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COHEN-MACAULAY ADMISSIBLE CLUTTERS

HUY TÀI HÀ, SUSAN MOREY, AND RAFAEL H. VILLARREAL

ABSTRACT. There is a one-to-one correspondence be-
tween square-free monomial ideals and clutters, which are also
known as simple hypergraphs. In [14] it was conjectured that
unmixed admissible clutters were Cohen-Macaulay. We prove
that the conjecture is true for uniform clutters of heights 2
and 3, i.e., if the smallest cardinality of a minimal vertex
cover of the clutter is 2 or 3. For clutters of greater height, we
give a family of counterexamples to show that the conjecture
fails. For unmixed admissible uniform clutters of height 4,
we characterize when the Alexander dual of their edge ideals
has linear quotients, and in particular, give an additional con-
dition under which unmixed admissible uniform clutters are
Cohen-Macaulay.

1. Introduction. A clutter consists of a finite set of points, called
the vertices, and a family of nonempty subsets of the vertices with no
nontrivial containments, called the edges. Clutters are also known as
simple hypergraphs. A basic example of a clutter is a simple graph
in the classical sense. Throughout the paper, C will denote a clutter
over the vertices V (C) = {x1, . . . , xn} and edges E(C).

Let K be a field. By identifying the vertices {x1, . . . , xn} with
the variables of a polynomial ring R = K[x1, . . . , xn], there is a
natural one-to-one correspondence between the class of clutters over
the vertices {x1, . . . , xn} and the class of square-free monomial ideals
in R. This correspondence is given by C ↔ I(C), where I(C) is the ideal〈
xe =

∏
xi∈e xi

∣∣ e ∈ E(C)
〉

in R. The ideal I(C) is usually referred to as
the edge ideal of C. Edge ideals of clutters can also be viewed as edge
ideals of hypergraphs (cf. [8]) or facet ideals of simplicial complexes
(cf. [4]).
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We say that C is a Cohen-Macaulay clutter if R/I(C) is a Cohen-
Macaulay ring. The goal of this paper is to determine classes of
Cohen-Macaulay clutters. That is, we seek to describe classes of
Cohen-Macaulay square-free monomial ideals (see also [5] for classes
of sequentially Cohen-Macaulay square-free monomial ideals).

A Cohen-Macaulay ring is always unmixed. Thus, we shall focus on
clutters with this property. A subset C of V (C) is called a vertex cover
of C if for every edge e ∈ E(C), we have C ∩ e �= ∅. A vertex cover
for which no proper subset is also a vertex cover is called a minimal
vertex cover. Observe that

I(C) =
⋂

{xi1 ,...,xis} is a minimal vertex cover of C
(xi1 , . . . , xis).

From this, it follows that the smallest cardinality of a minimal vertex
cover of C, called the covering number, is exactly the height, ht I(C),
of I(C). By abuse of terminology, we shall also call ht I(C) the height
of C. We say that C is unmixed if all its minimal vertex covers have
the same cardinality. Recall also that C is uniform if all its edges
have the same cardinality. A perfect matching of C is a collection
of pairwise disjoint edges of C whose union is exactly V (C). A perfect
matching is said to be of König type if it has ht I(C) edges.

Inspired by [9], where the Cohen-Macaulay property was studied
for bipartite graphs with a perfect matching, the following notion of
admissible clutters was introduced in [14].

Definition 1.1. Let C be a clutter with ht I(C) = g, and let d be
a positive integer. Suppose that there are two partitions {X1, . . . , Xd}
and {e1, . . . , eg} of V (C) such that |ei ∩ Xj| ≤ 1 for all i, j.

1. Suppose e is a subset of V (C) of size k such that |e∩X i| ≤ 1 for all
i. Let 1 ≤ i1 < · · · < ik ≤ d be all the integers such that e ∩ X il �= ∅.
Let j1, . . . , jk ∈ {1, . . . , g} be integers such that e ∩ X il ∈ ejl

. We
denote by xil

jl
the unique vertex of e ∩ X il ∩ ejl

. We say that e is
admissible if i1 = 1, i2 = 2, . . . , ik = k and j1 ≤ · · · ≤ jk. Such an
admissible set can be represented as e = x1

j1 · · ·xk
jk

.

2. A monomial xa is admissible if supp(xa) is admissible.

3. We say that C is admissible if e1, . . . , eg ∈ E(C), and all edges of
C are admissible.
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We can think of X1, . . . , Xd as color classes used to color the edges
of C. Note that under condition (3), e1, . . . , eg form a perfect matching
of König type in C.

In order to generalize results of [9] to higher dimension, the following
conjecture was stated in [14].

Conjecture 1.2. If C is an admissible clutter and C is unmixed,
then C is Cohen-Macaulay.

Conjecture 1.2 is true for clutters with two color classes, i.e., when
d = 2 (see [9]). It is also true if the admissible clutter C is uniform
and complete, meaning that every maximal admissible set in V (C) is
an edge of C (see [14, Theorem 3.12]). Note that if C is complete and
admissible then C is automatically unmixed (see [14, Theorem 3.6]).

In this paper, we work on clutters with an arbitrary number of color
classes. Our main results are as follows. First, we give an affirmative
answer to Conjecture 1.2 for uniform clutters when ht I(C) = 2 and
when ht I(C) = 3 (Theorems 3.1 and 4.1). Then we present a family of
examples to show that Conjecture 1.2 may fail when ht I(C) ≥ 4, even
in the uniform case (Theorem 5.5). When ht I(C) = 2, we also show
that if I(C) is normally torsion-free, meaning all symbolic powers
of I(C) are the same as the usual powers, then the converse statement
of Conjecture 1.2 is true (Theorem 3.7). That is, if C is uniform and
I(C) is Cohen-Macaulay, normally torsion-free, and of height two, then
C is unmixed and has a perfect matching of König type and a partition
for which it is admissible. Furthermore, when ht I(C) = 4, we give an
additional condition under which admissible unmixed clutters will be
Cohen-Macaulay (Theorem 5.3).

Our tool in examining Cohen-Macaulay clutters is the theory of
Alexander duality. The Alexander dual of the square-free monomial
ideal I(C) is defined to be

I(C)∨ =
⋂

xj1 ···xjr is a minimal generator of I(C)

(xj1 , . . . , xjr )

=
〈
xi1 · · ·xis

∣∣ {xi1 , . . . , xis} is a minimal vertex cover of C〉
.

The Alexander dual of I(C) is also a square-free monomial ideal. We
shall define the Alexander dual of C to be the clutter corresponding
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to I(C)∨, denoted by C∨. Our method is based on the following theorem
of Eagon and Reiner (see [2]).

Theorem 1.3. Let I be a square-free monomial ideal in R =
K[x1, . . . , xn] with the Alexander dual I∨. Then R/I is a Cohen-
Macaulay ring over K if and only if I∨ has a linear resolution over
R.

Theorem 1.3 allows us to study the Cohen-Macaulayness of I(C) by
investigating when its Alexander dual I(C)∨ has a linear resolution.
Proving that a class of ideals has linear resolutions is difficult in general.
To do this, we shall employ techniques from Herzog and Takayama’s
theory of linear quotients (see [11]).

Definition 1.4. Let I be a monomial ideal in R = K[x1, . . . , xn].
The ideal I is said to have linear quotients if I has a system of minimal
generators {u1, . . . , ur} with deg u1 ≤ · · · ≤ deg ur such that for all
1 ≤ i ≤ r − 1, ((u1, . . . ui) : ui+1) is generated by linear forms.

It can be seen that if a monomial ideal I is generated in a single degree
and I has linear quotients, then I has a linear resolution (cf. [4, Lemma
5.2]). Thus, if C is unmixed then to show that C is Cohen-Macaulay, it
suffices to show that I(C)∨ has linear quotients.

The paper is outlined as follows. In the next section, we prove some
auxiliary results about the generators of the Alexander dual I(C)∨ of
I(C). Section 3 is devoted to the case when ht I(C) = 2. Section 4
deals with the case when ht I(C) = 3. In Section 5, we give a family
of counterexamples to Conjecture 1.2 when ht I(C) ≥ 4 and give a
criterion for the Cohen-Macaulayness of I(C) when it has height four.

2. Generators of the Alexander Dual. Throughout this section
C will denote a uniform admissible clutter. We shall prove a number
of auxiliary results about the Alexander dual I(C)∨ of the edge ideal
I(C) of C. Recall that the generators of I(C)∨ are identified with the
minimal vertex covers of C. Results in this section allow us to recognize
which subsets of the vertices are vertex covers of C. More precisely,
these results allow us to produce additional minimal vertex covers from
known ones.
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From Definition 1.1, C admits a perfect matching {e1, . . . , eg}, where
g denotes the height of I(C), and has a partition of the vertices
{X1, . . . , Xd} (color classes). Since C is uniform and admissible, it
can be seen that |ej | = d for all j, and |ej ∩ X i| = 1 for all i, j
(cf. [14]). As before, we use xi

j to denote the unique vertex in
ej ∩X i. Also, we sometimes refer to the index i in the vertex xi

j as its
exponent. Throughout the paper, we will be dealing with square-free
monomials, so this notion of exponent will not cause any confusion with
the exponent that refers to powers in a monomial (since the latter is
always 1).

Lemma 2.1. Suppose C is a minimal vertex cover of size g of C.
If C ∩ ei = {xt

i} and C ∩ ej = {xl
j} for all g ≥ j > i for some fixed l,

d ≥ l > t, then C′ = C \ {xt
i} ∪ {xt+1

i } is also a minimal vertex cover
of C.

Proof. Note that |C′| = |C| = g = ht I(C), so if C′ is a cover,
then it is necessarily minimal. Let e be an arbitrary edge of C. Then
e∩C �= ∅. If e∩C contains any element other than xt

i, then e∩C′ �= ∅

and we are done. Thus we may assume e ∩ C = {xt
i}. Now consider

e ∩ Xt+1 = {xt+1
j } for some j ≥ i. If j = i, then xt+1

i ∈ C′ and C′

covers e. If j > i, then since l ≥ t + 1 we have e ∩ X l = {xl
k} for some

k ≥ j. But then xl
k ∈ C′ and C′ covers e. Thus C′ covers e for any

edge e of C as desired.

Remark 2.2. In Lemma 2.1, if i = g then the condition, in fact, is:
C ∩ eg = {xt

g} where t < d. Thus, for any given minimal vertex cover
of size g, we can create a family of minimal vertex covers of size g by
raising the last term.

Note that there is a symmetry to the definition of an admissible
clutter. Using this symmetry, we can prove that the exponents for
early terms can be reduced in a way that is symmetric to the method
given in the preceding argument.
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Lemma 2.3. Suppose C is a minimal vertex cover of size g of C.
If C ∩ ei = {xt

i} and C ∩ ej = {xl
j} for all 1 ≤ j < i and some fixed l,

1 ≤ l < t, (or 1 = i and 1 < t) then C′ = C \ {xt
i} ∪ {xt−1

i } is also a
minimal vertex cover of C.

Proof. Let e be an arbitrary edge of C. As before, we need only
show that C′ covers e. We may assume e ∩ C = {xt

i}. Consider
e ∩ Xt−1 = {xt−1

r } for some r ≤ i. If r = i, then C′ covers e. If
r < i, consider e ∩ X l = {xl

s} for some s ≤ r < i. But then xl
s ∈ C′

and so C′ covers e.

Remark 2.4. Lemma 2.3 allows us to obtain a family of minimal
vertex covers from a given one by lowering the front term.

The final lemma of this section gives a method that can sometimes
be used to alter a middle term of a vertex cover. It shows that if two
vertex covers are identical except for their intersection with a fixed ei

from the perfect matching of König type, then one can form a family
of minimal vertex covers, differing only in their intersections with the
fixed ei, that in some sense connects the two covers along ei.

Lemma 2.5. Let C be an admissible clutter. Let i and c < c′ be
positive integers, and suppose that C is a subset of the vertices of C
such that both C ∪ {xc

i} and C ∪ {xc′
i } are vertex covers of C. Then

C ∪ {xl
i} is a vertex cover of C for all c ≤ l ≤ c′.

Proof. It follows from the hypothesis that any edge e of C that
avoids the vertices in C must contain both xc

i and xc′
i . That is,

e ∩ Xc = {xc
i} and e ∩ Xc′ = {xc′

i }. Since C is admissible, this implies
that e ∩ X l = {xl

i} for any c ≤ l ≤ c′. Hence, any edge e of C that
avoids the vertices in C must contain xl

i for all c ≤ l ≤ c′. This proves
the lemma.

To conclude this section, we observe that if C is a minimal vertex
cover of C of size g, then we must have |C ∩ ej| = 1 for all j. Thus,
the minimal generator xC of the Alexander dual I(C)∨ can be written
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as xC = xi1
1 xi2

2 . . . x
ig
g for 1 ≤ ij ≤ d. We, therefore, can work with the

exponent vector (i1, i2, . . . , ig) when discussing xC .

3. Cohen-Macaulay Clutters of Height Two. This section
is devoted to investigating the situation of uniform clutters with g =
ht I(C) = 2. We prove Conjecture 1.2 in this case. We also show
that the converse statement of Conjecture 1.2 is true when the ideal
is normally torsion-free. That is, if C is uniform and its edge ideal
is normally torsion-free and Cohen-Macaulay of height two, then C is
unmixed and has a perfect matching of König type and a partition
(color classes) for which all edges of C are admissible.

As mentioned in the Introduction, to show that C is Cohen-Macaulay,
it suffices to give an ordering of the minimal generators of I(C)∨ so
that it admits linear quotients. In the case when g = 2, our method
is as follows. We first describe an ordering on the set of all tuples
S = {(a, b) | 1 ≤ a, b ≤ d}. This induces an ordering on the exponent
vectors of the minimal generators of I(C)∨. The minimal generators of
I(C)∨ are then labeled by the increasing order of their exponents. To
show that under this ordering I(C)∨ admits linear quotients, we show
that if V and W are minimal generators of I(C)∨ with V labeled before
W and (V : W ) is not generated by a linear form (in this case, it means
V/gcd(V, W ) is a monomial of degree greater than 1) then there exists
a generator U of I(C)∨ labeled before W such that U/ gcd(U, W ) is a
linear factor of V/ gcd(V, W ).

Theorem 3.1. Let C be a uniform admissible unmixed clutter such
that g = ht I(C) = 2. Then the Alexander dual I(C)∨ of I(C) has linear
quotients, and so C is a Cohen-Macaulay clutter.

Proof. Since C is unmixed, it will be Cohen-Macaulay if I(C)∨

has linear quotients, as noted in the Introduction. To prove I(C)∨ has
linear quotients, we order the elements of S by (1, d) < (1, d − 1) <
· · · < (1, 1) < (2, d) < (2, d − 1) · · · < (2, 1) < (3, d) < · · · < (d, d) <
· · · < (d, 1), and as mentioned before, label the minimal generators
of I(C)∨ according to the increasing order of their exponent vectors
induced by the ordering on S. Assume that the minimal generators of
I(C)∨ are labeled as u1, . . . , us.
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Now suppose that for some j < i, deg uj/ gcd(uj , ui) ≥ 2. Write
uj = xj1

1 xj2
2 and ui = xi1

1 xi2
2 . Then by the chosen ordering, we have

j1 < i1. By applying Lemma 2.3 to ui, we get a minimal generator
uk = xj1

1 xi2
2 of I(C)∨. It follows from the chosen ordering that k < i.

Moreover, uk/ gcd(uk, ui) = xj1
1 , which divides uj/ gcd(uj, ui). Hence,

under this labeling of the generators, I(C)∨ has linear quotients.

Remark 3.2. In the proof of Theorem 3.1, we can apply Lemma 2.1
to uj instead of using Lemma 2.3. There are other orderings of S that
also give rise to linear quotients in I(C)∨. For example, it is easy to
check that reverse lexicographical ordering in S yields linear quotients
in I(C)∨. In passing to g ≥ 3, it, however, becomes important to be
able to use both Lemmas 2.1 and 2.3. The ordering chosen in the proof
above is designed to allow us to use both Lemma 2.1 and Lemma 2.3
to obtain generators of I(C)∨ labeled before ui.

Remark 3.3. It follows from [10, Theorem 3.2] that, under the
hypotheses of Theorem 3.1, all powers of I(C)∨ have linear resolutions.

We now prove the converse of Theorem 3.1 under the additional
assumption that I(C) is normally torsion free. Observe that if C is
an unmixed clutter of height 2 then the Alexander dual C∨ is a graph
in the classical sense. Before proving the theorem, we shall recall the
notions of a chordal graph and of a free vertex in a clutter.

Definition 3.4. A graph G is called a chordal graph if every cycle
of length at least 4 in G has a chord, that is, an edge joining two
nonadjacent vertices of the cycle.

Remark 3.5. An alternative characterization of chordal graphs, due
to Dirac [3], can be found in [15]. It states that a graph G is chordal if
and only if every induced subgraph H of G contains a vertex z such that
the induced subgraph of H on NH(z), the set of vertices adjacent to z
in H , is a complete subgraph of H . A vertex in G with this property
is called a simplicial vertex.
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Definition 3.6. Let C be a clutter. Then a vertex x ∈ V (C) is
called a free vertex of C if x belongs to exactly one edge of C.

Theorem 3.7. Let C be a d-uniform clutter. Assume that I(C) is
normally torsion free and of height two. Then C is Cohen-Macaulay if
and only if

(i) C is unmixed, and

(ii) there is a partition X1 = {x1
1, x

1
2}, . . . , Xd = {xd

1, x
d
2} of V (C)

and a perfect matching e1 = {x1
1, . . . , xd

1}, e2 = {x1
2, . . . , xd

2} of C such
that all edges of C have the form {x1

i1 , . . . , xd
id
} for some 1 ≤ i1 ≤ · · · ≤

id ≤ 2.

Proof. (⇒) Since Cohen-Macaulay rings are unmixed, (i) is true.
We shall prove (ii) by induction on d.

We claim that C has a free vertex. As I(C) is normally torsion free,
by [7, Theorem 5.8], there are minimal vertex covers Z1, . . . , Zd of
V (C) such that Z1, . . . , Zd partition V (C) and |Zi ∩ e| = 1 for every
e ∈ E(C) and i = 1, . . . , d. Since C is unmixed and since Zi is a minimal
vertex cover of C for all i, one has |Zi| = 2 for all i. It follows from
[7, Corollary 4.14] that C has a perfect matching, i.e., there are edges
e1, e2 of C such that e1 ∩ e2 = ∅ and e1 ∪ e2 = V (C). We may assume
that e1 = {x1, . . . , xd}, e2 = {y1, . . . , yd}, and Zi = {xi, yi} for all i.
Notice that any minimal vertex cover C of C has the form C = {x, y}
for some x ∈ e1 and y ∈ e2. Let G = C∨ be the Alexander dual
of C, which, in this case, is a graph. The graph G is bipartite with
bipartition e1, e2. Since R/I(C) is Cohen-Macaulay, I(G) = I(C∨) has
a linear resolution. It then follows from a result of Fröberg [6] (see also
[12]) that the complement graph G′ of G is chordal. By Remark 3.5,
G′ has a simplicial vertex z. We may assume that z = xk for some
k; the case z = yk is symmetric. Observe that the induced subgraphs
G′

e1
and G′

e2
of G′ on e1 and e2 are complete graphs of size d. Next we

prove that xk is not in NG′(e2) for any k. If xk is in NG′(e2) for some k,
then {xk, y�} is an edge of G′ for some �. Consequently y� would have
to be adjacent in G′ to any xi in e1, in particular {x�, y�} ∈ E(G′), a
contradiction. Thus {xk, yi} ∈ E(G) for all i. Note that yk is a free
vertex of C. Indeed let e be any edge of C containing yk, then xk is not
in e because |e ∩ Zk| = 1. Hence since {xk, yi} is a vertex cover of C
for any i we get that yi ∈ e for any i, i.e., e = e2.
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Consider the edge ideal I ′ which is obtained from I(C) by making
xk = 1 and yk = 1. Let C′ be the clutter on V ′ = V (C) \ {xk, yk}
that corresponds to I ′, i.e., I ′ = I(C′). The ideal I ′ is Cohen-Macaulay
of height two, normally torsion free, and is generated by monomials of
degree d−1. Therefore, by the induction hypothesis, there is a partition
X2 = {x2

1, x
2
2}, . . . , Xd = {xd

1, x
d
2} of V ′ such that all edges of C′ have

the form {x2
i2 , . . . , x

d
id
} for some 1 ≤ i1 ≤ · · · ≤ id ≤ 2. To complete

the proof we set x1
1 = xk, x1

2 = yk, and X1 = {x1
1, x

1
2}.

(⇐) It follows from Theorem 3.1. Here, the assumption that I(C) is
normally torsion free is not needed.

4. Cohen-Macaulay Clutters of Height Three. In this
section, we prove Conjecture 1.2 in the case of uniform clutters with
g = ht I(C) = 3. Our method in this case, similar to the case of height
2, is to give an ordering for the set of all tuples T = {(a, b, c) | 1 ≤
a, b, c ≤ d}, and then to show that I(C)∨, whose minimal generators
are labeled by the increasing order of their exponent vectors (induced
by the ordering on T ), admits linear quotients.

Theorem 4.1. Let C be a uniform admissible clutter of height 3.
Then the Alexander dual I(C)∨ of I(C) has linear quotients, and so C
is a Cohen-Macaulay clutter.

Proof. Since C is unmixed, it will be Cohen-Macaulay if I(C)∨ has
linear quotients, as noted in the Introduction. To prove I(C)∨ has linear
quotients, we extend the ordering of S given in the proof of Theorem
3.1 to an ordering of the elements in T . We order (a, b, c) < (d, f, h)
if (a, c) < (d, h) in S, and order (a, b, c) < (a, b′, c) if b > b′. Thus the
elements of T are ordered (1, d, d) < (1, d− 1, d) < (1, d− 2, d) < · · · <
(1, 1, d) < (1, d, d − 1) < (1, d − 1, d − 1) < (1, d − 2, d − 1) < · · · <
(1, 1, d − 1) < (1, d, d − 2) < · · · < (d, 1, 1). This induces an ordering
on the exponent vectors of the minimal generators of I(C)∨. We shall
label the minimal generators of I(C)∨ in the increasing order of their
exponent vectors. Assume that the minimal generators of I(C)∨ are
labeled as u1, . . . , us.

Suppose that for some j < i, we have deg uj/ gcd(uj , ui) ≥ 2.
Let uj = xj1

1 xj2
2 xj3

3 and ui = xi1
1 xi2

2 xi3
3 . Then the exponent vectors
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(j1, j2, j3) and (i1, i2, i3) differ in at least two positions. Since g = 3,
this means that these two vectors differ in at least one of the two
ends. If j1 �= i1, then by the chosen ordering, j1 < i1. It follows from
Lemma 2.3 that uk = xj1

1 xi2
2 xi3

3 is a minimal generator of I(C)∨. By the
chosen ordering, we also have k < i. Moreover, xj1

1 = uk/ gcd(uk, ui) is
a linear factor of uj/ gcd(uj , ui).

Consider the case when j1 = i1. In this case, jl �= il for l = 2, 3.
By the chosen ordering, j3 > i3. Thus, it follows from Lemma 2.1
that uk = xi1

1 xi2
2 xj3

3 is a minimal generator of I(C)∨. By the chosen
ordering, we also have k < i. The conclusion follows from the fact that
xj3

3 = uk/ gcd(uk, ui) is a linear factor of uj/ gcd(uj , ui).

Note that there are other orderings that work in the proof of Theorem
4.1 as well. For example, for d = 3, a similar ordering given by
(a, b, c) < (d, f, h) if (a, c) < (d, h) in the sequence (1, 3) < (1, 2) <
(2, 3) < (2, 2) < (1, 1) < (2, 1) < (3, 3) < (3, 2) < (3, 1), and
(a, b, c) < (a, b′, c) if b > b′, satisfies the two necessary requirements:
raising the third entry and lowering the first entry of a generator of
I(C)∨ both result in a generator which occurs earlier in the list. This
ordering will also give linear quotients in I(C)∨.

Both of the requirements above are necessary. We shall give an
example of an unmixed uniform admissible clutter C satisfying d = g =
3 for which the minimal vertex covers (which all have size 3) do not
have linear quotients under the reverse lexicographic ordering. Notice
that you can raise the last term in reverse lex, but if you lower the
front, you might get an element that is higher in the overall ordering.

Example 4.2. Let C = {x1y1z1, x2y2z2, x3y3z3, x1y2z3}, where to
simplify notation, x, y, z represent elements of X1, X2, X3 respectively.
There are 19 minimal vertex covers of order 3. Under the reverse lexico-
graphic ordering, linear quotients fails. Indeed, let Ci = {z1, y2, y3}. It
can be checked that Ci is a cover. Also, Cj = {x1, z2, y3} is also a cover,
and x1z2y3 < z1y2y3, while the colon is (x1z2y3 : z1y2y3) = (x1z2).
Now {z1, z2, y3} misses the edge x1y2z3 of C and so is not a cover, so
((u1, . . . , ui−1) : ui) will not contain z2. Here, ul’s are monomials cor-
responding to vertex covers Cl’s. Now {x1, y2, y3} is a cover, but under
the reverse lexicographic order, uk = x1y2y3 > ui = z1y2y3. Thus x1 is
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also not in (u1, . . . , ui−1 : ui). Hence reverse lexicographic order will
not suffice for g = 3.

5. Linear Quotients and Clutters of Higher Heights. In this
section, we give a criterion in the case of uniform clutters of ht I(C) = 4
under which an admissible unmixed clutter is Cohen-Macaulay, and
present a family of examples to show that Conjecture 1.2 may fail when
ht I(C) ≥ 4, even in the uniform case.

We start by considering the case when g = ht I(C) = 4. For
convenience, we shall identify the vertex cover C = (xa

1 , xb
2, x

c
3, x

d
4) of C

with the generator u = xa
1xb

2x
c
3x

d
4 of the Alexander dual I(C)∨. That

is, when we use the notation (xa
1 , xb

2, x
c
3, x

d
4) it is understood that we

are talking about a vertex cover (as a set) of C, and when we use the
monomial notation xa

1x
b
2x

c
3x

d
4 it is understood that we are talking about

the same vertex cover but as a generator of the Alexander dual.

Definition 5.1. Let C be an unmixed uniform admissible clutter
with g = 4. We say that C satisfies condition (*) if there exist two
vertex covers C1 = (xa

1 , xb
2, x

c
3, x

d
4) and C2 = (xa

1 , xs
2, x

t
3, x

d
4) sharing

the first and the last vertices so that neither (xa
1 , xb

2, x
t
3, xd

4) nor
(xa

1 , xs
2, x

c
3, x

d
4) is a vertex cover of C. In this case, we call the pair

(C1, C2) a bad vertex cover pair of C.

Lemma 5.2. Let C be an unmixed uniform admissible clutter with
g = 4, and assume that C does not satisfy condition (*). Suppose
(xa

1 , xb
2, x

c
3, x

d
4) and (xa

1 , xs
2, x

t
3, x

d
4) are vertex covers of C with c > t such

that (xa
1 , xs

2, x
c
3, x

d
4) is not a vertex cover of C. Then, there does not exist

a vertex cover (xa
1 , xs

2, x
q
3, x

d
4) of C with q > t such that (xa

1 , x
b
2, x

q
3, x

d
4)

is not a vertex cover of C.

Proof. Suppose, by contradiction, that such a vertex cover
(xa

1 , xs
2, x

q
3, x

d
4) of C exists. Then (xa

1 , xs
2, x

q
3, x

d
4) and (xa

1 , x
b
2, x

c
3, x

d
4)

form a bad vertex cover pair of C, and so C satisfies condition (*),
a contradiction.
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Theorem 5.3. Let C be an unmixed uniform admissible clutter with
g = 4. Then the Alexander dual I(C)∨ of I(C) has linear quotients if
and only if C does not satisfy condition (*). In particular, if C does not
satisfy condition (*) then C is a Cohen-Macaulay clutter.

Proof. The last statement of the theorem follows from our obser-
vations in the Introduction. We shall prove the first statement of the
theorem. Suppose first that C satisfies property (*). We shall show
that I(C)∨ does not have linear quotients. Let (C1, C2) be a bad vertex
cover pair of C, where C1 = (xa

1 , xb
2, x

c
3, x

d
4) and C2 = (xa

1 , x
s
2, x

t
3, x

d
4).

We shall use u1 and u2 to denote the corresponding monomials in I(C)∨.
Suppose there is an order of the minimal generators of I(C)∨ that ad-
mits linear quotients. Without loss of generality, assume that u1 < u2

in this order. Since u1/ gcd(u1, u2) = xb
2x

c
3, in order to have linear

quotients, there must exists a generator u < u2 of I(C)∨ such that
u/ gcd(u, u2) is a linear factor of xb

2x
c
3. Since C is unmixed, this implies

that u has to be either xa
1x

b
2x

t
3x

d
4 or xa

1xs
2x

c
3x

d
4 . This is a contradiction

to the fact that C satisfies property (*) and (C1, C2) is a bad vertex
cover pair of C.

Conversely, assume that C does not satisfy property (*). We shall
construct an order of the generators of I(C)∨ that admits linear quo-
tients. We order these generators by the following rules:

(1). xa
1x

b
2x

c
3x

d
4 ≺ xm

1 xn
2xp

3x
q
4 if (a, d) < (m, q) in the order given in

Theorem 3.1, i.e., if a < m or if a = m and d > q,

(2). xa
1xb

2x
c
3x

d
4 ≺ xa

1xs
2x

t
3x

d
4 if c > t,

(3). xa
1xb

2x
t
3x

d
4 ≺ xa

1x
s
2x

t
3x

d
4 if there exists c > t such that

(xa
1 , xb

2, x
c
3, x

d
4) is a vertex cover of C, but (xa

1 , xs
2, x

c
3, x

d
4) is not, and

(4). xa
1x

b
2x

t
3x

d
4 � xa

1x
s
2x

t
3x

d
4 if such a c as in (3) does not exist and

b < s.

We claim that this is a well-defined total order of the generators of
I(C)∨. Clearly, it suffices to prove that this partial order is well-defined
(then it follows that the partial order is a total order). Indeed, rules
(1) and (2) are well-defined. We only need to show that rules (3) and
(4) are also well-defined. To this end, we show that the partial order
given by rules (3) and (4) is anti-symmetric and transitive.
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Suppose u1 = xa
1x

b
2x

t
3x

d
4 and u2 = xa

1x
s
2x

t
3x

d
4 are distinct generators

of I(C)∨ such that u1 
 u2 and u2 
 u1 by rules (3) and (4). We
need to show that u1 = u2. Clearly, if both of the inequalities u1 
 u2

and u2 
 u1 are given by rule (4) then b = s, and hence, u1 = u2.
Assume now that u1 
 u2 is given by the existence of c > t such that
(xa

1 , xb
2, x

c
3, x

d
4) is a vertex cover of C, but (xa

1 , xs
2, x

c
3, x

d
4) is not. By

the existence of c, u2 
 u1 cannot be given by rule (4). This implies
that if u1 �= u2 then u2 
 u1 is given by the existence of q > t such
that (xa

1 , xs
2, x

q
3, x

d
4) is a vertex cover of C but (xa

1 , x
b
2, x

q
3, x

d
4) is not.

However, the existence of such a q contradicts the assertion of Lemma
5.2. Hence, u1 = u2. That is, the order ≺ is anti-symmetric.

Suppose C1 = (xa
1 , xb

2, x
t
3, x

d
4), C2 = (xa

1 , xs
2, x

t
3, x

d
4) and C3 =

(xa
1 , xr

2, x
t
3, x

d
4) are vertex covers of C such that for the corresponding

monomials we have u1 ≺ u2 and u2 ≺ u3. To get transitivity, we need
to show that u1 ≺ u3. Clearly, the partial order given by rule (4) is
transitive.

Case 1: u1 ≺ u2 and u2 ≺ u3 are given by rule (3). That is, there
exist c, p > t such that

• A = (xa
1 , xb

2, x
c
3, x

d
4) and B = (xa

1 , xs
2, x

p
3, x

d
4) are vertex covers of C,

and

• C = (xa
1 , xs

2, x
c
3, x

d
4) and D = (xa

1 , xr
2, x

p
3, x

d
4) are not vertex covers

of C.

Observe that since C2 and B are vertex covers of C, it follows from
Lemma 2.5 that (xa

1 , xs
2, x

l
3, x

d
4) is a vertex cover of C for any t ≤ l ≤ p.

Since C is not a vertex cover of C, we must have c > p.

If (xa
1 , xr

2, x
c
3, x

d
4) is a vertex cover of C then by considering it to-

gether with the vertex cover C3, it also follows from Lemma 2.5 that
(xa

1 , xr
2, x

l
3, x

d
4) is a vertex cover of C for any t ≤ l ≤ c. In particular,

this implies that D = (xa
1 , xr

2, x
p
3, x

d
4) is a vertex cover of C, a contra-

diction. Therefore, (xa
1 , xr

2, x
c
3, x

d
4) is not a vertex cover of C. By rule

(3), this implies that u1 ≺ u3.

Case 2: u1 ≺ u2 is given by rule (3) and u2 ≺ u3 is given by rule (4).
If u3 ≺ u1 by rule (4) then, since rule (4) is transitive, we have u2 ≺ u1.
This implies that u1 = u2, a contradiction. If u3 ≺ u1 by rule (3) then
by the same argument as in Case 1 above, we have u3 ≺ u2. Again,
this implies u2 = u3, a contradiction. Hence, we must have u1 ≺ u3.
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Case 3: u1 ≺ u2 by rule (4) and u2 ≺ u3 by rule (3). We can use
the same line of arguments as in Case 2 to conclude that u1 ≺ u3.

We have shown that the order ≺ is transitive. Hence, ≺ gives a total
order on the generators of I(C)∨. It remains to show that under ≺,
I(C)∨ admits linear quotients.

Consider any two generators U = xa
1xb

2x
c
3x

d
4 and V = xm

1 xn
2 xp

3x
q
4 such

that U ≺ V . If a �= m then by our order (as given in the case g = 2),
we have a < m. By Lemma 2.3, we have W = xa

1x
n
2 xp

3x
q
4 is a generator

of I(C)∨. Moreover, W ≺ V and W/ gcd(W, V ) is a linear factor of
U/ gcd(U, V ). Assume that a = m.

By a similar argument using Lemma 2.1 in place of Lemma 2.3,
if d �= q, we can find a generator W = xm

1 xn
2 xp

3x
d
4 ≺ V such that

W/ gcd(W, V ) is a linear factor of U/ gcd(U, V ). Assume now that
a = m and d = q.

If c = p then we can take W = U to have W/ gcd(W, V ) being linear,
so we assume that c > p. If c ≤ d, then by using Lemma 2.1, we have
a generator W = xa

1xn
2xc

3x
d
4 ≺ V such that W/ gcd(W, V ) is a linear

factor of U/ gcd(U, V ). Thus, we may also assume that c > d. We now
have c > max{p, d}.

If xa
1x

n
2 xc

3x
d
4 is a generator of I(C)∨ then by taking W = xa

1xn
2xc

3x
d
4, we

also have W ≺ V and W/ gcd(W, V ) is a linear factor of U/ gcd(U, V ).
If (xa

1 , xn
2 , xc

3, x
d
4) is not a vertex cover of C then by rule (3), we

have W = xa
1x

b
2x

p
3x

d
4 ≺ V and W/ gcd(W, V ) is a linear factor of

U/ gcd(U, V ). Moreover, in this case, since C does not satisfy condition
(*), W is a vertex cover of C.

Hence, we have shown that in any case, we can always find a generator
W of I(C)∨ such that W ≺ V and W/ gcd(W, V ) is a linear factor of
U/ gcd(U, V ). This shows that I(C)∨, under the order ≺, admits linear
quotients. The theorem is proved.

We shall now give a family of counterexamples to Conjecture 1.2 when
g ≥ 4.

Lemma 5.4. [see [16, Proposition 6.2.7]] Let S = K[x1, . . . , xn],
T = K[y1, . . . , ym], and R = K[x1, . . . , xn, y1, . . . , ym]. Suppose I ⊂ S
and J ⊂ T are homogeneous ideals, and IR and JR are their extensions
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in R, respectively. Then R/(IR, JR) is a Cohen-Macaulay ring if and
only if both S/I and T/J are Cohen-Macaulay rings.

Theorem 5.5. Let g ≥ 4 be an integer. Then there always exists
a uniform, admissible and unmixed clutter C of height g that is not
Cohen-Macaulay.

Proof. We shall construct such a clutter C explicitly. Let
R = k[x,y, z,w,u], where x = (x1, . . . , xg),y = (y1, . . . , yg), z =
(z1, . . . , zg),w = (w1, . . . , wg),u = (u1, . . . , ug). Take C to be the clut-
ter over the vertices x ∪ y ∪ z ∪ w ∪ u with edge set

E(C) = 〈e1, . . . , eg, x1y2z3w3u4, x1y1z2w2u3, x1y1z3w3u3, x1y2z2w2u4〉
where ei = xiyiziwiui for all i = 1, . . . , g (here, by abusing notation,
we identify an edge with the corresponding monomial).

By construction, C is uniform. By verifying with conditions in
Definition 1.1, it can be seen that C is admissible. To prove the
unmixedness of C we need to show that if C is a minimal vertex
cover of C then |C| = g. We first have |C ∩ ei| ≥ 1 for all i =
1, . . . , g. It also follows from the minimality of C that |C ∩ ei| =
1 for i ≥ 5 (since ei is the only edge of C involving the vertices
{xi, yi, zi, wi, ui}). Observe that if C is a minimal vertex cover of C,
then C∩{x1, . . . , x4, y1, . . . , y4, . . . , u1, . . . , u4} is a minimal vertex cover
of the clutter consisting of edges

{e1, e2, e3, e4, x1y2z3w3u4, x1y1z2w2u3, x1y1z3w3u3, x1y2z2w2u4}.
Thus, by a direct computation (either with CoCoA [1] or Macaulay 2
[13]), we further have |C ∩ ei| = 1 for i = 1, 2, 3, 4. Therefore, |C| = g.

Finally, we show that C is not a Cohen-Macaulay clutter. Let

S = K[x1, . . . , x4, y1, . . . , y4, . . . , u1, . . . , u4],
T = K[x5, . . . , xg, y5, . . . , yg, . . . , u5, . . . , ug],

and let

I = 〈e1, e2, e3, e4, x1y2z3w3u4, x1y1z2w2u3, x1y1z3w3u3, x1y2z2w2u4〉
⊂ S
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and J = 〈e5, . . . , eg〉 ⊂ T. Observe that I(C) = IR + JR. By a direct
computation (either with CoCoA [1] or Macaulay 2 [13]), we have S/I
is not a Cohen-Macaulay ring. It now follows from Lemma 5.4 that
R/I(C) is not a Cohen-Macaulay ring. That is, C is not a Cohen-
Macaulay clutter.

Remark 5.6. When g = 4, the clutter C constructed in Theorem 5.5
satisfies condition (*).
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