C S and, by putting S = Sk, we are done. O

Question 1. Let S be a positive affine monoid and assume H(S) is
not finite. Is there always a positive affine monoid S, S C S C S, such

that H(S) is finite and T'(S) = T'(S).

Remark 2.26. Using the notation introduced in the next section, given
a positive affine monoid S with H(.S) infinite, we ask for a positive affine
monoid S € Sg(s) with T'(S) = T(S).
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3. Maximal objects in the poset Sp,. For symmetric (re-
spectively quasi-symmetric, depending on the parity of g) numerical
monoids one has that for all z € Z either z € S or else g —z € S
(respectively x € S or, g—z € S, or © = g/2), where g is the Frobenius
number of S. These two particular classes of numerical monoids are
also characterized by the following fact (see [1, 5]): a numerical monoid
S is maximal (with respect to inclusion) among the numerical monoids
with fixed Frobenius number g = ¢(S) if and only if it is symmetric
(respectively quasi-symmetric). The following lemma lets us prove a
similar result, Theorem 3.3, for positive affine monoids.

Lemma 3.1. Let S be a positive affine monoid, and assume H(S)
is finite. For any integer a > 1 and any h; € T;(S) we have

a’h; € S <= a'h; ¢ To(S).

Proof. The “only if” part is clear and the result holds for ¢ = 0.
Assume the result holds for j € {1,... ,i—1}, and consider an element
h; € T;(S). Ifa*h; ¢ Ty(S) and a’h; ¢ S, then ah; ¢ S. But h; <na ah;
so ah; € hy — S for some iterated Frobenius number h; with k& < i. But
ah; = hy — s implies that s = 0, so ah; = hy;. Now, by the induction
hypothesis, either a*hj, € S or else a®hy € Ty(S). In either case, the
equation

azhi _ alfkflakhk

yields a contradiction. ]

Note in particular that it follows from the lemma that 2°T'h; € S for
all ¢ and all h; € T;(S).

Lemma 3.2. Let S be a positive affine monoid, and assume h; €
Ti(S), i > 0, is such that 2'h; € To(S). Then i = 1.

Proof. By Corollary 2.8 we see that all multiples kh;,2 < k < 2! — 1
are iterated Frobenius numbers. Thus, we must have i + 1 = 2 which
can only hold for 7 =0 and 7 = 1. O
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Let Tp be a finite non-empty set of vector in N¢ and denote by Sz,
the set of positive affine monoids S of rank d with H(S) finite and
To(S) = Tp. Sr, is a partially ordered set with respect to inclusion.
Let S be a non-maximal element in Sp,,. According to the proof of the
following theorem, a monoid §, S C § C S, with To(S) =To = T0(§)
can be constructed.

Theorem 3.3. Let S be a positive affine monoid. Assume H(S) is
finite and put To(S) = Ty. Then S is mazimal in St, if and only if
2th; € Ty for all i and all h; € T;(S). In particular, if S is mazimal in
STO; then T(S) = T()(S) UTl(S).

Proof. Assume S is such that 2¢h; € Ty for all 7 and all h; € T;(S),
and pick an element b ¢ S, b € gp(S). Then by Proposition 2.12
b = h; — s for some element s € S and some iterated Frobenius number
h;, and thus h; € (S,b). But, then 2'h; € (S,b) so To(S) Z To((S,b))

so S is maximal in Sypy,.

Now assume S does not have the property that 2¢h; € Ty for all
i and all h; € T;(S). Then, by Lemma 3.1 (with a = 2), there
is an element h; € T(S) with 2°h; € S. Assume i = min{k €
N; exists hy, € Tx(S),2%h;, € S}. Note that this implies i > 0. Also,
put b = min{k € N; kh; € S}. If hy € (S, h;) for some hg € Tp(S)
we have hg = s + nh;, n € N. Then clearly s = 0 so hg = nh;. Here
we must have n > 1 and thus 2 < n < b < 2!. Observe that this
implies 3 < b and 2 < i. Since (b — 1)h; ¢ S, by Lemma 2.8 we have
(b—1)h; € T(S), so (b—1)h; = h, € T,(S) where 0 < r < 4. From the
equation

bh; <Nd 2(b — ].)hl = 2h7-,

we conclude that 2h, € S. This implies 7 = 0 since r > 1 would
contradict the minimality of i. Also, we may conclude that b = 3:
considering Lemma 2.8, b > 3 implies that (b — 2)h; = hs € Ts(S) for
some s > 1 and that b — 1 < 2(b — 2). But, then

(b—1)h; = ho <na 2(b— 2)h; = 2k, € S,

which contradicts the minimality of .

In summary we know that ¢ > 2, 2h; = hy € Tp(S), and that 3h; € S.
In particular this implies h; ¢ S and h; ¢ To(S) — S. Since i > 2, h; is
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not N%-maximal with the properties h; ¢ S and h; ¢ Ty(S) — S. Thus
there is a non-zero element y € N¢ such that h; +y = h; € T1(9).
Then 2(h; + y) = 2hq, but 2(h; + y) = ho + 2y € S so 2h; € S. This
again contradicts the minimality of 4.

We conclude that S C (S, h;) and Tp(S) C To((S, hi)). If Tp(S) #
To((S, hi)) we may use the same procedure as in Proposition 2.5 and
produce a positive affine monoid S with § C S and Tp(S) = Tp(5S).
Thus S is not maximal in Sg,. The fact that 7°(S) = To(S) U T1(S) if
S is maximal in S, now follows from Lemma 3.2. u]

Remark 3.4. The theorem should be compared to the situation for
numerical monoids: let S be a numerical monoid. If g = g(.5) is odd,
then S is maximal in S, if and only if T'(S) = {g}. If g is even, then S
is maximal in S, if and only if T'(S) = {(9/2), g}

Corollary 3.5. Assume S is a positive affine monoid such that H(S)
is finite and T'(S) = To(S). Then S is mazimal in St, and provides a
generalization of a symmetric numerical monoid.

Corollary 3.6. Let S be a positive affine monoid. Assume H(S) is
finite and that, for all h; € T;(S), there exist positive integers a; such
that a;h; € Tp(S). Then S is mazimal in S, .

Proof. Pick an element b € H(S). Then b € h; — S for some iterated
Frobenius number h;. Thus b = h; — s for some s € S, and it follows
that h; € (S,b). Hence, since a;h; = ho € Ty(S), To(S) € To(({S,b)) so
S is maximal in St,. O

Corollary 3.7. Let S be a positive affine monoid, and assume H(S)
is finite. If for all hg € Ty(S) the coordinates of the vector hy have no
common divisor that is even, then either S is not mazximal in Sy, (g) or

else T(S) = Ty(S).

Example 4. Let S; and S; be two numerical monoids. Put S; on
the positive z-axis and S, on the positive y-axis in N2 and fill in all
integer points in the interior of N2. This gives a positive affine monoid
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S with
T(S) = {(h,0),(0,n"); h € T(S1), h' € T(S2)}.

Proposition 3.8. Let S be a positive affine monoid. Then the
following conditions on S are equivalent.

(1) S U((To(S) = 8)) NN) =5\ Ugz1Ty(S).

(ii) For all x € SU —8 it holds that x € S or x € hg — S for some
hg € T()(S) or T € T(S)\To(S)

Proof. Taking into account Corollary 2.13 the two statements are
merely reformulations of each other. ]

Definition 3.9. A positive affine monoid as in Proposition 3.8 is
called almost symmetric.

Note in particular that H(S) is finite if S is almost symmetric.

Example 5. Let S be a numerical monoid and k¥ € N a positive
integer. Let S(k) be the positive affine monoid that consists of all
integer points in N? except points of the forms (h,i) and (0, j), where
he H(S),0<i<kand 1<j<k. Itis easy to see that

T(S(k)) = {(h,i); he T(S)i€ {0,1,... ,k}}.

S(k) is constructed by putting S on the positive z-axis of N? and then
placing k “copies” of S directly above S. By construction S(k) is almost
symmetric if S is.

Remark 3.10. One can of course do the construction of S(k) by
instead putting S in the positive y-axis and placing k “copies” of S
directly to the right of the positive y-axis.

Example 6. Let S be a numerical monoid. We construct a positive
affine monoid Sgiag by letting Saiag consist of all points (z,y) € N2
such that £ +y = s € S. One easily verifies that T'(Saiag) = {(z,v) €
N% z+y = h € T(S)}. Again by construction Sgiag is almost
symmetric if S is.
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Example 7. The following is an example of an almost symmetric
monoid S that is not derived from a numerical monoid. Let S consist
of all integer points inside N? except the 13 points

(1,0),(0,1), (1,1),(2,0),(0,2),(2,1),(1,2), (3,0), (0, 3),
(4,0),(0,4), (4,2), (2,4).

Since S = N? the above 13 points are precisely the elements of H(S).
Clearly the set of N?-maximal points inside H(S) is {(4,2), (2,4)}, and
hence Tp(S) = {(4,2),(2,4)}. A quick computation gives

To(S) = 5 ={(1,0),(0,1),(1,1),(2,0),(0,2)}.
One then easily verifies that 71(S) = {(4,
T»(S) = {(3,0),(0,3)}. Thus SU ((To(S) —

so S is almost symmetric.

Proposition 3.11. Let S be a positive affine monoid and assume
H(S) is finite. Put T7(S) = {x € T1(S); 2x € Tp(S)}. Then S is
mazimal in St (s) if and only if for all x € SU—S it holds that either
z €S, orzeTy(S)—S, orz € T{(S). In particular, if S is mazimal
in Sty(s) then S is almost symmetric.

Proof. Assume § is maximal in S7; (). In order to prove that for all
z € SU-S it holds that either z € S, or z € Tp(S) — S, or z € T{(S),
by Proposition 2.12, Corollary 2.13 and Theorem 3.3 it is sufficient to
show that every element hy — s, hy € T1(S),s € S, can be written as
ho — s, where hy € Ty(S) and s’ € S. Let hy be an arbitrary element
in T1(S). Since S is maximal in Sy, sy we know that 2h; = hg for
some hg € To(S), so hy = hg — hy. Pick any element s € S;. Then
hl—szho—(h1+8):h0—sl, s'es.

Now assume S is a positive affine monoid such that H(S) is finite
and assume that for all z € S U —S it holds that either z € S, or
xz €To(S)— S, or z € T{(S). Then

SU(To(S) — S)) N N%) =5\ T{(S)

and clearly S is maximal in S (s). o
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Remark 3.12. By Proposition 3.8 and Proposition 3.11 the class of
almost symmetric monoids as defined above, naturally generalizes the
class of almost symmetric numerical monoids, see [2] for details about
almost symmetric numerical monoids.

Corollary 3.13. Let S be an almost symmetric monoid. Then S is
mazimal in St (s) in the sense that for any monoid S’ € Sr,(s) strictly
containing S, we have |T(S")| < |T(S)|.

Corollary 3.14. Let S be an almost symmetric monoid with Ty(S) =
{ho}. Then an iterated Frobenius number h; lies in T(S)\ To(S) if and
only if hog — h; € T(S) \ To(S).

Remark 3.15. If S is as in the corollary, then the elements of
Ui>1T;(S) occur in pairs. This fact is, in case of numerical monoids,
observed already in [5].

Proof. We know that

SU ((ho — S)NN?) = U

Pick an element z € Ug>1T,(S). We see that hg — = cannot belong to
neither S nor to hg — S. Thus kg — z € Ug>1T,(S). O

Let S € St, be an almost symmetric monoid. We thus have

SU((Tp(S) — S)NNY) =3\ | J 7(S

g>1

Assume S is not maximal in Sy,. Then there exists an element
h; € T;(S) such that (S, h;) € Sg,. It is natural to ask if (S, h;) € St,
is almost symmetric. Since S = (S, h;) we clearly have

(7) (S, hs) U (To(S) — (S, hy)) NN?) = <UT \Th>

q>1
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where T}, = (S, h;) U (To(S) — (S, hi)) NN%) N (Uy>1T,). It is not hard
to see that

Th, = {hi — mhi,mhi}n, m N < U Tq(S’)>,

g>1

where h; € To(S) and 1 < m < m; = max{k € N; kh; ¢ S}.

Proposition 3.16. Let S € Sp, be an almost symmetric monoid that
is not mazimal in St,, and assume h; € T;(S) is such that (S, h;) € St,.
Then (S, h;) is almost symmetric precisely when

(Uza(s) i) (qL>J1T i) =2,

a<i

where 1 < m < m; = max{k € N; kh; ¢ S}.

Proof. 1t follows from equation (7) that

(8)  TUS,ha)) \ To((S, ki) C | T4(S) \ Th, € H((S, i),

g>1

and (S, h;) is almost symmetric precisely when the left inclusion is an
equality. If the left inclusion is strict there is an element hy € Tj(S)
with
hy, € (U T,(S)\ Th, ) \ T((S, hy)).
q>1

Since hy, € H((S, hi))\T'({S, hi)) by Proposition 2.12 there is a non-zero
element s +mh; € (S, h;) such that kg + (s + mh;) = he € T((S, hi)).
Clearly we must have s = 0 and 1 < m < m;, and hg + mh; cannot lie
in S. Thus, by Corollary 2.8, h, € T,(S) where @ < min{3, k}. Hence,
hr = ho — mh; and

(Ums)-

a<i

o (Yrinin) v

q>1
To prove the converse assume

hke< U 7u(9) - > <UT \Th>

a<i q>1
1<m<mg;
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Hence, hy has the form hy = hy — mh;. If hy € T((S, h;)) in particular
we have

(9) hg +mh; = hy = s+ kh;

for some s € S and k € N. If s = 0, then hy = (k — m)h;. This yields
a contradiction since then

(k — m)hl €S or (k — m)hz S Th,- or (k — m)hz <ne 0.

On the other hand, if s # 0 it follows from (9) that h, = s + kh; € S
which is impossible since h, € T'(S). Thus hy ¢ T'((S, h;)) and the left
inclusion in (8) is strict. o

Corollary 3.17. Let S € Sp, be an almost symmetric monoid that
is not mazimal in St,. If there is an element hy € T1(S) such that
(S,h1) € St,, then (S, h;) is almost symmetric.

Proof. This follows since any element

e (U T8\ T ) \ TS )

g>1

would by the proof of Proposition 3.16 lie in T}, , which is a contradic-
tion. u]

Corollary 3.18. Let S be an almost symmetric numerical monoid
that is not mazximal in Sysy. Then (S, h1) is almost symmetric.

Proof. The fact that S is not maximal in Sy(g) implies (g/2) <
hi. Thus 2h; € S so (S,h1) € Sy(s) and is almost symmetric by
Corollary 3.17. O

4. Apéry sets. As for numerical monoids one may define the Apéry
set of a positive affine monoid S with respect to any non-zero element
meS:

Ap(S,m)={z e S; —m ¢ S}.
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For numerical monoids the following is Proposition 7 in [5].

Proposition 4.1. Let S be a positive affine monoid and m a non-
zero element of S. Then the following conditions on an element t € Z¢
are equivalent.

(i) t —m e T(S).

(ii) t is mazimal in Ap (S, m) with respect to the partial order <g.

Proof. Assuming (i) we have ¢ = h; ; +m for some iterated Frobenius
number h; ; so, clearly, t € Ap(S,m). Let s € Sy, and consider the
element t+s—m = (h; j +m) + s —m. Since this element belongs to S
we see that ¢ is maximal in Ap (S, m). If (ii) holds, thent+ s —m € S
for every s € Sy, that is, t — m € T'(S). o

Corollary 4.2. Let S be a positive affine monoid and m € S;.. Then
there is a one-to-one correspondence between the elements of T(S) and
the elements of Ap (S, m) that are mazimal relative <g. In particular,
Ap (S, m) is finite.

Proof. This follows from Proposition 4.1. u]

Just as for numerical monoids, the set Tp(S) can be described using
Ap (S, m) for any non-zero element m € S.

Proposition 4.3. Let S be a positive affine monoid. For any non-
zero element m € S we have

To(S) = lzlax{:v € Ap(S,m)} —m.

<nd

Proof. We know that T'(S) C Ap (S,m) — m. On the other hand, all
elements in the set Ap (S, m) —m belong to H(S), so the result follows
from Lemma 2.11. o

5. Special case of numerical monoids. In this section we confine
ourselves to numerical monoids. We present here separately versions
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of a few results seen in the previous sections since in case of numerical
monoids one may say a bit more. Recall from the introduction that
in case of numerical monoid S the cardinality of the set T'(S) is called
the type of S and is denoted by type S. Also, type S equals the Cohen-
Macaulay type of k[S].

For numerical monoids S all negative integers belong to g(S)—S. The
definition of the iterated Frobenius numbers thus takes the following
form:

Definition 5.1. Let S be a numerical monoid with Frobenius
number ¢(S). Put ho(S) = g(S5), and define the iterated Frobenius
numbers h;(S) by

hi(S)=max{z € Z; x ¢ S, x ¢ h;j(S)—S,j€{0,...,i—1}}.

Remark 5.2. The number hq(.S) is the number A (S) explored already
in [5].

Since a numerical monoid is an affine monoid, we have

Proposition 5.3. Let S be a numerical monoid, and assume there
are r + 1 iterated Frobenius numbers {h,,... ,h1,g}. Then typeS =
r+1 and

T(S)={hp,... ,h1,9}

Remark 5.4. In particular we see that h; is the (i+1)st largest element
in T(S).

Observe that for numerical monoids gp (S) = Z. Using this we recall
from Proposition 3.8 that a numerical monoid satisfying the equivalent
conditions in Proposition 5.5 below, is called an almost symmetric
numerical monoid.

Proposition 5.5. Let S = (so,...,8:) be a numerical monoid
with T(S) = {hr,... ,h1,9}. Then the following conditions on S are
equivalent:
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(1) SU(Q*S):Z\{hT, ahl}
(ii) For allz € Z it holds that x € S orxz € g—S orz € {h,,... ,h1}.
)

(i) If x + y = g, then either x € S ory € S, or both x and y belong
to {hr,. .. ,hl}.

(iv) There are equally many elements in the set

0,1,...,g}\ {he,...  h1}

from S as there are from outside S.

(V) hi =S+ Cg—S4 forall0<i<r.

Proof. We first consider the case when g is odd. (i) and (ii) are
equivalent by Proposition 3.8. (ii) implies (iii) since if neither = nor y
lies in S, then = + y = g implies that neither  nor y lies in g — S and

hence both z and y lie in {h;,... ,hy}. (iii) implies (i) since for any
integer x, we have that if neither x nor g — x lies in .S, they both belong
to the set {h,,...,h1}. The fact that (iii) and (iv) are equivalent is

easily verified considering the equation z + y = g and Corollary 3.14.
Finally, by considering the equation

SU(g—8)U---U(h, — §) = Z

we see that (i) and (v) are equivalent since h; ¢ g — S for any i other
than 0.

The case g even follows in the exact same way considering Remark 5.7
and Lemma 5.8 below. ]

Remark 5.6. Proposition 5.5 partially generalizes Lemma 1 and
Lemma 3 in [5].

Remark 5.7. In order for the proof of Proposition 5.5 to go through
also in the case g even, we need to know that g/2 belongs to T'(S) in
case S satisfies the equivalent conditions (i) and (ii). Lemma 5.8 below
shows that this is the case. However, observe that g/2 does not always
belong T'(S) if g(S) is even. The numerical monoid (3,11,13) is an
example of this since ¢((3,11,13)) =10 but 5+3 =8¢ S.
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Lemma 5.8. Let S be an almost symmetric numerical monoid. Then
(i) type S is odd whenever g(S) is odd.

(ii) typeS is even whenever g(S) is even and in particular, in this
case g/2 always belongs to T(S).

Proof. Clearly we may assume S is not maximal in S;. By Corol-
lary 3.18 we know that (S, hy) is almost symmetric and Proposition 3.16
gives that T((S,h1)) = T(S) \ {g — h1, h1}. The result follows by in-
duction on 7. O

Example 8. Consider the numerical monoid S = (8,12,14,15,17,
18,21,27). We have g(S) = 19 and T'(S) = {6,9,10,13,19} so S is not
symmetric. However, NN (g —5) = {1,2,3,4,5,7,11} so we see that
S is almost symmetric.

Example 9. Consider the numerical monoid S = (4,17,18,23). We
have g(S) =19, NN(g—S) ={1,2,3,7,11,15} and T(S) = {13, 14,19}.
Since 5¢ S,5¢ g— S and 5 ¢ T(S) we conclude that S is not almost

symmetric.

Proposition 5.9. Let S = (so,...,8t) be an almost symmetric
numerical monoid with g odd (respectively even) and assume type S =
20 + 1 (respectively 2(1 + 1)). Then there exists a strict sequence of
almost symmetric numerical monoids

ScSc---CS

such that g(S) = g(S;) for all i € {1,...,l} and with S; symmetric

(respectively quasi-symmetric).

Proof. We may assume that .S is not maximal in Sy. Asin Lemma 5.8
we have T'((S, h1)) = T(S)\{g—h1, h1} and (S, hy) is almost symmetric.
The result follows by induction on r. O
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