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SHORT KOSZUL MODULES
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ABSTRACT. This article is concerned with graded modules
M with linear resolutions over a standard graded algebra R.
It is proved that if such an M has Hilbert series Hps(s) of the
form ps®+qs®t1, then the algebra R is Koszul; if, in addition,
M has constant Betti numbers, then Hg(s) = 1+es+(e—1)s2.
When Hg(s) = 1+es+rs? withr < e—1, and R is Gorenstein
ore =1+ 1 < 3, it is proved that generic R-modules with
g < (e — 1)p are linear.

Introduction. We study homological properties of graded modules
over a standard graded commutative algebra R over a field k; recall
that this means that Ry equals k£ and R is generated over k by finitely
many elements of degree one.

Unless R is a polynomial ring, any general statement about R-
modules necessarily concerns modules of infinite projective dimension.
Various attractive conjectures have been based on expectations that ho-
mological properties of modules of finite projective dimension extend—in
appropriate form—to all modules.

It is remarkable that several such conjectures have been refuted by
using modules M, whose infinite minimal free resolution display the
simplest numerical pattern: the graded Betti numbers ﬁg (M) are zero
for all j # i (that is to say, M is Koszul), and B{%(M) = p for some
p > 1 and all i > 0; see [11, 15, 16]. Furthermore, in those examples
both R and M have special properties: R is a Koszul algebra, meaning
that k is a Koszul module, the Hilbert series Hr(s) =3 ;.5 ranky R, s
has the form 1 + es + (e — 1)s%, and one has Hys(s) = p + (e — 1)ps.
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This is a striking amalgamation of structural and numerical restric-
tions. The following result, extracted from Theorems 1.6 and 4.1 (1),
shows that it is inevitable.

Theorem 1. Let R be a standard graded algebra and M a non-zero
R-module.

If Mj =0 for 5 #0,1 and M is Koszul, then R is a Koszul algebra.
If, furthermore, B% (M) = p for some p and all i > 0, then

Hp(s)=(1+s) - (1+(e—1)s) and Hpy(s)=p-(1+ (e—1)s).

The main themes of the paper are to find conditions when such
modules actually exist, and to establish whether they display some
“generic” behavior. An important step is to identify a set-up where
similar questions may be stated in meaningful terms and answers can
be tested against existing examples.

Much of the discussion is carried out in the broader framework of
Koszul modules over Koszul algebras. Conca, Trung and Valla [7]
proved that if R is a Koszul algebra with Hg(s) = 1 + es + rs?, then
e? > 4r holds, and that generic quadratic algebras R satisfying this
inequality are Koszul.

To analyze the restrictions imposed on M by Theorem 1, we fix a
Koszul algebra R with Hg(s) = 1+es+rs? and use multiplication tables
to parametrize the R-modules with underlying vector space kP ®k9(—1);
see Section 2. This identifies such modules with the points of the affine
space Mepxq(k) of ep x ¢ matrices with elements in k, equipped with
the Zariski topology.

We study the following questions concerning the subset Ly 4(R) C
Mepyq(E) corresponding to Koszul R-modules: When is Ly, o(R) non-
empty? When is its interior non-empty? Recall that, in a topological
space, the interior of a subset X is the largest open set contained in
X; in M,y q(k) every subset with non-empty interior is dense, because
affine spaces are irreducible.

It is not hard to show that 2¢ < (e + ve2 —4r)p is a necessary
condition for Lj,, to be non-empty; see Corollary 1.7. To establish
sufficient conditions, we assume that e > r 4+ 1 holds. Conca [5]
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proved that, generically, algebras R satisfying this inequality contain
an element x € R; with 2> = 0 and zR; = R». In an earlier paper, [2],
we called such an x a Conca generator of R and demonstrated that the
existence of one impacts the structure of the minimal free resolutions
of every R-module. The results of [2] are widely used here.

The following statement is condensed from Propositions 5.4, 5.5 and
5.6. Its proof depends on the study, in Section 3, of the loci Ly (R) of
modules whose minimal free resolution is linear for the first m steps.

Theorem 2. Let R be a standard graded algebra with a Conca
generator.

For p,q € N the linear locus Ly, (R) of Mepxq(k) is not empty when
g < (e = 1)p, and has a non-empty interior when ¢ < max{e — 1,

(e —7)p}.

In the motivating case when Hg(s) = 1+ es + (e — 1)s2, Theorem 2
shows that generically Ly, (c—1),(R) is not empty. Computer experi-
ments suggest that even its interior may be non-empty. Indeed, letting

8-;-1 _ (6
forms and M an R-module presented by a “random” p x p matrix of lin-

ear forms in xy, ... , T, one gets ﬂg(M) =0for j # i and ﬂﬁ(M) =p
with unsettling frequency and for “large” values of i.

R be a quotient of k[z1,... ,z.] by ( —1) “random” quadratic

In the next theorem, contained in Propositions 6.3 and 6.4, we
describe algebras with non-empty open sets of linear modules, under
mild hypotheses on k.

Theorem 3. Let R be a short standard graded k-algebra.

If R is Gorenstein, then for all pairs (p,q) with p > 1 the set L, 4(R)
is open in Mepxq(k); it is not empty when ¢ < (e — 1)p and there
exists a non-zero element x € Ry with x® = 0 (in particular, when k is
algebraically closed).

If R is quadratic with Hr(s) = 1+ es + (e — 1)s? and e < 3, then
for all p > 1 the set Ly, (c_1),(R) is open in Mepy (o—1)p(k), and is not
empty if k is infinite.

For R as in the last statement of Theorem 3, the R-modules in
L, (c—1)p(R) are described as those that are periodic of period 2, see
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Section 4. Over rings with e > 4, these classes may be distinct, and
new ones appear; see [11, 16].

The generic behavior of Koszul modules with constant Betti numbers

over a generic Koszul algebra R with Hg(s) = 1 + 4s + 3s? still is a
mystery.

Notation. Let (R,m,k) be a graded algebra; in this paper, the
phrase introduces the following hypotheses and notation: k is a field,
R = ®jczR; is a commutative graded k-algebra finitely generated over
Ry=k, Rj=0for j <0and m = ®;>1R;.

Let M = ®jczM; be a graded R-module, here always assumed
finite. For every d € Z, we let M(d) denote the graded R-modules
M(d); = Mj,q for each j. Set:

inf M =inf{j € Z | M; # 0},
Hy(s)= > (rank;M;)s’ € Z((s)).
j=inf M
The formal Laurent series above is the Hilbert series of M.

It is implicitly assumed that homomorphisms of graded R-modules
preserve degrees. In this category, the free modules are isomorphic to
direct sums of copies of R(d), with various d. Every graded R-module
M has a minimal free resolution

F = ---—>Fn&$Fn,1—>---—>F184F0—>0

with each F), finite free and 9,,(F,,) C mF,_;. Computing with it, one
gets

Extly (M, k) = @D Extly (M, k) = Homy,((F;/mF;);, k) for each i > 0.
JEZ

Composition products turn & = &, ;>0Ext% (k, k)7 into a bigraded
k-algebra, and M = @, jezExty (M, k)7 into a bigraded £-module.

The (i, 7)th graded Betti number of M is defined to be

fj(M) = rank,Ext% (M, k)7.



KOSZUL MODULES 253

The graded Poincaré series of M over R is the formal power series

Pli(s,t) =Y B(M) st € Z[s*][[¢]].
i€EN
JEZ

We also use non-graded versions of these notions, namely
BR() =Y B (M)
J€Z
and

Py (t) = Z/&R(M)ti = Pyi(1,t) € Z[[t].

1. Short linear modules and Koszul algebras. In this section
(R, m, k) is a graded algebra. We recall the definitions of the algebras
and modules of principal interest for this paper; see [9, 19] for details.

1.1. We say that an R-module M is linear if it is graded and
5(M) = 0 holds for all j — i # d and some d € Z; in case M # 0 one
has d = inf M, and M is generated in degree d. It is well known that
M is linear if and only it satisfies

(1.1.1) P (s,t)- Hr(—st) = (—t) “Hps(—st).
A linear module M with inf M = 0 is also called a Koszul module.

1.2. The algebra R is Koszul if k is a linear R-module; the equalities
B3 (m) = Bf;(k) show that then R is standard; that is, it is generated
over k by elements of degree 1. It is well known, see [3, 1.16], that R
is Koszul if and only if it satisfies

(1.2.1) PE(t)- Hr(—t) =1,

if and only if the k-algebra € is generated by £!'1; see [18, Theorem
1.2] or [19, Chapter 2, Section 1].
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We frequently refer to the following criterion:

1.3. If @ is a standard graded k-algebra and g is a non-zero divisor in
Q1 or Q2, then @ and Q/(g) are Koszul simultaneously, see [3, Theorem
4(e) (iv)] or [19, 6.3].

To link linearity of M to linearity of k, we recall a construction.

1.4. Let M # 0 be a graded R-module, and set d = inf M. The
trivial extension R x M has R @® M(d — 1) as graded k-spaces, and

(r1,ma) - (ro, ma) = (r1re, rime + romq)
for all r; € R and m; € M(d —1).

Setting mx M = m@® M (d—1), we get a graded k-algebra (R x M, m x
M, k).

One has R x M = R x (M(n)) for every n € bfZ, and the following
equality holds:

(1.4.1) Hpwn(s) = Hr(s) + s" " Hy(s).

The graded version of a result of Gulliksen, see [14, Theorem 2], reads

Pl(s,t)
1.4.2 PRM (g 1) = k 22 )
( ) e (s1) 1 — st=9¢tPli(s,t)

The implication (i) = (ii) in the next proposition is obtained in
[19, Chapter 2, 5.5] by a different argument, which also works in a
non-commutative situation.

Proposition 1.5. Let (R, m, k) be a graded algebra and M a graded
R-module.

The following statements then are equivalent:
(i) R is a Koszul algebra and M is linear.

(ii) R x M is a Koszul algebra.
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(iii) R is a Koszul algebra, and for some d € Z one has

Pyi(t) - Hr(~t) = (=) "Hu(-1).

Proof. (i) = (iii). The desired equality is obtained from (1.1.1) by
setting s = 1.

(iif) = (ii). Comparing the orders of the formal Laurent series in
(iii), one gets d = inf M. In the following string of equalities, the first
one comes from setting s = 1in (1.4.2), the second from the hypothesis,
the last one from (1.4.1).

PRXM (1) = PR(t) - ——

T Hpwa(—t)

By (1.2.1), the composite equality implies that R x M is Koszul.

(i) = (i). The evident homomorphisms R —+ R x M — R of
graded algebras compose to the identity. As Ext’(k, k)’ is a functor of
the ring argument, Ext%(k, k)? is a direct summand of Extt,, ,,(k, k)7.
Thus, R is Koszul, so both P{(s,t) and P**(s,t) can be written as
formal power series in st. The equality

Pl = s 2 (1= o),

st PREM (s ¢

which comes from (1.4.2), gives ﬂf’j](M) =0 for j — i # d; thus, M is
linear. ]

A graded R-module M is short if Hyr(s) = (p+gs)s? for some d € Z.
Koszul algebras have short linear modules, for % is one, by definition.
Conversely:
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Theorem 1.6. Let R be a standard graded algebra.
If R has a linear module M +# 0 that is short, then R is Koszul.

Proof. Let € : R/m? — k denote the canonical surjection. Roos [20,
Corollary 1, page 291] proves that Ker (Ext},(¢,k)) is the subalgebra
of & = Ext}(k, k) generated by Exth(k, k), so it suffices to prove that
Ext’ (e, k)7 = 0 holds for all i, j; see 1.2.

Replacing M with M (d), we may assume that M is Koszul. In an

exact sequence
0—N—R —M-—0

of graded modules with mNN C R®, one has mN = Nz2=RY, = m2R"
because N; generates N and My = 0. Thus, we get a commutative
diagram with exact rows

0 mJN T (R/m?)> ——— 0
0 N R’ M 0

It induces the square in the following commutative diagram, where the
factorization (R/m2)® — M — k® of € : (R/m?)® — k® induces the
triangle:

Ext,((R/m?)", k) «—— Bxtis!(mN, k)?

Ext%(sb,ky

Ext, (kb k)

Exth (M, k) «—— Bxt’, }(N, k)7

One has E}gtgl(N, k)7 = 0 for j # i by isomorphism in the bottom
row, and Ext’, ' (mN, k)! = 0 because inf (mN') = 2, so the vertical map
on the right is zero. Now the diagram implies Ext% (g%, k) = 0, whence
Ext’ (e, k) = 0. o
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We say that an algebra R is short when R; = 0 for ¢ > 3.

Existence of linear modules imposes numerical constraints on short
algebras.

Corollary 1.7. Let R be a standard graded with Hg(s) = 1+es+rs?,
and set

u=(e—Vve2—4r)/2 and v=(e+Ve?—4r)/2.

If there exists a non-free linear R-module, then R is Koszul and
e > 4r holds.

If M is a linear R-module with Hy(s) = ps? +qs?t! and p # 0, then
q < vp.

If, furthermore, ¢ = vp, then u and v are integers, and there is an
equality

Proof. Let N be a non-free linear R-module, and set j = inf ().
One then has 0 # Qf(N) € mR"(—j), so N is short, non-zero and
linear. Theorem 1.6 shows that R is Koszul, and then e? > 47 holds
by Conca, Trung and Valla [7, 3.4].

When Hy(s) = ps? + gs?tL, from formula (1.1.1) we get

s'p—gqst) __ s'(p—ast)

Pii(s,t) = :
(5, 1) 1—est+rst2 (1 — ust)(l— vst)

Prime fraction decomposition yields real numbers a and b, such that

R 513" o (au® + bot)(st)! when e? > 4r,
PM(sa t) = d éo i . i i 2
s> 2 olavt +b(i + 1)v*)(st)" when e = 4r.
As M is not free, the coefficient of s?(st) is positive for each i > 0,
hence b > 0.

When e? > 4r one has a + b = p and av + bu = ¢, and hence
pv = q+b(v —u) > q. When €? = 47 holds, a + b = p and av = q give
pv=q+bv=>gq
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Assume pv = ¢q. In both cases one then has b = 0, which means
Pf(s,t) = ps?(1 —ust) L. This implies that u is an integer, and hence
soisv=e—u. m]

We illustrate the tightness of the hypotheses in the last two results:

Example 1.8. Let k be a field and set R = k[z,y]/(2?,3>).

The algebra R satisfies R; = 0 for ¢ > 4, and the R-module
M = R/zR is non-free, linear, with M,, = 0 for n # 0,1, 2. However,
R is not Koszul.

Remark 1.9. If V is a generic k-subspace of codimension r in the
space of quadrics in k[zi,...,z.]. By [7, 3.1], €2 > 4r implies that
Elz1,...,ze]/(V) is short and Koszul; the converse also holds, due to
Froberg and Lofwall [10, 7.1].

Partial versions of the Koszul property are also of interest.

We say that an R-module M is m-step linear for some integer m > 0
if it satisfies ij (M) =0 for all j # ¢+ inf M with ¢ < m. Thus, 0-step
linear means that M is generated in a single degree, and 1-step linear
means that, in addition, it has a free presentation with a presenting
matrix of linear forms.

Proposition 1.10. Let R be a Koszul algebra and M an R-module
with infM = 0.

For every non-negative integer m the following conditions are equiv-
alent.

(i) M is m-step linear.
(ii) PE(s,t) = Hy(—st) - Hr(—st)™' (mod t™*1).
When R is short, they are also equivalent to
(iii) Byt pmy1 (M) = 0.

Proof. (i) = (ii). By hypothesis, there is an exact sequence

0—L— R(-m)’ — ... 5 R(-1) 5 R - M =0
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of R-modules with b; = ﬁ(M) fori <m,and L; =0 for j < m. It
yields

m

Hy(s) =Y (=1)'bis'Hr(s) + (1) HL(s).
=0
Dividing this equality by Hg(s) and replacing s with —st, one gets (ii).

(i) = (i) = (iii). These implications hold by definition.

(iif) = (ii). Let & be the bigraded algebra Ext},(k, k) and M its
bigraded module Ext},(M, k). Write (M)* for the bigraded k-vector
space with Homy (Mo, k) in bidegree (0,0) and 0 elsewhere, and (M;)*
for that with Homy (M, k) in bidegree (1,1) and 0 elsewhere. Graded
versions of [2, 2.4, 2.5] yield an exact sequence

0> F=EQ, (M) = (EQk (My)")DEF > M =0

of bigraded £-modules, where F is free, and (XF)%/ = Fitli,

One has €%/ = 0 for i # j, because R is Koszul, and F = 0 for
i # j, because of the inclusion F C & ®; (My)*. Set r; = rank;F"!.
The exact sequence gives

1 oo
Plo) = Huu(st) 20+ (14 1) - S o0t
1=0
Since R is Koszul, (1.1.1) gives P{(s,t) = Hp(—st)™1, so the formula

above yields

Pli(s,t) — Hyr(—st) - Hg(—st) ™! = Z(rl + sr141) (st)".

=0

~

As £ #£ 0 for i > 0 and F is a free £-module, 7, = 0 means r; = 0 for
1 <lI. O

2. Parametrizing short modules. In this section R is a standard
graded algebra with Ry # 0 and x4, ...,z a fixed k-basis of R;. Let
p be a positive integer and g a non-negative one. The goal here is to
describe a convenient parameter space for modules with Hilbert series
p+gs.
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2.1. Let {un}nen and {vs}ren be the standard bases of the vector
spaces k(™) and k(™) (—1), respectively. For each pair (p,q) of non-
negative integers, let k”*¢ denote the k-linear span in (™) @ (k™) (1))
of {ug,...,up}U{vr,... 04}

Note that one has kP¢ C kP9 for p < p' and ¢ < ¢

2.2. Let [1,p] denote the set {1,...,p} of natural numbers with the
natural order, and order the elements of [1, €] x [1,p] lexicographically:

(2.2.1) (Ln)<(,n') = I<lor(l=10"andn<n).

For g > 1 we let M, q(k) denote the set of epx g matrices with entries
in k, with rows indexed by the elements of [1, e] x [1, p] and columns by
those of [1,q]. We identify Mepxq(k) with the affine space AP? over
k, endowed with the Zariski topology; by convention, we extend this
identification to the case ¢ = 0.

For every subset s C [1,e] X [1,p] and C' € Mepxq(k), let Cs denote
the |s| x ¢ submatrix of C' with rows indexed by s; thus C( ) is the
(I,n)th row of C.

When [s| = ¢, we form the following collection of matrices:
(2.2.2) Mepsq(k)(s) = {C € Mepxq(k) | det (Cs) # 0}

This is a basic open subset of Me,x4(k), which is empty when ¢ > ep.
The subset

(2.2.3) Lg,q ={C € M.pxq(k) | rank C = ¢}

is open Mepy4(k), and is covered by the basic open subsets above:

(2.2.4) L, = U Mpxg(k)s).
SQ[I‘yT]X[Lp]
s|l=q

We parametrize short R-modules by means of their multiplication
tables.
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2.3. To each R-module M with underlying vector space kP'¢ we
associate the matrix C® = (c(n)n) I Mepxq(k), with (I,n)th row
defined by the equality

q

Ty, = ZC(l,n),hUh for each (I,n) € [1,€] x [1,p].
h=1

Conversely, each matrix C' = (c(,n),n) € Mepxq(k) defines, through
the formula above, an action of R on kP that turns it into an R-
module, called RC.

The maps described above clearly are mutually inverse.

The correspondence in 2.3 allows one to shuttle between R-module
structures on kP9 and ep X ¢ matrices with elements in k. In particular,
we identify L?L o With the set of O-step linear module structures on kP9

Graded R-modules are often parametrized in terms of their minimal
presentations over R. This format is not used below, but we pause to
show that results on non-empty open loci faithfully translate between
parametrizations.

2.4. For every matrix B = (b pn),n) in Mepx(ep—q)(k), let xB
kP77 — R; ®j kP denote the homomorphism of k-vector spaces given
by the formula

Wy — Z bnyh T @u, for B =1,...,ep—gq,
(I,n)€[1,e]x[1,p]

where wi,... ,wep—q denote the standard basis of k°P~ 9.

For every matrix C' = (C(1.n)1) in Mepxq(k), let XY : Ry @y kP — k9
denote the homomorphism of k-vector spaces given by the formula

q
T Q Uy — Zc(l’n)ﬁvh for (I,n) € [1,€] x [1,p].
h=1

Define an open subset of M,y (ep—q) (k) by setting

K, ={B € Meyx(ep—q)(k) | ranky(B) = ep — q}.
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The assignments B — Im(2(B)) and C — Ker (A(C)) define
morphisms of algebraic varieties to the Grassmannian of (ep — q)-
dimensional subspaces of R; ®y kP:

»: K , — Grass(ep—q)(R1 ®p k*) «— L) : .

By construction, these maps above are morphisms of algebraic varieties.

An important point here is that s and A are open. This follows
from a classical theorem of Chevalley, because both maps are dominant
(being surjective), the closed fibers of each one have constant dimension
(being isomorphic to some fixed affine space), and Grassmann varieties
are normal (being smooth). Modern proofs of Chevalley’s theorem are
not easy to find. Instead, we refer to a much more general statement
proved by Grothendieck in [13, 14.4.4 (c)], which contains the one used
here; see [12, 6.15.1]. We thank Joseph Lipman for help with these
references.

Every matrix B = (b(; n),n/) il Mepx (ep—q) () yields a homomorphism
of graded R-modules »? : R ®j, k?~9(—1) — R ®, kP, equal to ¥ in
degree 1. The subsets

KIl,yq(R) ={B € My (ep—q)(k) | 5 is injective and s is surjective}
L) (R) = {C € M.yyq(k) | A{ is injective},

of Mepx(ep—q)(k) are open. One has Hggker (5)(8) = p + g5, so
K, ,(R) and L,  (R) parametrize the same set of R-modules. The
parametrizations are interchangeable:

Lemma 2.5. When k is an algebraically closed field and R a standard
graded k-algebra the maps in 2.4 restrict to open morphisms of algebraic
varieties

2 Kzl,yq(R) — Grass(¢p—q) (R1 @ kP) <— Lzl,yq(R) A
with the same image, so U C K, (R) (respectively, U C L, (R) is

open or non-empty if and only if X\ "1x(U) C L;q(R) (respectively,
»x I\U) CK} (R)) is.
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Proof. Only the assertion concerning the images needs validation. For
each matrix C in Mepx4(k), let \C : R(—1)®@;Ker (A\(C)) — R®ykP be
the R-linear map, equal to A{ in degree 1. One has C' € L;,l)7q(R) if and

only if A{ is injective and AS is surjective. Comparison of definitions
gives A(L, ,(R)) = »#(K}, ,(R)). O

3. Linear loci. Let R be a standard graded k-algebra, and set

e =rankyR; and 7 = rankgR>.

3.1. Fix positive integers p and g. The linear locus of R in M,y (k)
is the subset

L, 4(R) = {C € M.yxy(k) | the R-module R® is Koszul},
where R is the graded R-module defined in 2.3.

Our goal is to identify conditions for L, ,(R) to have a non-empty
interior; that is, for it to contain a non-empty open subset.

Theorem 3.2. Let R be a Koszul algebra and p' € [1,p], and let
q' € [q,ep] be integers.

If Ly ¢(R) or Ly (R) has a non-empty interior, then so does
Lp7q(R)'

In the proof we use the functoriality of the correspondence in 2.3:

3.3. For p' € [1,p], let ¢ : kP9 — kP4 denote the inclusion map.
As kP’ 7 is a submodule for every R-module structure on kP9, we get
a map

(3.3.1) A Mepxq(k) — Mep’xq(k)

of affine spaces over k, which is linear and surjective: It sends each
ep X ¢ matrix to the (ep’) x ¢ submatrix with rows indexed by the pairs
(I,n) with n € [L,p'].
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For ¢’ € [g,ep], let 7 : kP4 — kP9 be the projection with m(vp) =0
for h > ¢+ 1.

Since Ker () is a submodule for every R-module structure on kP¢
we get a map

(332) Ty - Mepxq’(k) — Mepxq(k)

of affine spaces over k, which is linear and surjective: It sends every
ep X ¢’ matrix to its ep X ¢ submatrix, whose columns are indexed by
the elements in [1, g].

Lemma 3.4. When R is a Koszul algebra the maps (3.3.1) and
(3.3.2) satisfy

Tu(Lp,g (R)) C Lpg(R) 2 (L*)_I(Lp’,q(R))-

Proof. For C' € Myy4(k), the construction in 3.3 gives an exact
sequence
0—R © R S N—0

where N; =0 for j #0. If RY(©) is Koszul, then in the induced exact
sequence

Extl, (N, k)7 —s Exth (R, k)Y — Extt (R () k)7
both extremal terms are zero for j # i, because R is Koszul.

For C' € M.,x 4 (k), the construction in 3.3 gives an exact sequence
0—L—RY — R™C) 0

where L; = 0 for j # 1. When R is Koszul, in the induced exact
sequence

Exti 1(L, k)Y — Extiy(R™(©) k) —s Exty (RS k),

both extremal terms are zero for j # i, because R is Koszul. ]

Proof of Theorem 3.2. Let U C Ly 4(R) be non-empty and open in
My wq(k). The subset (1*) 1(U) of Mepxq(k) is open, because ¢* is
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continuous, and not empty, because ¢* is surjective. By Lemma 3.4, it
is contained in Ly, 4(R).

Let 0 : Mepxq(k) = Mepxq (k) be the map that sends every C €
Mepxq(k) to the ep x ¢’ matrix, obtained by the addition of zero
columns with indices ¢ +1,...,¢'. Let U' C L, ,(R) be non-empty
and open in Mg,xq (k), and pick C’ € U’. In the affine subspace
W =C"+0(Mepxq(k)) of Mepyq (k), the set U' N W is non-empty and
open. Since mi|w : W — Mepxq(k) is a homeomorphism, . (U’ N W)
is non-empty and open in M,y (k). By Lemma 3.4, it is contained in
Ly,q(R). o

Within a given parameter space Mepxq(k), it is sometimes possible
to transfer information between linear loci of different k-algebras. We
give an example.

Proposition 3.5. Let p : R' — R be a homomorphism of graded
k-algebras.

If p is a Golod homomorphism and R' is Koszul, then for all p and q
one has
Lyq(R) 2 Ly 4(R).

Proof. This follows from [2, 3.3], where it is proved that if an R-
module M is Koszul when considered as a module over R’ via p, then
M is Koszul over R. o

3.6. We approximate the linear locus of R, from above, by the sets
L' (R) = {C € Mepyq(k) | RY is m-step linear},
defined for every integer m > 0. The following inclusions are evident:

(3.6.1) L7 (R) 2L (R) and L,.(R)= () L, (R).

p,q
m2>0

For completeness, we include the proof of a folklore result; stronger
ones have been communicated to us by David Eisenbud, Anthony
Tarrobino, and Clas Lofwall.
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Lemma 3.7. When R is Koszul L' (R) is open in Mepyxq(k) for
every m > 0.

Proof. Pick a matrix C in M,y q(k).

One has ij(Rc) = rank;Tor®(R% k), so we fix m > 0 and
prove that the subset of M,,,(k), defined by Torf(R° k)! = 0 for
j #1i < m, is open.

Let G be a minimal free resolution of k over R. As R is Koszul, we
may assume G; = R(—i)% with b; = Bf(k). As R is short, one has
(R ®r G;)j = 0 for j # i,i+ 1. This yields Tor®(R% k); = 0 for
j # 1,1+ 1, and an exact sequence

0 — Tor®(RC, k); — (RS)" % (RO)b—1 — Tor® | (RC, k); — 0

of k-vector spaces for every i > 0, where 6; = (R§ ®g 0F);.

For each i, let G} denote the standard basis of R(—i)% over R. In
these bases (91.G is given by a matrix of linear forms in z,... ,z.. In
the k-bases

{un, ® g In=1,... ,p g e G(i)} and
{fn@g" V| h=1,...,¢4" " eciV}

of (R§)% of (R{)b-1, respectively, the map ; then is given by a matrix
of linear forms in the elements c(; ) ; from the multiplication table in
2.3. The condition Torf*(R, k);11 = 0 for i < m is equivalent to the
surjectivity of §; for ¢ < m + 1. The latter condition means that some
maximal minor of the matrices dy, ... ,§41 is different from 0, and so
determines an open subset of Me,yq(k). o

4. Periodic linear modules. In this section R denotes a standard
graded k-algebra. We say that a graded R-module M is linear of period
2 if there is an exact sequence of graded R-modules

(4.0.1) 0— M(-2) - RP(-d—-1) - RP(—d) - M — 0.

Splicing suitable shifts of the exact sequence above, one sees that M is
linear.
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We explore the interplay of periodicity, linearity, and shortness.
When N is an R-module, QF(N) denotes the ith module of syzygies
in a minimal free resolution of N. Assuming R3 = 0, Lescot [17, 3.4]
established part (1) of the next theorem.

Theorem 4.1. Let R be standard graded k-algebra with rankyR, =
e >1, let M be a non-zero R-module with inf M = d, and p a positive
integer.

(1) The following conditions are equivalent.

(i) PE(s,t) = ps?- (1 —st)~! and M is short.

(ii) M is linear over R with Hyr(s) = (1 + (e — 1)s) - ps?, and one
has Hg(s) = (1+ (e —1)s) - (1 + s).

They imply that R is Koszul.

(2) If Q is a standard graded k-algebra with rank,Qq = e and
¥ : Q — R is a surjective homomorphism of algebras, then the following
conditions are equivalent.

(iii) P (s,t) = ps?- (1 — (st)°T) - (1 — st)~" for some ¢ > 1, and M
is short.

(iv) M is linear over Q with Hp(s) = (1 + (e — 1)s) - ps?, and one
has Hg(s) = (14 (e —1)s)- (L —s)7 1.

(v) PE(s,t) = pst- (14 st) and Ho(s) = (1+ (e —1)s) - (1 —s)~L.
They imply that Q is Koszul, Golod, and Cohen-Macaulay of dimen-

ston 1.

(3) If g € Q2 is a non-zero-divisor and Ker (¢) = (g) in (2), then the
condition
(vi) M is linear of period 2 over R and Hg(s) = (1+(e—1)s)-(1+s)
satisfies the implications (v) = (vi) < (i), and also (v) <

(vi) if e # 2.

Proof. When M is short we write Hys(s) in the form s?(a + bs).
(1) (i) = (ii). The algebra R is Koszul by Theorem 1.6, so using
(1.1.1) we get

pH s (st)

Hp(st) = ——5——
p R(S) td'PAI}(S, —t)

= (a + bst)(1 + st).
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The expressions for Hys(s) and Hg(s) follow by comparing degrees and
coeflicients.

(i) = (i). This implication follows directly from (1.1.1).

(2) (iii) = (iv). The algebra @ is Koszul by Theorem 1.6, so (1.1.1)
gives

pH p(st) (a + bst)(1 + st)
pHg(st) = = .
@ td. P9 (s, —t) 1— (—st)ett

Recall that Hg(s) can be written as h(s)/(1 — s)™ with h(s) in Z[s]
satisfying h(1) # 0, and n = dim Q. Setting ¢ = 1 in the formula above,
we obtain

ph(s)(L = (=8)°"") = (a+ bs)(1 +5)(1 — 5)" € Z[s].

Comparing orders of vanishing at s = 1, we get ¢ = 1 = n, hence
ph(s) = a + bs. The desired expressions for Hy(s) and Hg(s) follow,
along with P& (s,t) = (1+st)-ps?. Thus, M has projective dimension 1,
which entails depth @ > 1. The expression for Hys(s) yields dim @ = 1,
so @ is Cohen-Macaulay; it also shows that ) has multiplicity e; as
dim @Q = e and dim ) = 1, this is the minimal possible value.

(iv) = (v) = (ili). These implications follows directly from
(1.1.1).

(3) The isomorphism R = @/(g) with g a non-zero-divisor in Qs
implies

(4.1.1) Hg(s) = (1 — s*)Hg(s).

(v) = (vi). By hypothesis, there is an exact sequence of Q-modules
0—-QP(-1) = QY - M —0.

The resolution 0 — Q(—2) % Q — 0 of R over Q yields Tor (R, M) =
M(—2), so application of Tor? R— to the exact sequence above yields
an exact sequence of the form (4.0.1). The expression for Hg(s) comes
from formula (4.1.1).

(vi) = (i). From the exact sequence (4.0.1) we obtain

Hy(s) = Hg(s) -psd(l +8)7 =1+ (e—1)s) - ps?.
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It follows that M admits no direct summand isomorphic to R, so the
linear free resolution of M over R, obtained by splicing suitable shifts
of (4.1.1), is minimal.

(i) = (v) whene # 2. If e = 1, then one has Q = k[z] and M = kP.

Assume e > 3. From [1, 3.3.4], one gets 82 (M) < 2p for each i.
The ring @ is Cohen-Macaulay of dimension 1. One gets Hg(s) =
(1+ (e—1)s)(1 —s)~! from (4.1.1), so @ has embedding dimension e
and multiplicity e. Thus, @ has minimal multiplicity, and so is Golod;
see [1, 5.2.8]. This implies that M has finite projective dimension over
Q; see [1, 5.5.3 (5)]. As depth @ = 1, there is an exact sequence

0—>G}Q’"J i) = QP(—d) = M — 0.

The expressions for Hg(s), noted above, and for Hp (s), from (ii), then
yield

ps?(1+ (e —1)s) = Hy(s <ps _Z"J >1+(e—1)

1—s

We get ps?(1 — s) = ps? — > r;s?, whence r; = 0 for j # d + 1 and
Td+1 = P-
(i) = (vi) when e = 2. We may assume d = 0.

By (1) the algebra R is Koszul, hence quadratic, and thus R 2
klz,y]/(f, g) with f, g a regular sequence of quadrics.

The hypothesis on Pf(s,t) gives an exact sequence
0— N — RP(=3) % RP(-2) & RP(~1) 2 RP — M — 0.

As R is a complete intersection, one has NV = Coker («)(—2) by [8, 4.1].

Set (—)* = Hompg(—, R). Since R is self-injective, we get an exact
sequence

0— M* - RP S RP(1) 5 RP(2) 25 RP(3) — N* — 0
and an isomorphism Ker (a*) 2 N*(—2). From these data, we obtain

M* = Q% (Ker (o)) =2 Q% (N*(—2)) & N*(—4).
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As all R-modules are reflexive, we get M = N(4) = Coker («)(2) =
Ker (7)(2). O

We use modules of period 2 to study the linear locus Ly, (c—1),(R).

4.2. We approximate the linear locus of R, from below, by the set

P, (R) ={C € Ly4(R)| RY is of period 2}.

Corollary 4.3. Assume Hg(s) =1+es+ (e —1)s? with e > 1, and
R = Q/(g) for some standard graded algebra Q) and non-zero-divisor
g € Q2.

For each positive integer p the set L? (Q) is open in Mepy (c—1)p(k)

p,(efl)p
and there the following inclusions hold, with equality when e # 2:

va(e*I)P(R) = Pfy,(e—l)p(R) 2 Lp,(efl)p(Q) = Lfy,(e—l)p(Q)‘

If Q1 contains a non-zero-divisor (e.g., if k is infinite), then Ly, c_1)p

Q) # 2.

Proof. Every short Q-module is annihilated by g, for degree reasons,
and so also is an R-module. With this remark, Theorem 4.1 implies
the inclusion and the equalities. The set sz(e_l)p(Q) is open by
Lemma 3.7.

If h € @ is a non-zero divisor, then for N = (Q/(h))P one has an
exact sequence

0—>Q(—1)pi>Qp—>N—>0

that gives Hy(s) = (p — ps)Hg(s) = p + (e — 1)ps; thus, N is in
Liv(e—l)p(Q)' =

When e = 2, neither the implication (v) = (vi) in Theorem 4.1,
nor the inclusion in Corollary 4.3 can be reversed in general:
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Example 4.4. Set Q = k[z,y]/(2?) and R = Q/(y?). The R-module
M = R/(z) then is linear of period 2, as demonstrated by the exact
sequence

0 — M(-2) — R(-1) = R — M — 0.

However, as a @-module M has infinite projective dimension and is not
linear.

For cyclic modules, we have an additional criterion for openness.

Proposition 4.5. If R is a Koszul algebra with Hr(s) = 1+ es +
(e —1)s?, then Ly 1(R) is an open subset of My (e—1)(k), and there
are equalities

Lie-1(R) =Pi . 1(R) = LI, (R).

Proof. In view of (3.6.1), it suffices to show that if L _,(R) is
not empty, then it is contained in P§._;(R). Pick C in L} _,(R),
and set M = RCY. One then has Hys = 1+ (e — 1)s, which
implies Pf(s,t) = 1 + st + (st)? (mod ¢3), by Lemma 1.10. Thus,
for appropriate a,b € R; there is an exact sequence

R(-2) % R(-1) %> R — M — 0.

It gives bR = (0 : a) and hence aR C (0 : (0 : a)) = (0 : b). The
resulting relations

ranky (aR) < ranky (0 : b) = rank, (R/bR) = ranky(aR)

imply (0: b) = aR, hence bR = R/aR. As a result, we obtain an exact
sequence

0— M(-2) = R(-1)5R—-M—=0. 0O

5. Algebras with Conca generators. In this section R is a
standard graded algebra, and we set

e =rankiyR; and 7 = rankgR;.
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A Conca generator of R is a non-zero element x € R, with xR, = Ry
and x? = 0, cf. [2]. We collect relevant facts about algebras containing
such an element.

5.1. When £k is algebraically closed, generic quadratic algebras with
r < e — 1 have a Conca generator; see the proof of [5, Theorem 10].

5.2. If z is a Conca generator for R, then one clearly hasr <e—1
and R3 = 0.

Furthermore, the algebra R then is Koszul by [6, 2.7], see also [5,
Lemma 2] or [2, 1.1], and every R-module M with zM = 0 is linear by
[2, 4.2].

5.3. The algebra R has a Conca generator if and only if it has a

presentation R = k[zy,... ,xz.]/I with defining ideal I generated by
(5.3.1) Tz, forr+1<1<e,
(5.3.2)

T
TTy — Zalvlghxhwg for1<i<l' <e-1.
h=1

The class of z. is thus a Conca generator for R.

Theorem 2 from the introduction is contained in Propositions 5.4, 5.5
and 5.6. In their proofs, we use the order on [1,e] x [1,p] defined in
(2.2.1).

Proposition 5.4. Let R be a standard graded algebra with a Conca
generator.

For all positive integers p,q with ¢ < (e — 1)p one has L, 4(R) # @.

If r = e — 1, then Ly ,(R) # @ implies ¢ < (e — 1)p, one has
Pi,(e—l)p(R) # & for each p > 1, the set P7,_|(R) is open in
MlXefl(k), and Piefl(R) = Ll,efl(R)-

Proof. Let s be the set consisting of the ¢ smallest elements of
[1,e] x [1,p], and C € Mcpyq(k) the matrix with Cs equal to the ¢ x ¢



KOSZUL MODULES 273

unit matrix and C(; ) = 0 for (I,n) ¢ s. The condition ¢ < (e — 1)p
implies (e,n) ¢ s for n = 1,...,p, hence . R® = 0. Now recall that
every R-module M with .M = 0 is linear, see 5.2.

Assume r = e — 1. When L, (R) # @, Corollary 1.7 yields
g < (e—1)p. If z is a Conca generator, a rank count gives (0: z) = zR,
so (R/xR)P is in Pzz),(e—l)p.(‘R)' The sets Ly ._1(R) and P% ,_,(R) are
equal and open by Proposition 4.5. a

Proposition 5.5. Let R be a standard graded algebra with a Conca

generator.
If g < e —1, then the interior of L, ¢(R) is not empty.

Proof. Assume first r = e —1. Now R is Koszul, see 5.2, so L . 1(R)
is open and non-empty by Propositions 5.4 and 5.5. Using Theorem 3.2
we extend this conclusion first to Ly, ._1(R) for arbitrary p, then to all
L, (R) with g <e—1.

Assume next r < e — 1. Set R’ = k[zy,...,z.]/]' where I’ is
generated by z2 and the polynomials in (5.3.2). One has Hg/(s) =
(1+(e—1)s)-(1+s), and the class of z. in R’ is a Conca generator, so
R’ is Koszul; see 5.2. The map R’ — R is Golod; see the proof of [2,
3.2]. In Mcpyq(k) this gives Ly, 4(R) D L, 4(R'), by Proposition 3.5, and
L, ,(R') has a non-empty interior by the case already settled. O

Proposition 5.6. Let R be a standard graded algebra with a Conca
generator.

If p,g € N satisfy ¢ < (e — r)p, then Ly, 4(R) contains the non-
empty open set L},yq(R) N Mepxq(k)(s), where s consists of the q largest
elements of [1,e] x [1,p].

Proof. Both My, 4(k)(s) and L}, (R) are open and nonempty, see 2.2
and Lemma 3.7, so their intersection in the affine space M, x4 (k) has
the same properties. It remains to prove that each R-module M = R®
in this intersection is Koszul.

By definition, the rows of the matrix C' € M,p,,(k)(s) form a basis
of the row space of C, so they determine elements d(; ) (i',n) € k, such
that

)

Can) = Z d(m),'n)Crrmy  forall (I,n) € [1,e] x [1,p].
(I',n")es
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In degrees 0 and 1 the following sequence of graded R-modules

1® u, — unp
Rey €D (kz) @k (kun) — R@x @) kup — M — 0
(I,n)¢s né€ll,p]

1® T Q Uy —> T @ Uy — Z d(l,n),(l’,n’)(ml’ X un’)
(I',n")es

is exact by construction, so it is exact because M has a linear presen-
tation.

The presentation of M described above yields one for S = R x M, in
the form

S= k[xla---l‘eayla"'yp]/‘]a

where J is generated by the polynomials in (5.3.1), (5.3.2) and by those
below:

YnlYn/ for 1 < n, TL, < p,
TiYn — Z d(l,n),(l’,n’)xlyn for (l,n) ¢ S.
(I',n")es
For monomials in x1,...,y, we use the reverse degree-lexicographic
order with

Yr> > Yy > T > e > T
Thus, 21y, > x;yy is equivalent to (I,n) < (I’,n’), so the choice of s
implies:

TYn > Ty, holds when (I,n)¢s and (I',n')€s.

For the chosen generators of J, this gives the following list of initial
terms:

iz for 1 <1<l <e—1, ry, for (I,n) ¢ s,

e forr+1<I1<e, Ynyn: for 1 <mn,n’ <p.

Set T' = k[z1,... ,%e, Y1, .- ,Yp]/L, where L denotes the ideal gen-
erated by the monomials listed above. We claim that L contains all
monomials of degree 3. Only those of the form z;z;y, with [ < I’
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need attention. Unless I < r and I’ = e hold, z;z;/ is in L, hence so is
212y Yn. For I < r the hypothesis ¢ < (e —r)p and the choice of s imply
(l,e) ¢ s, so 21y, is L, hence so is z;Zcyp.

We just proved that T3 is zero. Counting non-zero monomials in 7', we
get Hr(s) = 1+(e+p)s+(e—1+q)s®. This gives Hr(s) = Hg(s), which
implies that the polynomials in (5.3.1), (5.3.2), and (5.6.1), (5.6.2) form
a Grobner basis for S. It follows that S is Koszul, see [9, Section 4],
hence so is M, by Proposition 1.5. u]

6. Open sets of linear modules. As before, R denotes a standard
graded k-algebra, and we set

e =rankgyR; and 7 =rankgR>.

We assume e > 1, and let p > 1 and ¢ > 0 denote integers.

Here our goal is to record various instances when the linear locus
L, ;(R) is open and non-empty. The minimal admissible values of r
and e are easily disposed of:

6.1. If e=1and r = 1, then L, ,(R) = @ for all p and q.

Indeed, these conditions imply R 2 k[z] or R = k[z]/(x™) for some
n > 3.

6.2. When e > 1 and 7 = 0 R is Koszul, L, ,(R) = L) ,(R), and
this set is open in Mcpx4(k) for all p and ¢; one has Ly, ,(R) # @ if and
only if ¢ < ep.

In view of the preceding remarks, we henceforth focus on the case
e > 2.

The proofs of the next two propositions draw on most results in the
paper.

Proposition 6.3. If e > 2 and R is short and Gorenstein, then it is
Koszul.

When e = 2, for each pair (p,q) one has Ly ,(R) = Lg;ll (R), this set
is open in Mepyq(k), and Ly 4(R) # @ if and only if ¢ < p.

When e > 3, for each pair (p,q) one has L, ,(R) = L} (R) for some
m, and this set is open in Meyyq4(k); if there exists a non-zero element
r € Ry with 2 = 0 (in particular, if k is algebraically closed), then
L, ((R) # @ for g < (e—1)p.
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Proof. For a proof that R is Koszul see, for instance, [6, 2.7] or [2,
4.1].

The set LJ' (R) is open in Mc,x,(k) for all m, p, and g, see
Lemma 3.7. In particular, the openness of L, ,(R) follows from the
other assertions.

For each i € Z, set b; = (k) and M;) = Hompg(Q%(k), R)(1 — i).
One has:

(1)

(2) HM(i) (S) = bi—l + biS.

(3) If N is an indecomposable non-Koszul module, then N = M,

for some 7 > 1.

b; > b;_1 for every ¢ > 0; moreover, b; =i + 1 when e = 2.

Indeed, the recurrence relation b;; = eb; — b;_1, for ¢ > 2, given by
(1.2.1), implies (1). Parts (2) and (3) are contained in [2, 4.6]. Next
we prove:

(4) M(; is (i — 1)-step linear, but not é-step linear.

Indeed, since R is Koszul one obtains an exact sequence
0— Q%K) = R(—i+1)%* ... 5 R(-1)" = RS k—0,

from a minimal free resolution of k over R. Now Hompg(—, R) is exact
because R is Gorenstein, and Hompg(k, R) = k(—2) as Ry = k, so we
get an exact sequence

0—k(-2) 5 R— R(1)™ - --- = R(i—1)% — Homp(Q%(k), R) — 0.

It gives for M(;) a minimal free resolution depicted below, which proves

(4):

- R(~i—1) = R(~i+1) = R(—=i +2)" - --- = R¥ 0.

Choose now, by (1), an integer m so that b; > ¢ holds for i > m; by
the same token, pick m = ¢ — 1 when e = 2. If L}’ (R) contains
a module M that is not Koszul, then some indecomposable direct
summand N of M is not Koszul. By (3), we have N = M;y for some
i > 1, 50 M(;) is m-step linear. Now (4) implies i > ¢, hence b; > ¢ by
the choice of m. On the other hand, for the submodule M;) of M we
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get b; < g from (2). The contradiction implies Ly ,(R) = L’ (R), as
desired.

When e = 2, Corollary 1.7 gives L, ,(R) = @ when ¢ > p. Thus,
we assume ¢ < p and set out to prove L, (R) # @. In view of
Lemma 3.4, we may restrict to the case ¢ = p. Since R is Koszul,
we have R = k[z,y]/(f,g9) with f,g a regular sequence in Q3. Set
Q = k[z,y]/(f). Corollary 4.3 shows that it suffices to exhibit a non-
zero-divisor h € Q1. If f is irreducible, then @ is an integral domain;
take h = x. Else, f is a product of two linear forms, so after a change
of variables we may assume (f) = (22) or (f) = (xy); in either case,
pick h = = + y.

Finally, as R is Gorenstein every non-zero element x € R; with 2% = 0
evidently is a Conca generator; such an z exists when k is algebraically
closed, see for instance, [5 , Lemma 3]. Now Proposition 5.4 gives
L, ,(R) # @ for ¢ < (e — 1)p. o

Proposition 6.4. Assume that R is quadratic, with Hg(s) =
1+es+ (e—1)s2.
If e =2, or if e =3 and k is infinite, then the following hold.

(1) There is an isomorphism R = Q/(g) for a Koszul k-algebra Q
and a non-zero-divisor g € Q2; in particular, R is Koszul.

(2) For every positive integer p one has Ly, ._1),(R) = Pi,(efl)p(R),
this set is open in Mepy (e—1)p(k), and is not empty.

Proof. (1) When e = 2 one has R 2 k[z,y]/(f,g) with f,g a regular
sequence of quadrics; take @ = k[z, y]/(f).

When e = 3, write R & k[z,y,2]/I with I an ideal minimally
generated by 4 quadrics. Assuming hR; = 0 for some h € R; with
h # 0, we get a quadratic algebra S = R/(h) with Hg(s) = 1+2s+2s%;
this is impossible, and so we get (0 : m) = R,. Thus, R is an almost
complete intersection of codimension 3 and type 2. In the local case,
such rings are described by a structure theorem of Buchsbaum and
Eisenbud, see [4, 5.4]. This is a corollary of [4, 5.3], whose proof
refers to a general position argument to find generators fi, fa2, f3, f4 of
I, every 3 of which form a regular sequence. The hypothesis that k is
infinite allows one to find the f; as k-linear combinations of the original
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quadrics. The rest of the proof of [4, 5.3] and that of [4, 5.4] now yield
{i1,%2,93} C [1,4] and f € Q2, such that I = (fi,, fi,, fis, f) and f;, is
a non-zero-divisor on the algebra Q = k[z, vy, 2|/(fi,, fis, f)-

(2) In view of (1), Corollary 4.3 applies. It yields Ly ._1),(R) =
Pf},(e—l)p(R)’ shows that this set is open in M,y (c—1),(k), and also
that it is non-empty when e = 3. When e = 2, we get L, ,(R) # @
from Proposition 6.3. O

To finish, we show that when R needs more that 3 generators, no
similar description exists of the locus of modules with constant Betti
numbers, and we isolate the smallest case, when it is not known whether
this set has an open interior.

Remark 6.5. Choose an element a € k ~ {0,£1}, and set R =
klzy,za,x3,24])/I, where I is the ideal generated by the following
quadratic forms in four variables:

2 2 2 2
Ty, ar1x3+ xT2x3, T1T4+ T2Xs, T3, X3, T3T4, Ty-

Since z4 is a Conca generator for R, Proposition 5.4 shows that the
sets Ly 3(R) and P73(R) are equal, open and non-empty. On the
other hand, [11, 3.4] and Proposition 5.4 give, respectively, the strict
inclusion and the inequality below:

Lys(R) 2 P36(R) # 2.

We do not know whether either set above has a non-empty interior
in ngﬁ(k).
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