MEMOIRS OF THE COLLEGE OF SCIENCE, UNIVERSITY OF KYOTO, SERIES A Vol. XXIX, Mathematics No. 2, 1955.

On the imbedding of a non-singular variety in an irreducible complete intersection

By

Mieo NISHI

(Received March 17, 1955)

In the present paper, we shall discuss the following question: Let V^r be a non-singular variety in an ambient projective space L^N , then does there exist a non-singular irreducible complete intersection¹⁾ $U^n(r+1 \le n \le N-1)$, containing V, in L^N ? When the dimension n of U is not less than 2r, the above question can be solved affirmatively. But in general, this is not true, and a counter example will be given at § 2. It must be noticed that this example also shows the fact that there does not necessarily exist a non-singular variety which contains the given non-singular varety, excepting the ambient space itself.

\S 1. The imbedding theorem.

The following lemma is not new and is essencially the same as Lemma 3 of T. Matsusaka $[2]^{2}$

LEMMA 1. Let X, X' be two cycles in a projective space L^N defined over k and P, P' two points lying on X, X' respectively such that (X', P') is a specialization of (X, P) over k. Then, if P' is contained in only one component of X' such that its coefficient is 1 and P' is simple on it, the same is true for X and P.

LEMMA 2. Let V^r $(r \ge 2)$ be a projective model in L^N and k a field of definition for both L^N and V. Then there exist a positive integer M(V) and a rational number R(V), both depending only on V, with the following property; if H_m is a hypersurface of degree m in L^N such that $m \ge M(V)$ and that dim $_k(C(H_m)) \ge l(N, m) - R(V)$

¹⁾ In what follows, we mean by an irreducible complete intersection such a variety U^n that is represented as a complete intersection of (N-n) hypersurfaces in L^N .

²⁾ Numbers in brackets refer to the bibliography at the end of this paper.

 m^{r-1} , the intersection-product $V \cdot H_m$ is defined and irreducible, where $l(N, m) = {\binom{N+m}{N}} - 1.$

This lemma is a precise formulation of Theorem 1 of M. Nishi and Y. Nakai [3], and the proof will be stated at \S 3.

THEOREM 1. Let V^r be a projective model in L^N . Then there exists an irreducible complete intersection $U^n(r+1 \le n \le N)$ such that V is contained in U and that the singular locus of U lies on V.

PROOF. Suppose that there exists an irreducible complete intersection $U'^{s}(r+2 \le s \le N)$ satisfying the required conditions of our theorem, that is to say, U' contains V and the singular locus of U' lies on V. One should notice that such a variety surely exists for some s; in fact the ambient space L^{N} itself satisfies these conditions.

It can easily be seen that the totality of hypersurfaces of degree m on which the given variety V lies constitutes a projective space L' of dimension $\varphi(V, m)^{3}-1$, and it is defined over any field of definition of V.

Let K be a common field of definition for V, U' and L, then L' is also defined over K, and let \overline{H}_m be the hypersurface of degree *m* corresponding to the generic point of L' over K. Clearly we have dim ${}_{\kappa}C(\overline{H}_m) = \varphi(V, m) - 1$.

If *m* is sufficiently large, $\chi(V, m)$ shows the Hilbert's characteristic function and therefore is a polynomial of *m* whose degree is *r*. Since $s \ge r+2$, the conditions of Lemma 2 are fulfiled by U' and \overline{H}_m for sufficiently large *m*. Hence the intersection-product $U' \cdot \overline{H}_m$ is defined and irreducible. Let us put $U = U' \cdot \overline{H}_m$.

Now we shall show that the singular locus of U is contained in V. Let P be any point of U not belonging to V. Let $P = (x_0, x_1, \dots, x_N)$, then we may assume, without loss of generality, that $x_0 = 1$.

Let *Y* be the locus of $C(\bar{H}_m)$ over the algebraic closure $\overline{K(x)}$ of K(x), and *Z* the locus of $C(\bar{H}_1 + H_{m-1})$ over the algebraic closure \bar{K} of *K*, where \bar{H}_1 is a generic hyperplane in L^N over *K* and H_{m-1}

³⁾ Let \mathfrak{A} be an homogeneous ideal of the polynomial ring $k[X_0, X_1, \dots, X_N]$, then we denote by $\chi(\mathfrak{A}, m)$ the maximal number of linearly independent forms of degree m modulo \mathfrak{A} , and by $\varphi(\mathfrak{A}, m)$ that of linealy independent forms of degree m in \mathfrak{A} . Then clealy we have $\varphi(\mathfrak{A}, m) + \chi(\mathfrak{A}, m) = \binom{N+m}{N}$. When W_T is a projective model in L^N defined over k, we put $\chi(W, m) = \chi(\mathfrak{A}(W), m)$ and $\varphi(W, m) = \varphi(\mathfrak{A}(W), m)$, where $\mathfrak{A}(W)$ is the defining homogeneous ideal of W^T in the polynomial ring $k[X_0, X_1, \dots, X_N]$. The numbers $\chi(W, m)$ and $\varphi(W, m)$ are independent of the choice of the defining field k.

a hypersurface of degree m-1 defined over \overline{K} such that it contains V but not P and the intersection-product $U' \cdot H_{m-1}$ is defined and irreducible. Then, since dim ${}_{K}P \leq s$, we have

$$\dim Y \geq \varphi(V, m) - 1 - s,$$

and

$$\dim Z = N$$

Now the varieties Y and Z are embedded in a projective space L'. Then the fact that dim $Y + \dim Z \ge \varphi(V, m) - 1 + N - s$ leads us to the conclusion that there exists a point \hat{z} in $Y \cap Z$ such that die $_{K(x)}\hat{z} \ge N - s$. There corresponds to \hat{z} a hypersurface H_m of the form $H_1 + H_{m-1}$, where H_1 is a hyperplane in L^N , and dim $_{K(x)}C(H_m) \ge N - s$. Since $C(H_m) \in Y$, we have the specialization $\bar{H}_m \to H_m$ with reference to K(x). Then the point P = (x) must lie on H_1 , since H_{m-1} does not contain P.

Suppose that H_1 and U' are transversal to each other at P on L^N . Then the intersection-product $U' \cdot H_m$ is defined and therefore $U' \cdot H_m$ is the uniquely determined specialization of $U' \cdot \bar{H}_m$ over K(x). Moreover the transversality shows that there exists only one component of the cycle $U' \cdot H_m$ to which the point P belongs (the coefficient of this component is 1) and P is simple on this component. Hence, by Lemma 1, P must be simple on $U = U' \cdot \bar{H}_m$.

We shall now show that U' and H_1 are transversal to each other at P. Since $\dim_{K(r)}C(H_m) \ge N-s$ and H_{m-1} is defined over \overline{K} , we have $\dim_{K(r)}C(H_1) \ge N-s$. Let T^s be the tangential linear variety of U' at P, then all the hyperplanes in L^s passing through T^s build up the (N-s-1)-dimensional linear subspace in the dual space of L^s . Hence H_1 cannot contain T, and the intersectionproduct $T \cdot H_1$ is defined. Thus the proof of our lemma is completed. q. e. d.

Now we are in position to prove the imbedding theorem.

THEOREM 2. Let V^r be a non-singular projective model in L^{N} . Then, if n is a positive integer such that $2r \leq n \leq N$, there exists a non-singular complete intersection U^n , containing V as a subvariety.

PROOF. Suppose that there exists a non-singular complete intersection U^{r_s} $(2r+1 \le s \le N)$, containing V as a subvariety. As in Theorem 1, such a variety surely exists for some s.

Let $\mathfrak{A}(U)$, $\mathfrak{A}(U')$ be the defining homogeneous ideal of V, U' respectively and $(f^{(1)}, \dots, f^{(N-r+t)})$, $(f'^{(1)}, \dots, f'^{(N-s)})$ be homogeneous

Mieo Nishi

ideal bases of $\mathfrak{U}(V)$, $\mathfrak{U}(U')$ respectively. Let K be a common field of definition for both V and U', and \overline{H}_m the hypersurface of degree m introduced in the proof of Theorem 1, namely the most general one over K containing V. Then the defining equation $\overline{H}_m(X) = 0$ of \overline{H}_m is as follows;

$$\bar{H}_{m}(X) = \sum_{l=1}^{N-r+t} \bar{H}_{m_{l}}^{(l)}(X) f^{(l)}(X) = 0,$$

where $\bar{H}_{m_l}(X)$ $(l=1, \dots, N-r+t)$ are independent generic forms of degree $m_l=m-\deg(f^{(l)})$. Let $\{u_i^{(l)}; i=0, \dots, i_l=\binom{N+m_l}{N}-1\}$ be the coefficients of the form $\bar{H}_{m_l}^{(l)}(X)$, then we may assume that $\{u_j^{(l)}; l=1, \dots, N-r+t, j=0, 1, \dots, i_l\}$ are $\sum_{i}(i_l+1)$ independent variables over K.

By Theorem 1, if *m* is sufficiently large, $U^{s-1} = U' \cdot \overline{H}_m$ is defined and is an irreducible variety such that the singular locus of *U* lies on *V*. Let now P = (x) be any point of *V*. We may again assume, without loss of generality, that $x_0 = 1$.

Let us define the matrix

$$A = \begin{pmatrix} \frac{\partial f'^{(1)}}{\partial X_1} & \cdots & \frac{\partial f'^{(1)}}{\partial X_N} \\ & \cdots \\ \frac{\partial f'^{(N-S)}}{\partial X_1} & \cdots & \frac{\partial f'^{(N-S)}}{\partial X_N} \\ \frac{\partial \bar{H}_m}{\partial X_1} & \cdots & \frac{\partial \bar{H}_m}{\partial X_N} \end{pmatrix}$$

Now we shall show that U is a non-singular variety. For this purpose, it is sufficient to prove that the matrix A is of rank N-s+1 at P.

Suppose that the rank of matrix A is not greater than N-s at **P**, then we have the following N equations

$$\frac{\partial H_m}{\partial x_i} = \sum_{j=1}^{N-s} \lambda_j \frac{\partial f'^{(j)}}{\partial x_i} \quad (i=1, \dots, N)$$

for some quantities $(\lambda_1, \dots, \lambda_{N-\varepsilon})$.

Since

$$\frac{\partial \bar{H}_m}{\partial x_i} = \sum_{l=1}^{N-r+l} \bar{H}_{m_l}^{(l)} \frac{\partial f^{(l)}}{\partial x_i},$$

we have

(*)
$$\sum_{l=1}^{N-r+t} \bar{H}_{m_l}^{(l)} \frac{\partial f^{(l)}}{\partial x_i} = \sum_{j=1}^{N-s} \lambda_j \frac{\partial f^{\prime(j)}}{\partial x_i} \quad (i=1, \dots, N).$$

Now P is simple on V, hence we can assume that

det
$$\begin{array}{c} \frac{\partial f^{(1)}}{\partial x_1} & \dots & \frac{\partial f^{(N-s)}}{\partial x_1} \\ & \dots & \\ \frac{\partial f^{(1)}}{\partial x_{N-r}} & \dots & \frac{\partial f^{(N-r)}}{\partial x_{N-r}} \end{array} \neq 0.$$

Then from (*), we have

$$\bar{H}_{n_{l}}^{(l)}(x) \in K(x, \lambda_{1}, \dots, \lambda_{N-s}) \quad (l=1, 2, \dots, N-r)$$

This shows that

$$\dim_{\kappa(x,\lambda)} \{ u_{j}^{(l)}; 1 \leq l \leq N-r+t, 0 \leq j \leq i_{l} \} \leq \\ \dim_{\kappa} \{ u_{j}^{(l)}; 1 \leq l \leq N-r+t, 0 \leq j \leq i_{l} \} - (N-r).$$

Hence we have dim $_{\kappa}K(x, \lambda) \ge N-r$. Therefore dim $_{K(x)}K(x, \lambda) \ge N$ -2r, since P = (x) lies on V defined over K. This is a contradiction.

COROLLARY. If Γ is a non-singular projective curve in L^{N} , then, for any integer $n(2 \le n \le N)$, there exists a non-singular complete intersection U^{n} , containing Γ as a subvariety.

\S 2. A counter example.

In Theorem 2 it is desirable to eliminate the additional condition on the dimension n of the variety U, but it is not true in general as will be shown in the following counter example.

Let k be the field of rational numbers and t_1 , t_2 two independent variables over k. In an affin 4-space S^4 , we consider a variety V'^2 , which is the locus of the point $(t_1t_2, t_1, t_2, t_1^2)$ over k. Then it is easy to see that the defining ideal of V' in the polynomial ring $k[X_1, X_2, X_3, X_4]$ are generated by $f'^{(1)} = X_2X_3 - X_1$ and $f'^{(2)} = X_2^2 - X_4$. Now if we immerse V' in a projective 4-space L^4 , we can get the projective model V^2 and V is the locus of the point $(\lambda, \lambda t_1, t_2, \lambda t_1, \lambda t_2, \lambda t_1^2)$ of L^4 over k, where λ is a variable over $k(t_1, t_2)$.

Now we are going to prove that the defining homogeneous ideal $\mathfrak{A}(V)$ of V is generated by three forms $f^{(1)} = X_2 X_3 - X_0 X_1$, $f^{(2)} = X_2^2 - X_0 X_1$, and $f^{(3)} = X_1 X_2 - X_3 X_1$. Let the ideal generated by $f^{(1)}$,

q. e. d.

 $f^{(2)}$ and $f^{(3)}$ be \mathfrak{A} ; and we shall show that $\mathfrak{A}(V) = \mathfrak{A}$. Let g be any homogeneous form in $\mathfrak{A}(V)$, then for suitable choice of an positive integer m, we can find that, by using the fact that $X_0X_1 = X_2 \mathfrak{A}_3(\mathfrak{A})$ and $X_0X_4 = X_2^2(\mathfrak{A}), X_0^m \cdot g = h(X_0, X_2, X_3)(\mathfrak{A})$, where h is a form in the polynonial ring $k [X_0, X_2, X_3]$. Since t_1, t_2 are variables over k, the right hand side must be identically zero. Hence $X_0^m g = 0(\mathfrak{A})$. Now, for the proof that $\mathfrak{A}(V) = \mathfrak{A}$, it is sufficient to show that, if $X_0 f = 0(\mathfrak{A})$ for any form f in $\mathfrak{A}(V)$, we have $f = 0(\mathfrak{A})$. Since $X_0 f = g_1 f^{(1)} + g_2 f^{(2)} + g_3 f^{(3)}$. Let us put $g_j = g_{j_1} + g_{j_2}$ (j=1, 2, 3), where $g_{j_1} = 0(X_0)$ and g_{j_2} is free from $X_0(g_{j_2})$ may be zero for some j). Then we have

$$g_{12}X_{2}X_{3}+g_{22}X_{2}^{2}+g_{32}(X_{1}X_{2}-X_{3}X_{4})=0,$$

and hence $g_{32} \equiv 0(X_2)$. Put $g_{32} = g'_{32}X_2$. Again we have

 $g_{12}X_3+g_{22}X_2+g_{32}'(X_1X_2-X_3X_4)=0,$

and $(g_{12}-g_{52}'X_4)X_3+(g_{22}+g_{52}'X_1)X_2=0.$

Therefore we can get the following expression

$$g_{12} = g'_{32}X_4 + X_2q, \ g_{22} = -g'_{32}X_1 - X_3q,$$

where q is a form, and it follows that

$$egin{aligned} g_{12}X_0X_1+g_{22}X_0X_4&=X_0(g_{12}X_1+g_{22}X_4)\ &=X_0q(X_1X_2-X_3X_4)\ &=X_0qf^{(3)}. \end{aligned}$$

Hence $f \equiv 0(\mathfrak{A})$.

The Jacobian matrix J of V is as follows;

$$J = egin{pmatrix} -X_1 & -X_0 & X_3 & X_2 & 0 \ -X_4 & 0 & X_2 & 0 & -X_0 \ 0 & X_2 & X_1 & -X_1 & -X_3 \end{pmatrix}.$$

And it can easily be shown that the rank of this matrix is of 2 at each point of V. Hence V is a non-singular variety.

Now we shall prove that the singular locus of any 3-dimensional varity passing through V is not empty. For this purpose, by Lemma 1, we have only to prove it for the most general one which passes through V. Let \bar{V}_m^3 be the most general hypersurface of degree m which passes through V. We shall examine two caces separately :

Case 1. m = 2.40

In this case, \bar{V}_2 is defined by the equation

$$\bar{H}_2(X) = uf^{(1)} + vf^{(2)} + wf^{(3)} = 0,$$

where u, v, w are three variables over k. The point $(w^2, -uv, uw, -vw, u^2)$ of V is surely a multiple point of \overline{V}_2 .

Case 2. $m \ge 3$.

The defining equation of \bar{V}_{m} is as follows;

$$\bar{H}_{m}(X) = \bar{H}_{m-2}^{(1)}(X) f^{(1)}(X) + \bar{H}_{m-2}^{(2)}(X) f^{(2)}(X) + \bar{H}_{m-2}^{(3)}(X) f^{(3)}(X) = 0,$$

where $\hat{H}_{m-2}^{(i)}(X)$ (i=1, 2, 3) are independent generic forms of degree m-2 over k. We first consider the following equations:

$$-H_{m-2}^{(1)}(X)X_0+H_{m-2}^{(3)}(X)X_2=0$$

$$-\bar{H}_{m-2}^{(2)}(X)X_0-\bar{H}_{m-2}^{(3)}(X)X_3=0,$$

and let X, Y be the cycles on L^4 defined by the above equations (X by the former and Y the latter) respectively. Further let X', Y' be the cycles defined by the following equations respectively:

$$-H_{m-2}^{(1)}(X)X_0=0, -H_{m-2}^{(2)}(X)X_0=0.$$

Then we can see immediately that X' and Y' are the specializations of X and Y over k respectively. Therefore we have the following specialization $(V \cdot X, Y) \rightarrow (V \cdot X', Y')$ with reference to k. The intersection-product $(V \cdot X') \cdot Y'$ is not defined, but if we denote by $\overline{H}_{m-2}^{(i)}(i=1, 2)$ the hypersurfaces of degree m-2 defined by the equations $\overline{H}_{m-2}^{(i)}(X) = 0$ (i=1, 2), each component of the cycle $V \cdot \overline{H}_{m-2}^{(i)} \cdot \overline{H}_{m-2}^{(i)}$ is a proper component of the intersection $(V \cdot X') \cap Y'$. Let M' be such a component, then M' is clearly a generic point of V over k. As is well known, there exists a proper component M of the intersection $(V \cdot X) \cap Y$ such that M' is a specialization of M over the specialization $(V \cdot X, Y) \rightarrow (V \cdot X', Y')$ with reference of k. The point M must be a generic point of V over k, since M' is so.

Let us put $M = (x_0, x_1, x_2, x_3, x_4)$, then $x_0 \neq 0$. At this point M = (x), we have

$$\frac{\partial H_m}{\partial x_1} = -\bar{H}_{m-2}^{(1)}(x) \cdot x_0 + \bar{H}_{m-2}^{(3)}(x) \cdot x_2 = 0$$

4) It is easy to see that V is not contained in a hyperplane in L^4 .

Mieo Nishi

$$\frac{\partial H_m}{\partial x_4} = -\bar{H}_{m-2}^{(2)}(x) x_0 + \bar{H}_{m-2}^{(3)}(x) \cdot x_3 = 0,$$

and since M is a generic point of V over k, it follows naturally that

$$\frac{\partial \bar{H}_m}{\partial x_j} = 0 \quad (j = 0, 2, 3).$$

This yields the conclusion that M is a multiple point of \overline{V}_m .

Thus we have established that our non-singular surface V cannot be contained in any non-singular 3-dimensional variety.

Remark. After a straightfoward computations, we can see that the degree of the variety V is 3.

\S 3. The proof of Lemma 2.

To prove Lemma 2, we need some lemmas.

Let $\mathfrak{L}(r, d; N)$ be the algebraic system built up by the cycles on L^{N} whose dimensions are r and degrees d; let e(r, d; N) be the maximal dimension of the components in $\mathfrak{L}(r, d; N)$. Then we have the following lemma:

LEMMA 3. If d is a sufficiently large positive integer, we have $e(r, d; N) \leq (N+1) \cdot d^{r+1}$.

PROOF. We shall use the induction on the dimension N of the ambient projective space L^{N} .

When N is 2, our assertion is trivially valid.

Assume that our lemma is verified for any projective space of dimension $\leq N-1$. And now we shall proceed to the case L^{N} .

Let Γ be a member of $\mathfrak{L}(r, d; N)$ such that $\dim_{k_0} (C(\Gamma)) = e(r, d; N)$, where k_0 is a field over which L^N is defined. Let P be a \bar{k}_0 -rational point of L^N , \bar{k}_0 being the algebraic closure of k_0 , such that P does not belong to Γ . (Here we assume that $r \leq N-2$, because our assertion is trivial for r=N-1.) Projecting Γ from the point P, we get a projecting cone $\tilde{\Gamma}^{r+1}$ of Γ with the center P. Then $\tilde{\Gamma}$ is a (r+1)-dimensional irreducible variety, since Γ is a r-dimensional irreducible one, and moreover deg $\tilde{\Gamma} = \text{deg } \Gamma = d$. Let H be a hyperplane, defined over \bar{k}_0 , such that $H \nmid P$ and the intersection-product $\tilde{\Gamma} \cdot H$ is defined and irreducible.

Set $\Gamma' = \tilde{\Gamma} \cdot H$. Then clealy we have $\dim_{k_0(C(\tilde{\Gamma}))}(C(\Gamma')) = 0$. On the other hand, let $\tilde{\Gamma}'$ be an arbitrary specialization of $\tilde{\Gamma}$ with reference to $\bar{k}_0(C(\Gamma'))$. Then, since the intersection-product $\tilde{\Gamma}' \cdot H$

is defined,⁵⁾ $\tilde{\boldsymbol{\Gamma}} \cdot \boldsymbol{H}$ has the uniquely determined specialization $\tilde{\boldsymbol{\Gamma}}' \cdot \boldsymbol{H}$ over the specialization $\tilde{\boldsymbol{\Gamma}} \to \tilde{\boldsymbol{\Gamma}}'$ with reference to $k_0(C(\boldsymbol{\Gamma}'))$. This yields that $\tilde{\boldsymbol{\Gamma}}' \cdot \boldsymbol{H} = \boldsymbol{\Gamma}' = \tilde{\boldsymbol{\Gamma}} \cdot \boldsymbol{H}$, and hence $\tilde{\boldsymbol{\Gamma}}' = \tilde{\boldsymbol{\Gamma}}$, thus we have $\dim_{k_0(C(\boldsymbol{\Gamma}'))}C(\tilde{\boldsymbol{\Gamma}}) = 0$. Therefore it holds that $\dim_{k_0}(C(\tilde{\boldsymbol{\Gamma}})) = \dim_{k_0}(C(\boldsymbol{\Gamma}'))$. But now, by induction assumption, $\dim_{k_0}(C(\boldsymbol{\Gamma}')) \leq N \cdot d^{r+1}$ for sufficiently large d. Hence we have $\dim_{k_0}(C(\tilde{\boldsymbol{\Gamma}})) \leq N \cdot d^{r+1}$ for sufficiently large d.

Let M^{N-r-2} be a linear variety in L^N defined over \bar{k}_0 such that the intersection $\Gamma \cap M$ is empty and that the projecting cone \tilde{H}^{N-1} of Γ with the center M does not contain $\tilde{\Gamma}$. Then it is easy to see that

$$\dim_{k_0}(C(\tilde{H})) \leq {\binom{r+1+d}{r+1}}$$

 $\leq d^{r+1}$ for sufficiently large d,

and now we can estimate e(r, d; N) as follows;

$$e(\mathbf{r}, d; N) \leq \dim_{k_0}(C(\tilde{\boldsymbol{\Gamma}})) + \dim_{k_0(C(\tilde{\boldsymbol{\Gamma}}))}(C(\boldsymbol{\Gamma}))$$

$$\leq \dim_{k_0}(C(\tilde{\boldsymbol{\Gamma}})) + \dim_{k_0(C(\tilde{\boldsymbol{\Gamma}}))}(C(\tilde{\boldsymbol{\Gamma}} \cdot \tilde{\boldsymbol{H}}))$$

$$\leq \dim_{k_0}(C(\tilde{\boldsymbol{\Gamma}})) + \dim_{k_0(C(\tilde{\boldsymbol{\Gamma}}))}(C(\tilde{\boldsymbol{H}}))$$

$$\leq \dim_{k_0}(C(\tilde{\boldsymbol{\Gamma}})) + \dim_{k_0}(C(\tilde{\boldsymbol{H}}))$$

$$\leq N \cdot d^{r+1} + d^{r+1},$$

$$\leq (N+1) \cdot d^{r+1},$$

where we assume that d is sufficiently large. Thus the proof is completed. q. e. d.

LEMMA 4. For any integer $r, 1 \leq r \leq N-1$, there exists a positive integer $m_0(r)$, depending only on r, with the folloing property; if H_m is a hypersurface of degree m in L^N such that $\dim_k C(H_m) \geq l(N, m) - m^r/N!$ and that $m \geq m_0(r)$, then H_m has no subvarieties of dimension r and of degree $d \leq m^{r/r+1}/N+1$, where k is any field over which L^N is defined.

PROOF. There exists a positive integer $m_0'(r)$ such that, if $m \ge m_0'(r)$, then the inequality

$$\binom{r+m}{r} \ge m^r/N! + (N+1)(m^{r/r+1}/N+1)^{r+1} + 1$$

⁵⁾ We can easily see that each component of $\tilde{\Gamma}'$ is also a cone with the vertex P, and P does not lie on H. Therefore $\tilde{\Gamma}' \cdot H$ can be defined.

Mieo Nishi

holds. Let a positive integer $m_0''(r)$ be such that, by Lemma 3, if $m \ge m_0''(r)$, then $e(r, [m^{r/r+1}/N+1]; N) \le (N+1) [m^{r/r+1}/N+1]^{r+1}$, where [] shows the Gauss' symbol. Put $m_0(r) = \max(m_0'(r), m_0''(r))$. The number $m_0(r)$ will satisfy the requirements of our lemma.

In fact, suppose that there exists a hypersurface H_m of degree m in L^N such that $m \ge m_0(r)$ and $\dim_k(C(H_m)) \ge l(N,m) - m^r/N!$ and that H_m contains a subvariety Γ of dimension r and of degree $d \le m^{r/r+1}/N+1$. Then we have

$$\dim_{k(\mathcal{C}(\Gamma))}(\mathcal{C}(\mathcal{H}_m)) \geq l(N, m) - m^r/N! - e(r, d; N).$$

Now, since $m \ge m_0(r)$, it follows that

$$\binom{r+m}{r} \ge m^r / N! + (N+1) \cdot (m^{r/r+1} / N+1) + 1$$
$$\ge m^r / N! + e(r, [m^{r/r+1} / N+1]; N) + 1$$
$$\ge m^r / N! + e(r, d; N) + 1.$$

Hence dim_{k(C(**F**))} $(C(H_m)) > l(N, m) - \binom{r+m}{r}$.

On the other hand, since H_{m} contains Γ ,

$$\dim_{k(C(\mathbf{\Gamma}))} (C(\mathbf{H}_{m})) \leq \varphi(\mathbf{\Gamma}, m) - 1$$
$$= l(N, m) - \chi(\mathbf{\Gamma}, m)$$

Therefore we have

$$\chi(\boldsymbol{\Gamma}, m) < \binom{r+m}{r}.$$

But, if *m* is sufficiently large, $\chi(\Gamma, m)$ has the following expression⁶⁾; $\chi(\Gamma, m) = (\deg \Gamma) \cdot {\binom{m}{r}} + a_1 {\binom{m}{r-1}} + \dots + a_{r-1} {\binom{m}{1}} + a_r$, a_i $(1 \le i \le r)$ being integers. And this shows that $\chi(\Gamma, m) \ge {\binom{r+m}{r}}$. This is a contradiction. q. e. d.

Now we can state the proof of Lemma 2.

Set $\overline{m} = [m^{r-1/r}/d_0(N+1)]$, where d_0 is the degree of V. Then there exists a positive integer $m_0''(V)$, depending only on V, such that if $m \ge m_0''(V)$,

$$l(N,\overline{m}) - \varphi(V,\overline{m}) = \chi(V,\overline{m}) - 1 \ge m'^{-r}/d_0''(N+1)''r!$$

By Lemma 4, there exists a positive integer $m_0^{\prime\prime\prime}(r-1)$. Let

⁶⁾ Cf. W. Krull [1].

us set $M(V) = \max(m_0'', m_0''')$, and $R(V) = 1/d_0''(N+1)^N \cdot r!$ Then these two numbers M(V) and R(V) will satisfy the requirements of Lemma 2. The proof is as follows.

Suppose that there exists a hypersurface H_m of degree m such that $m \ge M(V)$ and $\dim_k C(H_m) \ge l(N, m) - R(V)m^{r-1}$ and further that $V \cdot H_m$ is reducible.

Let now Y be the locus of $C(\boldsymbol{H}_m)$ over \bar{k} , the algebraic closure of k. There exists a hypersurface $\boldsymbol{H}_{m-\bar{m}}$ of degree $m-\bar{m}$, defined over \bar{k} , such that $V \cdot \boldsymbol{H}_{m-\bar{m}}$ is defined and irreducible. Let Z be the locus of $C(\boldsymbol{H}_{m-\bar{m}} + \bar{\boldsymbol{H}}_{\bar{m}})$ over \bar{k} , where $\bar{\boldsymbol{H}}_{\bar{m}}$ is a generic hypersurface of degree \bar{m} over \bar{k} . Then dim $Y \ge l(N, m) - m^{r-1}/d_0^r (N+1)^N$ r! and dim $Z = l(N, \bar{m})$. Hence there exists a point \hat{s} in $Y \cap Z$ such that dim $k^{\hat{s}} \ge l(N, \bar{m}) - m^{r-1}/d_0^r \cdot (N+1)^N r! \ge \varphi(V, \bar{m})$. There corresponds to \hat{s} a hypersurface $\boldsymbol{H}_{m'}$ of degree m such that $\boldsymbol{H}_{m'} =$ $\boldsymbol{H}_{m-\bar{m}} + \boldsymbol{H}_{\bar{m}}$. Then the fact that dim $k^{\hat{s}} \ge \varphi(V, \bar{m})$ shows that the intersection-product $V \cdot \boldsymbol{H}_{m'}$ is defined. Since $V \cdot \boldsymbol{H}_{m}$ is reducible, \boldsymbol{H}_m must contain a subvariety $\boldsymbol{\Gamma}$ of dimension r-1 and of degree $\le d_0 \bar{m} \le m^{r-1/r}/N+1$.

On the other hand,

$$\dim_{k}(C(\boldsymbol{H}_{m})) \geq l(N, m) - m^{r-1}/d_{0}^{r}(N+1)^{N} \cdot r !$$
$$\geq l(N, m) - m^{r-1}/N!.$$

Hence, by Lemma 4, H_m cannot contain such a variety I. This is a contradiction. Thus the proof is completed. q. e. d.

BIBLIOGRAPHY

1. W. Krull. Idealtheorie. Ergebn. Math. IV, 3, Berlin, 1935.

2. T. Matsusaka. On algeraic families of positive divisors and their associated Varieties on a projective Variety. Jour. Math. Soc. Jap., Vol. 5, 1953.

3. M. Nishi and Y. Nakai. On the hypersurface sections of algebraic varieties embedded in a projective space. Mem. Coll. Sci. Univ. of Kyoto, Vol. XIXX, 1955.