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SPLITTING ALGEBRAS AND GYSIN HOMOMORPHISMS
DAN LAKSOV

ABSTRACT. We give three algebraic constructions of split-
ting algebras of monic polynomials with coefficients in arbi-
trary commutative rings with a unit, and of the corresponding
Gysin homomorphisms.

1. Introduction. We give three algebraic constructions of splitting
algebras of monic polynomials with coefficients in arbitrary commuta-
tive rings with a unit, and of the corresponding Gysin homomorphisms.
The first construction of splitting algebras is by induction, and is well
known (see, e.g., [2, 5, 12, 13, 15-17, 21, 22]), the second is the most
natural, via symmetric polynomials, and is a variant of the method used
by Bourbaki [2], and the third, using the division algorithm over poly-
nomial rings, was indicated to us by A. Thorup (University of Copen-
hagen), and has not appeared in the literature. We believe that all of
the constructions of Gysin homomorphisms are new. Many of the ideas
and methods used in our constructions evolved during our cooperation
with Throup. We are also thankful to Bengt Ek (The Royal Institute
of Technology, Stockholm) and Michael Shapiro (Michigan State Uni-
versity, East Lansing) for the elegant proofs of some auxiliary results.
For other treatments of Gysin homomorphisms see [1, 3, 4, 6-8, 10,
12, 13, 15-20].

The importance of having several constructions of the same object
and of the homomorphisms between them is that we in this way shed
light on the area, but also that we by comparing the constructions can
obtain interesting polynomial identities. We have not performed these
comparisons here, but leave them to the reader.

Splitting algebras and Gysin homomorphisms appear in many differ-
ent parts of mathematics. Best known is their usefulness to the coho-
mology theory of flag schemes, and in particular in Schubert calculus
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(see, e.g., [1, 3, 4, 6— 16, 19, 20]). Splitting algebras also provide a
convenient tool for the study of symmetric polynomials (see, e.g., [2,
5, 13, 19, 22]). In [5] we indicated how splitting algebras can be used
to develop Galois theory in the classical spirit. Splitting algebras can
also be used to generate error correcting codes ([12, 18]), and appear
as coordinate rings of certain Hilbert schemes of points [9].

To indicate the connection between splitting algebras and the co-
homology of flag schemes we let X be a scheme that has a bivariant
intersection ring A(X), and we let £ be a locally free Ox-module of
rank n. Denote by F = Flag% (€) the flag scheme whose S-points are
partial flags E¢ — Fq4 — - -+ — Fo, where F; is a locally free Og-module
of rank 7. Then the bivariant intersection ring A(F') of F is the d’'th
splitting algebra over A(X) of the Chern polynomial

er(E) = T — ey (E)T™ L+ - + (=1)"c, (€)

of £. Denote by G = Grass% (€) the Grassmannian whose S-points are
the surjections £ — F to a locally free Og-module of rank d. Mapping
Es = Fqg— - = Fog to Es — F4 gives a morphism F — G and a
corresponding Gysin homomorphism

9: A(F) — A(G).

Denote by &; the Chern class of the kernel of 7; — F;_; fori=1,... ,d.
Then, for all non-negative integers hq, ... , hq, we have

€™ - €3%) = det ((sh,-n15(2))is),

where the right hand side is the d x d-matrix whose (4, j)’th coordinate
is the (h; — n + j)’th Segre class of the universal Og-module Q of G.

In general, for any commutative ring A with unit, and for every monic
polynomial
p(T)=T" 1T 4+ 4 (— 1),

with coefficients in A, we have a splitting algebra Split4 (p) = A[¢1,. . .,
&4) splitting p(T') in d ordered linear factors

p(T) =(T = &) (T = &a)a(T)
and a Gysin homomorphism

9% (p) : Split (p) — A
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such that

Th  Th
e ey = Res (D1 D0,

where Res is the residue introduced in [15, 16]. We note that general
splitting algebras are not only more general than those appearing in
intersection theory in the sense that we have a theory over any ring
A, and not only over intersection rings A(X), but also that we split
any monic polynomial p(T'), and not only Chern polynomials cr(£).
The difference is most clearly visible when X is the spectrum of a field,
when we always have that cr(€) = T™.

1. Definition of splitting algebras. We first give a somewhat
exotic definition of splitting algebras as algebras representing functors.
Then we give the more usual definition via their universal properties.

1.1 Definition. Let A be a commutative ring with unit, and let
p(T)=T" —c,T" 4+ 4 (— 1),

be a polynomial in the variable 7" with coefficients in A. For d =
1,2,... ,n we have a covariant functor Splitz from A-algebras to sets
that maps a homomorphism ¢ : A — B to

Splité(B) = {splittings (op)(T) = T"—p(c1)T™ *+--+(—1)"p(cn)
=(T —by)--- (T — bq)s(T) over B where

by,...,bq is an ordered sequence of roots},
and where the map
Split? () : Split?(B) — Split?(C)
corresponding to an A-algebra homomorphism ¢ : B — C'is defined by

Splity () ((¢p) (1)) = (T — $(b1)) -+~ (T — 9 (bn)) (¥5)(T).

An A-algebra SplitdA(p) that represents the functor Splitg we call a
d’th splitting algebra for p(T) over A and if

p(T) = (T = &) - (T = &a)pas1(T)
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is the universal splitting over Split% (p) we call the ordered set of roots
&1,..., &4, the universal roots.

It is often more convenient to define splitting algebras in the following
more concrete way.

1.2 Definition. For d = 1,... ,n, a d’th splitting algebra for the
polynomial
p(T)=T" —ciT" t + - 4 (=1)"¢c,

in the variable T" with coefficients in A is an A-algebra Split‘fq (p), over
which p(T'), considered as a polynomial over Splitd (p), splits as

p(T) = (T = &) (T = Ea)patr(T),
and where Split? (p) has the following universal property:
For every A-algebra ¢ : A — B over which we have a splitting
(ep)(T) =T — p(c)T™ -+ (—1)"p(cn)
= (T =b1)--- (T = ba)s(T),

where by, ... ,b, is an ordered sequence of roots in B, there is a unique
A-algebra homomorphism

¢ : Split% (p) — B
that satisfies ¥(&;) =b; fori =1,... ,d.

We let Split% (p) = A and p(T') = pi(T). The ordered set of roots
€1,...,& of p(T) in Split%(p) we call the universal roots, and the
splitting p(T) = (T — &) -+ (T — &4)pa+1(T) we call the universal
splitting.

1.3 Remark. It is clear from the Definitions 1.1 or 1.2 that the d’th
splitting algebra is uniquely determined up to an A-algebra isomor-
phism.

2. The first construction of splitting algebras. The main
properties of splitting algebras, including their existence, are contained
in the following results.
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2.1 Proposition. Let Split(p) be a d’th splitting algebra for the
polynomial p(T) = T™ — 1 T™ 1 + -+ -+ (=1)"c,, with coefficients in A,
and with universal splitting

p(T) = (T = &) - (T = &a)para (T)-

(1) The A-algebra Splitd (p) is generated by &1,...,&q. That is,
Split4 (p) = Al&1, ... ,&4).

(2) The Split? (p)-algebra Splitd (p)[T]/(pa+1) is a (d+ 1) ’th splitting
algebra for p(T) over A with universal roots £y, ... ,€4,&q+1 where €441
is the class of T.

Proof. (1) It is clear that the A-algebra A[¢q,...,&;] has the uni-
versal property of a splitting algebra described in Definition 1.2. Since
the universal property characterizes the d’th splitting algebra up to
isomorphisms it follows that the homomorphism defined by the inclu-
sion of A[£y,...,&4] in Split?(p) is an isomorphism. That is, we have
Splitd (p) = A[&1, ... ,£4] as asserted.

(2) Let ¢ : A — B be an A-algebra over which we have a splitting

(#p(T)) = (T = b1) --- (T = bas1)s(T)

over B. We then have a unique A-algebra homomorphism X
Split4 (p) — B such that x(&) = b; for i = 1,...,d. Since multi-
plication by monic polynomials is injective in B[T] it follows from the
equality

(xp)(T) = (T = X(&1)) - - - (T = Xx(&a)) (Xpa+1)(T)
= (T =b1) (T = ba)(T = bay1)s(T)

that (Xpa+1)(T) = (T — bg+1)s(T) in the polynomial ring B[T].

Let £441 be the class of T in Split% (p)[T]/(pa+1)- Since (Xpai1)(T)
has the root b4z41 in B it follows from the universal property of
residue algebras that we can extend X uniquely to a Split‘i(p)—algebra
homomorphism ¢ : Split% (p)[€ay1] — B such that ¥(£441) = bat1-
Thus we have an A-algebra homomorphism

1/’ : A[fl,- .- 7£d+1] = A[fl, v 7£d][€d+l] — B
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that takes the values 9(&) = b; for i = 1,...,d + 1. By the first
part of the proposition % is uniquely determined by these values. Thus
Alé1, ... ,€441] is a (d + 1)’st splitting algebra for p(T') over A.

2.2 Corollary. With the notation of the proposition we have

(1) For each d = 0,1,... ,n there exists a d’th splitting algebra for
p(T) over A.

(2) A splitting algebra with universal roots &1,...,¢&q is free as an
A-module with a basis 5{“ ---{Zd forO<h;j<n—-jandj=1,...,d.

Proof. (1) The existence of the d’th splitting algebra follows from
assertion (2) of the proposition by induction on d, beginning at
Split (p) = A.

(2) This assertion also follows from assertion (2) of the proposition
by induction on d since Split%(p) = A, and since Split4™(p) =

Split? (p)[€4+1] is a free Split4 (p)-module with basis 1,€q11,. .., 51"

3. The second construction of splitting algebras. We give a
proof of the existence of splitting algebras depending on the algebraic
independence of elementary symmetric polynomials. The proof is in
the spirit of the proof for n = d in [2].

3.1 Notation. Let T1,...,T, be independent variables over the
polynomial ring A[T]. For ¢ = 1,...,n denote by C; = ¢;(Ty,...,Ty)
the ¢'th elementary symmetric polynomial in T1,...,T,, and for i =
1,...,n — d we denote by D; = ¢;(Tat1,--.,Tn) the ’th elementary
symmetric polynomial in the variables Tyyq,... ,T,.

Over the ring A[TY, ..., T,] we have a splitting

(3.1.1) T"—C/T" '+ +(-1)"C,

T-T)--(T—-Tn)

T—T)) (T —T)(T" =Dy 41 ...
+(-1)""D,,_4).

= (
=

In particular, we have that the A-algebra A[CY,...,Cp,T1,...,T4] in
A[Ty,...,T,] is equal to the A-algebra A[Dy,...,Dy 4,T4,...,Ty].
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3.2 Proposition. The residue algebra
A[Cl,... ,Cn,Tl,... ,Td]/(01 - Cl,... yCn — Cn)

is a d’th splitting algebra for p(T) over A. If &,...,&q denote the
classes of T1,...,Tq and qi,...,qn—q denote the classes of D1, ...,
D, _q4, the universal splitting is

p(T)=(T &) (T - &I @I+

(3.2.1) (i),

Proof. The existence of the splitting (3.2.1) of p(T") follows from the
equality (3.1.1), since ¢; is the class of C; for i =1,... ,n.

Let ¢ : A — B be an A-algebra over which there is a splitting
(3.2.2)
(o) (T) = (T —=b1) -+ (T =bg)(T" " =da T4 4o (= 1)y g).-

Since Ti,...,T4,Dy,...,D,_4 are algebraically independent over A
we can define an A-algebra homomorphism

X:A[Cl,... ,Cn,Tl,... ,Td] :A[Dl, yDp_q,T1,... ,Td] — B

such that X(T;) = b; fori =1,... ,dand X(D;) =d; fori =1,... ,n—d.
It follows from (3.1.1) that

T — X(C)T™ L 4 -+ (—1)"X(Cy)
= (T =by) (T =bg) (T = dy T v 4 (=1)" %, _y).

In particular it follows from (3.2.2) that we must have that X(C;) =
¢(c;) for i = 1,... ,n. Consequently the homomorphism X induces an
A-algebra homomorphism

’(/1314.[01,... ,Cn,Tl,... ,Td]/(cl—C’l,... ,Cn—Cn) — B

such that the condition (&;) = b; is fulfilled for ¢ = 1,...,d. Since
¥(C;) = ¢(c;) it follows that ¢ is uniquely determined by these
conditions. Hence the residue algebra of the proposition is a d’th
splitting algebra for p(T) over A. O
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4. The third construction of splitting algebras. In this section
we give an elementary and natural construction of splitting algebras
based upon the division algorithm over polynomial rings.

4.1 Notation. Let T1,... ,T4 be algebraically independent variables
over the polynomial ring A[T]. The division algorithm used over
A[Ty,...,T,] to the polynomial p(T') modulo the polynomial P(T) =
(T —Ty1)--- (T — Ty) gives

p(T) = (T =Ty) (T = Tq) (T = T -
(4.1.1) + (-1)"%gy_a)
+ a1 T+ rg 0T 2 4 4 g,

4.2 Proposition. The residue algebra
A[Tl, e ,Td]/(ro, e ,T‘d_l)

is a d’th splitting algebra for p(T) over A. The classes &1,... &4 of
T1,...,T4 are the universal roots and the universal splitting is

(4.2.1) p(T)= (T —&) (T = €a)pa+1(T)

where the coefficient of T* in pyy1(T) is the class of (—1)" "4 %q, 4 ;
fori=0,... , n—d-—1.

Proof. The existence of the splitting (4.2.1) follows from (4.1.1).

Let ¢ : A — B be an A-algebra over which we have a splitting
(4.2.2)
(o) (T) = (T —=b1) -+ (T =bg)(T"~* =da T o4 (=1)" V).

We define a homomorphism of A-algebras
X:A[T,... Ty — B
by x(T;) = b; for t =1,... ,d. It follows from (4.1.1) that

(Xp)(T) = (T = by) -+ (T = bg) (T4 = X(q) T L + - -
+ (*l)nidX(Qn—d))
+ X(Td_l)Td_l 4+ X(’I“())
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over B. Hence it follows from (4.2.2) that we have equalities
0=X(rg_1)=---=X(ro) and X(q;)=d; fori=1,...,n—d,
in B. Thus X factors via a unique A-algebra homomorphism
v AT, ..., Ta)/(r0,... ,74—1) — B
such that ¥(§;) =b; fori =1,...,d, and
(p)(T) = (T~ by) -+ (T  ba)($pas1)(T)

over B. We have thus that the residue algebra of the proposition is a
d’th splitting algebra for p(T") over A. O

5. Residues. We shall in this section introduce residues. Residues
are among the principal tools for studying splitting algebras.

5.1 Notation. Let
p(T)=T" —c,T" 4+ 4 (— 1),

be a polynomial in the variable 1" with coefficients in the ring A. We
define elements sq, s, ... in the ring A by the relation

l=1—-c1TH -+ (=1)"c, T*)(1 + 51T + 52T% + - --)

in the algebra of formal power series in T' over A, and we let sg = 1,
and 0 =s_1=8_9=":--.

5.2 Definition. Let g; = ---4+a; 1T +a;0+ (ail/T) + (aiz/T2) +---
fori=1,...,d be formal Laurent series in the variable 1/T. We let
aip Q2 -+ Qid
Res (g1,...,94) = det
ad1  Qd2 - Qdd

The main properties of residues are summarized in the following
results.
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5.3 Proposition. We have that Res(g1,... ,g4) is multilinear and
alternating in gi,...,94, and it is zero if at least one of the g; is a
polynomial in T'.

Proof. All the assertions follow immediately from Definition 5.2. O

5.4 Proposition. For all natural numbers hy,... ,hq we have
(5.4.1)
Shy—n+1 Shi—n+2 e Shi—n+d
Th Tha
Res( St >:det
p p
Shg—n+1 Shg—n+2 e Shg—n+d
In particular, when 0 < h; <n —j for j=1,...,d we have

Res(Thl,---,Thd> _{l when hj =n—j forj=1,...,d
p p 0 otherwise.

Proof. The first part of the proposition follows from Definition 5.2
and the equality

™ C1 Cd S1 S2
— =7t 1- = 4. 1) =E ) —h-np 4 22 4 22
» < E S e trt T

of formal Laurent series in 1/7T.

The second part follows from the first since, when 0 < h; < n —j for
j=1,...,d, the d x d-matrix (sp, ;) is upper triangular. When at
least one of the inequalities h; < n — j is strict there is a zero on the
diagonal. Otherwise all the diagonal elements are one. O

6. Two auxiliary results. To prove the result on Gysin homo-
morphisms we need the following auxiliary results on matrices. We are
thankful to Bengt Ek and Michael Shapiro for the elegant proofs of the
first parts of the results.

6.1 Lemma. Let (a;;) and (b;;) be two d x d-matrices with coordi-
nates in the ring A.
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(1) Forj=1,...,d we have

(6.1.1)

ain v+ by o+ by, v+ aw
E det : :

adl ... bdll ... bd'LJ ... add
aix - Qid
biyi -+ biyd

:E det

biji -+ bija
ad1r - Qdd

where both sums are over all indices 1 <i; < --- <i; <d.

411

(2) When
bin -+ big a2 - G1d+41
(6.1.2) : : = :
bai -+ bad g2 -+ Add+1
for some elements a1qy1,- .. ,044+1 of A we obtain for j =0,1,...
aix -+ Q1d—5; Qid—j+2 - Ald+1
(6.1.3) det :
adq1 ... Qdd—j Qdd—j+2 .- Qdd+1
air v aid
Q2 Q4yd4l
= E det
1<i<--<i;<d Q2 1 Qijd+l
aqi Qdd
(3) When

(6.1.4)

Gidy1 — C1Gid + -+ (—1)dcdai1 =0 for i=1,...

,d
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we have for j =1,...,d the equality

aix - Aid-j Q@1d—j+2 - Gld+1
(6.1.5) det .
aq1  ***  Qdd—j Qdd—j+2 *°°  Qdd+1
air - Q14
= c;det
adq1r -+ Qdd

Proof. We obtain the left and right sides of (6.1.1) by expanding the
determinant of the d x d-matrix (a;;) + T'(bi;) = (a;; + Tb;;) along
“columns,” respectively “rows,” and comparing the coefficient of T7.

When the equality (6.1.2) holds the equality (6.1.3) follows from
(6.1.1) because, on the left hand side of (6.1.1), the matrix of which we
take the determinant has columns iy and 75 +1 equal when 5 +1 < igy1,
and columns ¢; and i; 4+ 1 are equal if i; < d.

To obtain (6.1.5) under the condition (6.1.4) we substitute cya;,q4 —
c2ai,4—1+- -+ (=1)%1cqa;, 1 for a;, 411 on the left hand side of (6.1.5).

6.2 Lemma. Let d be a positive integer, and let

zi(k) - z1a(k)
(zij(k)) = : : fork=0,1,...,
za(k) - z4a(k)

be d x d-matrices with coefficients in the ring A. For k = 0,1,...,
we let Iy, be all multi-indices (kq,... ,kq) of natural numbers such that
ki +---+kqg=k.
(1) For k=0,1,..., we have
(6.2.1)
$11(k1) $1d(kd) $11(k1) $1d(k1)

> det : : = det| S

zq1(k1) -+ zqa(ka) zq1(ka) -+ qa(ka)

where both sums are over all (k1,...,kq) € Ij.
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(2) Assume that for k =0,1,..., we have

zu(k) -+ za(k) Tii4k 0 Tld+k
(6.2.2) =

za(k) -+ waa(k) Tdi+k *°°  Tdd+k

for elements z;; in A. Then

i1 - Tid-1 Tid+k
(6.2.3) det
Tdl - Tdd-1 Tdd+k
LT114+ky °°°  Tld+k;
SR Nl B
(K1, ka) €Ty Tdi+ky, 0 Tddtky
fork=0,1,....
(3) Let
x11+k51 e m1d+k1
Rp= Y det : : :
(k1,--eska) €Tk Taltky 0 Tddtky
and let ¢, ... ,c, be elements in A. Assume that
(6.2.4) Tidtk — C1Tidtk—1 + - + (—1)"CnZigyk—n =0

fori=1,...,d, and fork=n—d+1,n—d+2,.... Then we have

(6.2.5) Ry —c1Ry_1+---+(=1)*cxRy =0 fork=n—d+1,...,n.

Proof. (1) For all permutations o of {1,...,d} the monomial
To(1y1(k1) -+ To(d)d(ka) on the left hand side of (6.2.1) is equal to the
monomial 330(1)1(/6:,(1)) . -:pa(d)d(k;_(d)) on the right hand side in (6.2.1)
when k; = k;(i) fori=1,...,d. Hence (6.2.1) holds.
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(2) Under the assumption (6.2.2) the left hand side of (6.2.1) becomes
the coefficient of 7% in the determinant of the matrix

(6.2.6)
11+ 20T + 23T + -+ -+ Zrg+ 21a T + Trg00T? + -
a1 + TaoT +zg3T? + -+ -+ Tag+ Taar1 T + Tag2T? + -

For 1,2,...,d — 1 we subtract T times the (i + 1)’st column in this
matrix from the i’th column. The result is that the i’th column has
coordinates x1;, ... ,zq4;. Thus the determinant of the matrix (6.2.6) is
the determinant of

i1 0 Tig—1 Tid + Tra T+ Tigpe T+ -
(6.2.7) : :

2
T4l 0 Tdd—1 Tdd + Tad+1T + Taa42T= + - -

The coefficient of T* in the determinant of the matrix (6.2.7) is clearly
the determinant to the left of (6.2.3). Finally the right hand side of
(6.2.3) is, under the assumption (6.2.2), equal to the right hand side of
(6.2.1). Thus equation (6.2.3) follows from (6.2.1).

(3) From (6.2.3) it follows that the left hand side of (6.2.5) is

11 ' Tid-1 Tid+k
(6.2.8) det : :
Tdg1 ' Xdd—1 Tdd+k
11 *r Tid-1 Lid+k-—1
—edet| 1. : o
Tdg1i = Tdd—1 Tdd+k—1
11+ Tid-1 Tid
+ (fl)kckdet
Td1 *** Tdd—1 Tdd
T Tlae1 Tidsk — Aark—1+ o+ (=1)Ferzia
= det : :

k
Tyl 0 Tdd-1  Tdd+k — C1%ddyk-1 + -+ (—1) crqq
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The right hand side of (6.2.8) is equal to

T v Tid-1 Tid+k — CT1dtk—1 o+ (1) CnT1drk—n
det

Tal 0 Tdd-1 Tdd+k — C1Tdd+k-1+ -+ (1) CaTddrkn

when £k = n—d+1,n—d+ 2,...,n. Thus it follows from the
recursion formula (6.2.4) that the right hand side of (6.2.8) is zero for
k=n—d+1,...,n. The equations (6.2.5) thus follow from (6.2.8). O

7. Some results on residues. As a consequence of the auxiliary
results of Section 6 we obtain some useful results on residues.

7.1 Notation. Let A[Ty,...,T4] be the polynomial ring in the
independent variables Ty,... ,Ty over A. Moreover, let d be an integer
with 1 < d < n and write

P(T)=(T-T1)-- (T - Tu)
in A[Ty, ..., Ty, and
p(T)=T" —ciT" t + -+ (=1)"¢c,

in A[T]. We denote by U; = s;(T1,... ,T4) the i’th complete symmetric
polynomial in Ty, ... ,Ty for i = 0,1,..., and we let U; = 0 for ¢ < 0.
Ford=1,... ,n we write

‘/j = Un—d+j - CIUvn—d-ﬁ—j—l + e+ (*l)nCnUn—d-i—j—n
=Up-arj — 1Un—arj—1 + -+ (=1)"" e, 4.0y,

for j=1,...,d. Then

EZTnd(lc_1+...+(1)nc_”><l+ﬂ+@+...>

n 2
(7.1.1) P T T r T
I S S/
B T 17 T '
7.2 Proposition. Let g; = --- + (ai1/T) + (aw/T?) + --- +

(aiq/T?) +--- fori=1,...,d be formal Laurent series in 1/T, and let
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9gd+1 = """ + (al/T) + (ag/T2) + -+ (ad+1/Td+1) + e Then
d .
Res (g1, ,9a11) = »_(—1)aa_jn
j=0

Z Res (g1, ,TGiyy -+, TGij5--- 9d)-

1<i;<---<i;<d

Proof. Expand the determinant Res (g1, ... ,g4+1) along the last row.
‘We obtain

d
(7.2.1) Res (g1,--- ,9a+1) = »_(—1)aa_j114;

=0

where A; is the determinant to the left of (6.1.3). Since T'grx =
oot (ag2/T) + (ars/T?) +- - -+ (agay1/T?) +- - - we obtain from (6.1.3)
that

Aj = Z Res(gl,...,Tgil,...,Tgij,...,gd).
1<y <+ <i;<d

Thus the proposition follows from (7.2.1). O

7.3 Proposition. Let
pd(p) : A[Tla v aTd] — A

be the A-linear homomorphism determined by

op) (Fo(T1) - Fa(T2)) = Res (f; %)

for all polynomials f1(T),...,fa(T) in A[T]. Then we have, for all
natural numbers hy, ..., hq, that

P () (Un—ap TP - T5)
— c1p*(P) Un—apj TP - Th) + -+
+ (=1)" ey aript(p) UoT™ -+ Th4) =0

forj=1,...,d.
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Proof. Let I consist of all multiindices (ki1,...,kq) of natural
numbers such that k; + -+ 4+ kg = k. Then, for all natural numbers
hi,...,hq we have

(7.3.1)
Thitk: Tha+tka
h h
pd(p)(Un—d+jT11 o Tyd) = Z Res< Y >
(k1o ka)E€ELn—at; p p
Let
T1j = Shy—n+js- -+ >Tdj = Sh;—n+; for all integers j.
Then
Th1+k1 Thd+kd Tikat1l  *7° Lhy+d
Res ( e > = : :
p p
mdderl Tt xdderd

Thus, in the notation of Lemma 6.2 (3) and with k = n —d+ j we have

Thitk Thatka
a2 Rea- Y me(ToETEE)
(k1,--ska)E€ETn_atj p b

Moreover,
n
Tintj — C1Tintj—1+ -+ (=1)"cnzsj
= Shy4j — C18hi+j—1 +  + (=1)"cnsh,—nyj =0

for j =1,2,.... Thus it follows from Lemma 6.2 (3) with k =n—d+j
that

(7.3.3)

Ry _q1j—cRp_gyj_1+---+ (71)n7d+jcn_d+jR0 forj=1,...,d.

We obtain from (7.3.1) and (7.3.2) that
Pd(p)(Un—CH—jTlhl e 'Tg}zld) = Rn_da4j

and the proposition follows from (7.3.3). o

7.4 Proposition. Let

p(T) = P(T)q(T) +rg_ 1T "+ + rgT°
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be the result of using the division algorithm in A[Th,...,Ty] to the
polynomial p(T") modulo P(T). Then

Td— 1 Td—i—i—l

P Td—i—l TO
7.4.1 _i=R ey , =, ey —
(741) 14 s ( P P PP P
fori=1,...,d.
In particular, the ideal in A[Ty,... ,T4] generated by the elements
ro,T1,-.. ,Td—1 S generated by the elements

Vi =Un—atj — c1Un—arjo1 + -+ (=1)" en_qy;Us

forj=1,...,d.

Proof. We have by Proposition 5.4 that Res ((T%~Y/P),...,(T°/P))=
1. The first part of the proposition follows since (p/P) = ¢(T) +
ra—1(T?1/P)+---+ro(T°/P) by (7.1.1), and since Res is A[T%, . . ., Ty-
linear, alternating, and zero if one of the factors is a polynomial.

Since (T9~%/P) = (Uy/T?)+(Uy/TH1)+--- fori =1,... ,d it follows
from (7.1.1) and (7.4.1) that

Uy - U2 U U ... Ug
0 -+ Uy U1 Uz - Ui-ipa

ras=|V - Vi Vi Vi .- Va
0 --- 0 0 Usd - Usy1
0 -~ 0 0 0o ... Uy

Hence we have rg_1 = Vi, rq_o = Vo+Was, ... , 19 = Vg+ Wy, where W;
lies in the ideal in A[T},...,Ty] generated by Vi, Va,...,Vi_1. i

8. First construction of Gysin homomorphisms. We give a
proof based upon the first construction of splitting algebras.

8.1 Theorem. Let p(T) = T" — ;7" ' + .-+ + (=1)"c, be a
polynomial in the variable T with coefficients in the ring A, and let
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Split? (p) = A[€1,... ,E4] be a d’th splitting algebra for p(T) over A
with universal splitting

p(T) = (T = &) (T = Ea)pat1(T).
Then there is an A-module homomorphism
% p): Aley,... &) — A

determined by 0“(9) (f1(€1) - fa(€a)) = Res (f1/0)s- - » (Ja/p)) for al
collections of polynomials f1(T),... , fa(T) in A[T)].

In particular, on the basis of Corollary 2.2 for the A-module Al&,. . .,
&4), it takes the value

1 whenh;=n—jforj=1,...,d
€1 ={ ) ororae ahenOen

0 otherwise when 0<h;<n —j for j=1,...,d.

Proof. We prove the assertion by induction on d. For d = 0 it is clear.
Assume that we have an A-module homomorphism

d%p) : Aléy,... &) — A

satisfying the properties of the theorem. We shall show how to obtain
an A-linear homomorphism

8d+1(p) : A[gla v 7£d+1] — A

satisfying the properties of the theorem for d + 1.

Since Res(g) = 0 when ¢(T') is a polynomial, we have, with the
notation of Proposition 2.1 an A[¢y,. .. ,{4]-module homomorphism

6, : A[g]_,. .. 7£d+1] = A[g]_,. .. ,ﬁd][T]/(Pd+1) — A[g]_,. .. 7£d]

such that 0'(fa+1(€a+1)) = Res (fa+1/pa+1) for all fui1(T) in A[T).

We now show that the composite A-module homomorphism

0" (p) = 0% (p)0' : Aly, ... €ara] — A
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satisfies the properties of the homomorphism of the theorem with d+1
instead of d. Since 9%t1(p) = 9%(p)d’ is linear in fz,1(7) we can
assume that f;,1(7") = 1" for some non-negative integer i.

Let tg,... ,tq be the elementary symmetric polynomials in variables
T1,...,T4 evaluated at the elements £1,... ,&;. We have
T (T &) (T &)
Pd+1 p
i+d— 131 2 1, S2
—itd-n(q_ 22 4 ()2 ) (122 22y
( T + 4+ (1) Td + T + T2 + )

and thus

Ti
Res ( > = Sitd—n+1 — tiSitd—n + (=) *aSita—n—dt1-

Pd+1

Consequently,

(8.1.1)
f d
d+1 i

fi(&) - 'fd(Ed)ReS(—+> = Z(*l)]si+d—n+1—jtjf1(§1) -+ fa(&a)-
Pd+1 s

Since t; = Zl<i1<---<ij<d£i1€i1 ---&;, we obtain, by the induction

assumption, - -

0% (p)(t; fr(1) -+ fala))
= Z Res(ﬁ % T—f” &>

v S <a p P P P
Consequently we obtain from (8.1.1) that
(8:12) 9%(p)(f1(&r) -~ fa(€a)? (far1(Earn)))
— o) (e suteares (143

d
=3 (1Y sivamni1;

Z Res(ﬁ... % T—f” E)

1<iy << <d p p p p
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By Proposition 7.2 the right hand side of (8.1.2) is Res((f1/p),- .-,
(fa+1/p)) with fqy1 = T%. Thus 941 (p) = 0%(p)d’ gives an A-module
homomorphism as asserted in the theorem.

The asserted values on the A-module basis of A[y, ... ,&441] follow
from Proposition 5.4. ]

9. Second construction of Gysin homomorphisms. We
prove a result that with the second construction of splitting algebras
immediately implies the existence of Gysin homomorphisms.

As in Theorem 10.1 we shall use that if we let

Th  The
n h1 h _
p p T ...Tnm _Res( sttt >
(p)(Th ) ’ ’
for all monomials in A[ty,...,T,] we obtain, extending by A-linearity,

an A-linear homomorphism p"(p) : A[Iy,...,T,] — A such that
p"(p)(f1(Th) -~ fa(Tn)) = Res ((f1/p), - -, (fn/P))-

9.1 Theorem. Let
pn(p) : A[Tla s 7Tn] — A
be the A-module homomorphism determined by
n f fn
p"(p)(f1(T1) - fn(Tn)) = Res (ﬁ, '

for all polynomials f1(T),..., fn(T) in A[T]. Then p™(p) vanishes on
the ideal in A[Th, ... ,T,] generated by the polynomials ¢y —C1, ... ,cn—
C,.

Proof. We must prove that for all natural numbers hy,...,h, we
have

p"(p)(Tlh1 ---TS"CJ’) = cjp"(p)(Tlh1 ---T:;") forj=1,...,n.
However,

(9.1.1)  p"(p)(T7* -+ Ty ey)

Th1 Thi; +1 Thij+1 Thn
= Z Res< ey ey ey )
1<iy<--<i;<d p p p p
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Let
G1; = Shy—ntiy--+ y0ni = Sh,—n+; for all integers i.
Then
Thl Thi1+1 Thij+1 Th"
Res e e RN
p p p p

a1 A1n
a’i12 T a’il’nJrl
aij2 Tt aijn+1
an1 Tt Ann

From Lemma 6.1 (2) we obtain

air ccc Qin—j Qiln—j4+2 ' QAlnit1l
(9.1.2)  det
an1 ot annfj ann7j+2 e Apn+1
Thl Th1+1 Th_7+1 Thd
= Z Res yre e s .
p p p p

1<iy <+ <;<d
Since
n
Aint1—C1@in+ - +(—1)"cnain =sn,41—c18h,+ +(—1)"CnSh;—n+1=0,

for i =1,...,n we obtain from Lemma 6.1 (3) that the left hand side
of (9.1.2) is equal to

aii o A1n Shy—n+1 o Shi—n+n
cjdet Lo = c;det :
anl P ann Shnf’nJrl o ShnfnJrn
T Th»
= c;jRes yT .
p p

Thus the theorem follows from (9.1.1) and (9.1.2). O
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9.2 Remark. The theorem together with the second construction for
n = d gives the Gysin homomorphism

6n(p) : A[fl, v 7‘£n] — A
when n = d. To obtain the Gysin homomorphism
% (p) : AlGr,... ,&a) — A

we note that by the construction of Proposition 2.1 (2), or by Corollary
2.2 (2) we have an injective homomorphism of A-modules

U:A[gla"' 7£d] —>A[§17 76"]

given by u(f1(&1) -+ fa(€a)) = f1(&1) -~ fa(€a)Egri " -+ € for all col-
lections of polynomials f1(T),. .., fa(T) in A[T]. Then

0" (p)u(fr(&1) -+~ fa(€a)) = 0" (p)(f1(&1) - -~ fal€a) iy -+ €0)

(fl fa T T0>
=Res|—,...,—, seee,— |-
p p p p

However, it is clear that
Tn—d—l TO
Res<ﬁ,... ,&> ~ Res (é o T ,_>.
p p p p p p

Hence, the A-module homomorphism
6n(p)u : A[Ela s 7§d] — A

satisfies

0" (p)u(f1(&1) - - fa(£q)) = Res <%, ... ,%)

Hence 9%(p) = 0"(p)u is the Gysin homomorphism we wanted to
construct.

10. Third construction of Gysin homomorphisms. We prove a
result that with the third construction of splitting algebras immediately
implies the existence of Gysin homomorphisms.
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10.1 Theorem. Let
pd(p) : A[Tla s 7Td] — A

be the A-module homomorphism that is determined by

P D) (F1(T2) - fa(T)) = Res (% %)

for all polynomials fi(T), ..., fa(T) in A[T]. Then p®(p) is zero on the
ideal generated by the elements r4_; = Res (T*~'/P),...,(T* "1 /P),
(p/P), (T4 "1/P),... ,(T°/P)) fori=1,...,d.

Proof. We use the notation of Section 7. It follows from Proposi-
tion 7.4 that it suffices to show that p%(p) is zero on the ideal generated
by V; for j =1,...,d. That is, it is zero on the elements V]-Tlh1 ---T:d
for all natural numbers hy,... ,hq, and j = 1,... ,d. In other words,
with the notation of 7.1, it suffices to show that

P (0) Un—aig T - T3") — c1p(p) (Un—asja T1* -+~ Ty?) + -
+ ()" e, g ot (p)(UTy - Th*) =0 forj=1,...,d.

However, this follows from Proposition 7.3. o
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