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In the present paper, we shall discuss the following question:
Let ¥ be a non-singular variety in an ambient projective space L%,
then does there exist a non-singular irreducible complete inter-
section” U*(r+1<n<N-—1), containing V¥, in L*? When the
dimension # of U is not less than 27, the above question can be
solved affirmatively. But in general, this is not true, and a counter
example will be given at §2. It must be noticed that this ex-
ample also shows the fact that there does not necessarily exist a
non-singular variety which contains the given non-singular varety,
excepting the ambient space itself.

§1. The imbedding theorem.

The following lemma is not new and is essencially the same
as Lemma 3 of T. Matsusaka [2].

LEMMA 1. Let X, X' be two cycles in a projective space L*
defined over k and P, P’ two points lying on X, X' respectively
such that (X', P’) is a specialization of (X, P) over k. Then, if
P’ is contained in only one component of X' such that its coefficient
is 1 and P’ is simple on it, the same is true for X and P.

LEMMA 2. Let 1'" (r=2) be a projective model in 1~ and k a
field of definition for both L™ and V. Then there exist a positive
integer M (V) and a rational number R(V), both depending only on
V', with the following property; if H, is a hypersurface of degree m
in L” such that m=> M (V') and that dim ,(C(H,))=1(N, m) —R (V)

1) In what follows, we mean by an irreducible complete intersection such a
variety U~ that is represented as a complete intersection of (N—#) hypersurfaces
in LA,

2) Numbers in brackets refer to the bibliography at the end of this paper.
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m, the intersection-product V- H,, is defined and irreducible, where
1N, my = (VM) -1,

This lemma is a precise formulation of Theorem 1 of M. Nishi
and Y. Nakai [3], and the proof will be stated at § 3.

THEOREM 1. Let V" be a projective model in L”. Then there
exists an irreducible complete intersection U*(r+1<n<N) such that
V" is contained in U and that the singular locus of U lies on V.

ProOF. Suppose that there exists an irreducible complete inter-
section U”(r+2<s< N) satisfying the required conditions of our
theorem, that is to say, U’ contains I” and the singular locus of U’
lies on . One should notice that such a variety surely exists for
some s; in fact the ambient space L itself satisfies these conditions.

It can easily be seen that the totality of hypersurfaces of degree
m on which the given variety ¥ lies constitutes a projective space
L’ of dimension ¢(V, m)¥—1, and it is defined over any field of
definition of V.

Let K be a common field of definition for V', U’ and L, then
L’ is also defined over K, and let H, be the hypersurface of degree
m corresponding to the generic point of L’ over K. Clearly we
have dim xC(H,) =¢(V, m) —1.

If m is sufficiently large, y(}’, m) shows the Hilbert's charac-
teristic function and therefore is a polynomial of 2 whose degree is
7. Since s=7+ 2, the conditions of Lemma 2 are fulfiled by U’ and
H,, for sufficiently large m. Hence the intersection-product U’- 1,
is defined and irreducible. Let us put U=U'- H,,

Now we shall show that the singular locus of U is contained
in V. Let P be any point of U not belonging to V. Let P-={(x,,
x, -+, Xy), then we may assume, without loss of generality, that x,=1.

Let Y be the locus of C(H,) over the algebraic closure K (x)
of K(x), and Z the locus of C(H,+ H,,_,) over the algebraic closure

K of K, where H, is a generic hyperplane in L¥ over K and H,, _,

3) Let U be an homogeneous ideal of the polynomial ring k[ X,, X, -+, X»], then
we denote by (2. m) the maximal number of linearly independent forms of degree
m modulo 2, and by ¢ (2, m) that of linegly independent forms of degree m in 2.
Then clealy we have ¢ (2, m) +2 (YU, m)= N;/m) When #)» is a projective model
in L~ defined over k, we put z(I m)=x(9((ll'), m) and (I, m)=¢A(I),
m), where (/") is the defining homogeneous ideal of }~ in the polynomial ring
k [Xo, X1, -» Xx]. The numbers x(/M°, m) and ¢(}}, m) are independent of the
choice of the defining field k.
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a hypersurface of degree m—1 defined over K such that it contains
¥ but not P2 and the intersection-product U’-H,_, is defined and
irreducible. Then, since dim I*<s, we have

dim Y=¢(F, m) —1—s,
and
dim Z=N.

Now the varieties ¥ and Z are embedded in a projective space
L’. Then the fact that dim V+ dim Z=¢(V, m) —1+ N—s leads
u1s to the conclusion that there exists a point ¥ in ¥'nZ such that
dieg.,i=N—s. There corresponds to ¢ a hypersurfacec H,, of the
form H,+ H,,_,, where H, is a hyperplane in L.", and dim,C(H,)
>N-—s. Since C(#H,)¢Y, we have the specialization H,— H,, with
reference to K(x). Then the point = (x) must lie on H,, since
H,_, does not contain .

Suppose that H, and U’ are transversal to each other at I” on
L~ Then the intersection-product U’-H,, is defined and therefore
U'-H, is the uniquely determined specialization of U’- H, over
K(x). Moreover the transversality shows that there exists only one
component of the cycle U’- H,, to which the point P belongs (the
coefficient of this component is 1) and P is simple on this com-
ponent. Hence, by Lemma 1, P must be simple on U=U'-H,,

We shall now show that U’ and #, are transversal to each
other at P. Since dim x,C(H,))=N—s and If,,_, is defined over
K, we have dim 4,,C(H,)=N—s. Let 7" be the tangential linear
variety of U’ at I, then all the hyperplanes in L" passing through
7" build up the (N-—s—1)-dimensional linrear subspace in the dual
space of L, Hence M, cannot contain 7, and the intersection-
product 7-H, is defined. Thus the proof of our lemma is com-
pleted. q.e.d.

Now we are in position to prove the imbedding theorem.

THEGREM 2. Let V" te a non-singular projective model in L~
Then, if nis a positive integer such that 2r<w<N, there exists a
non-singular csmplete intersection U™, containing V as a subvariety.

PrOOF. Suppose that there exists a non-singular complete
intersection U”* (27+1<s<N), containing I” as a subvariety. As
in Theorem 1, such a variety surely exists for some s.

Let (1), A (U’) be the defining homogeneous ideal of 1", U’
respectively and (f'”, -+, f79), (f/®, -, /7)) be homogeneous
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ideal bases of A(V), A(U’) respectively. Let K be a commorn fieid
of definition for both ¥ and U’, and H,, the hypersurface of degree
m introduced in the proof of Theorem 1, namely the most general
one over K containing ¥. Then the defining equation H,,(X) =0
of H,, is as follows;

.00 =3 7Y, (X) £ (X) =0,

where H,,LI(X) (I=1, ---, N—r+t) are independent generic forms
of degree m,=m— deg(f®). Let {u*;i=0, .-, i,= N';Vm‘)—l} be
the coefficients of the form FI,,,!‘" (X), then we may assume that
{u;; 1=1, ---, N—#+t, j=0, 1, ---, 3} are >(;,+1) independent
variables over K. l

By Theorem 1, if m is sufficiently large, U'=U’- H,, is defined
and is an irreducible variety such that the singular locus of U lies
on V. Let now P=(x) be any point of ¥. We may again assume,
without loss of generality, that x,=1.

Let us define the matrix

/ af/(]) af/(”
| oX, 0Xy
| A apes
X, 0 Xy
3H,  3H,
X, Xy

Now we shall show that U is a non-singular variety. For this pur-
pose, it is sufficient to prove that the matrix A is of rank N—s+1
at P.
Suppose that the rank of matrix A is not greater than N—s
at P, then we have the following N equations
oM %072 (i=1, -, N)
0%; =t ° 9x;

for some quantities (4, -+, Ay_.).
Since

__QH m :N%rn”f{m 0 f ©
prais | m L »
’,;x( i=1 ¢ dx.
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we have
N—7r+t_ @) N—-8 1(5)
W SH0 S _NH 0T (o, N).
=1 dxl j=1 C)x‘

Now P is simple on ¥, hence we can assume that

af(l) af(‘\'—sJ i

0x, 0x,
det =+0.
|‘ aj'(l) o af(.\'-'r)
dxl\'— »r axA\‘—'l'

Then from (%), we have
H’,‘,f)l(x) eK(x, Ay, =, 2y (1=1,2, -, N—7)
This shows that
dim xe, 0 {0, ISISN—7+1, 05 <
dim x{u;,?; 1SISN—7r+1, 0<5<i} — (N—7).

Hence we have dim xK(x, /) =>N—7r. Therefore dim x,K(x, ) =N
— 27, since P= (x) lies on } defined over K. This is a contradiction.

q.e.d
COROLLARY. If I' is a non-singular projective curve in L~, then,
Jor any integer n(2<n<N), there exists a non-singular complete
intersection U", containing I' as a subvariety.

§2. A counter example.

In Theorem 2 it is desirable to eliminate the additional con-
dition on the dimension # of the variety U, but it is not true in
general as will be shown in the following counter example.

Let k& be the feld of rational numbers and ¢, ¢, two independent
variables over k. In an affin 4-space S*, we consider a variety V”,
which is the locus of the point (4%, 1, &, ') over k. Then it is
easy to sec that the defining ideal of V¥V’ in the polynomial ring
kX, X, X, X,|are generated by f’"=X,X,— X, and f'®=X;"—X..
Now if we immerse ¥’ in a projective 4-space L', we can get the
projective model 7?2 and ¥V is the locus of the point (4, ¢, t,, At,, t,,
it?) of L' over k, where 4 is a variable over k(t, 1,).

Now we are going to prove that the defining homogeneous
ideal A(¥) of 1 is generated by three forms f"=X.X.—XX,,
fY=X"—-X X, and /=X, X,— X.X,. Let the ideal generated by /",
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f® and / be 9 ; and we shall show that 9((¥) =3. Let g be any homo-
geneous form in A (}), then for suitable choice of an pgsitive integer
m, we can find that, by using th~e fact that X,X,=X,X, (%) and X, X,=
XS0, Xom-g=h (X,, X,, X,) ), where A is a form in the polynonial
ring k | X,, X,, X,]. Since t, t.are variables~over k, the right hand side
must be i~dentically zero. Hence X,"g=0 (). Now,~ for the proof that
A(V) =1, it is sufficient to show that, if X,/=0() for any form f
inA(¥), we have f=0 (). Since X,/ belongs to the ideal 2, we can
find the following expression X,f=g /" +g.f®+gf®. Let us put
gi=8nt8& (j=1,2,3), where g,=0(X,) and g, is free from X, (g,
may be zero for some j). Then we have
8o Xo X+ 0. X5+ 2, (X, X, — X, X,) =0,
and hence g,=0(X.). Put g.=g.X.. Again we have
gng;+&:){a + g (X, X,— X.X,) =0,
and (g.—g.X)) X;+ (20 +g:X,) X, =0.
Therefore we can get the follewing expression
g.=guX,+X4q, gn= '—gciizXn ;Xﬂ,
where ¢ is a form, and it follows that
22X X+ 20X, X=X, (g X, +g_)(4)
=Xq (XX_V—X‘XQ

=Xas®.
Hence f=0(%).
The Jacobian matrix J of 1" is as follows;

—X] —Xr) X; Xg O
]= —X| 0 X_l 0 _—Xl)
O X_) X] '—Xl —Xi

And it can easily be shown that the rank of this matrix is of 2
at each point of ¥. Hence ¥V is a non-singular variety.

Now we shall prove that the singular locus of any 3-dimensional
varity passing through ¥ is not empty. For this purpose, by
Lemma 1, we have only to prove it for the most general one which
passes through V. Let F,’ be the most general hypersurface of
degree m which passes through }. We shall examine two caces
separately :
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Case 1. m=2."
In this case, V, is defined by the equation

H,(X) =uf® +of ® + wf ™ =0,

where u, v, w are three variables over k. The point (w’, —uw,
uw, —ow, u°) of V is surely a multiple point of V..

Case 2. m=3.

The defining equation of ¥V, is as follows;

H,(X)=H(X) (X)) + H2.(X) f*(X) + H2.(X) [ (X) =0,

where H?.,(X) (i=1, 2, 3) are independent generic forms of degree
m—2 over k. We first consider the following equations :

—HP (X)X, + HY (X)) X,=0
'—ﬁf,fz-z (X) Xo—ﬁ}:)—z (X) X's:O,

and let X, Y} be the cycles on L* defined by the above equations (X
by the former and Y the latter) respectively. Further let X', Y’
be the cycles defined by the following equations respectively :

—H (X)) X,=0, —H3,(X) X,=0.

Then we can see immediately that X’ and Y’ are the speciali-
zations of X and Y over k respectively. Therefore we have the
following specialization (V-X, ¥)— (V- X’, ¥’) with reference to k.

The intersection-product (¥-X’)-Y is not defined, but if we
denote by H,(i=1, 2) the hypersurfaces of degree m—2 defined
by the equations H\?..(X) =0 (i=1, 2), each component of the cycle
V.-H®, . H, is a proper component of the intersection (}-X’) n
Y. Let M’ be such a component, then M’ is clearly a generic
point of }V over k. As is well known, there exists a proper
component .M of the intersection (F-X)NXY such that M is a
speciallzation of .M over the specialization (V-X, Y)—((V-X' ¥7)
with reference of k. The point M must be a generic point of 7
over k, since M’ is so.

Let us put M= (x, x, %, %, %), then x==0. At this point
M= (x), we have

aaH,,,, =—H (%) %+ HP.(x) - 2,=0
X

4) It is easy to see that J™ is not contained in a hyperplane in I
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oH,,
ox,

and since M is a generic point of V over k, it follows naturally
that

= _Hffflz (x)xﬂ+FI7(n‘)—2 (x) -2,=0,

BH, _o (j=0,2, 3).
axj

This yields the conclusion that .M is a multiple point of V,.
Thus we have established that our non-singular surface ¥ can-
not be contained in any non-singular 3-dimensional variety.
Remark. After a straightfoward computations, we can see that
the degree of the variety V is 3.

§3. The proof of Lemma 2.

To prove Lemma 2, we need some lemmas.

Let (7, d; N) be the algebraic system built up by the cycles on
L” whose dimensions are » and degrees d; let e(r, d; N) be the
maximal dimension of the components in 2(7,d; N). Then we

have the following lemma :

LEMMA 3. If d is a sufficiently large positive integer, we have
e(r,d; NY(N+1)-d+'.

Proor. We shall use the induction on the dimension N of
the ambient projective space L.

When N is 2, our assertion is trivially valid.

Assume that our lemma is verified for any projective space
of dimension <N—1. And now we shall proceed to the case L~

Let I' be a member of 2(#, d; N) such that dims, (C(I"))=
e(r,d; N), where k, is a field over which L* is defined. Let P
be a k,rational point of L?*, k, being the algebraic closure of %, such
that P does not belong to I'. (Here we assume that »<N—2,
because our assertion is trivial for »Y=N—1.) Projecting I" from the
point P, we get a projecting cone I'"+' of I' with the center P. Then
I’ is a (r+1)-dimensional irreducible variety, since I' is a 7-dimen-
sional irreducible one, and moreover deg I’ =deg I' =d. Let H be
a hyperplane, defined over k,, such that H $ P and the intersection-
product I' - H is defined and irreducible.

Set I''=I'"-H. Then clealy we have dimyed,(CI))=0.
On the other hand, let I'’ be an arbitrary specialization of I' with
reference to &, (C(I'’)). Then, since the intersection-product I''- H
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is defined,” I’ H has the uniquely determined specialization MDY : ¢
over the specxallzatlon I I with reference to k,(C(I'")). This
yields that I'"-H=I"'=I-H, and hence I'’=I', thus we have
dimeo vy CI) =0. Therefore it holds that dims, (C(I’)) =dim
»(C(I')). But now, by induction assumption, dimz(CI"))<
N-d* for sufficiently large d. Hence we have dimg, (C(I')) <N-d !
for sufficiently large d.

Let M= be a linear variety in L* defined over k, such that
the intersection I' N M is empty and that the projecting cone H™-'
of I' with the center .M does not contain I'. Then it is easy to see
that

dlmko(C(ll))<(7+1+d)

<d*' for sufficiently large d,
and now we can estimate e(7, d; N) as follows;
e(r, d; N)<dims(CI')) +dimeye iy (CT))
<dimey (C')) + dimege iy, (C - H))
<dimg, (CI')) +dimeye iy, (C(H))
<dime, (C(I*)) +dims, (C(H))

gN-d’” +drt,
<(N+1)-d,
where we assume that d is sufficiently large. Thus the proof is
completed. q.e.d.

LEMMA 4. For any integer v, 1<r<_N—1, there exists a positive
integer my(v), depending only on r, with the folloing property; if
H, is a hypersurface of degree m in L" such that dim,C(H,)=>
I(N, m) —m’/N! and that m=m,(r), then H, has no subvarieties
of dimension r and of degree d<m™"*'/N+1, where k is any field
over which L~ is defined.

ProoF. There exists a positive integer m, (#) such that, if
m=>m,’ (7), then the inequality

(7";m)§m'/N!+ (N+1) (m* /N+ 1)+ +1

5) We can easily see that each component of I is also a cone with the vertex
P, and I’ does not lie on . Therefore I'’+ Il can be defined.
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holds. Let a positive integer m,” () be such that, by Lemma 3, if
m=m,"(r), then e(r, [m"*"/N+1]; N)X(N+1) [m"*'/N+1]*',
where [ ] shows the Gauss’ symbol. Put m,(#) =max (m, (»), m,”
(r)). The number m,(r) will satisfy the requirements of our lemma.

In fact, suppose that there exists a hypersurface H,, of degree
m in L¥ such that m=m,(r) and dim,(C(H,)) =>I(N, m) —m’/N!
and that H,, contains a subvariety I' of dimension 7 and of degree
d<m""*'/N+1. Then we have

dimymy (C(HL)) ZI(N, m) —m' /N !—e(r,d; N).

Now, since m=m,(7), it follows that
(" ")z /N 1+ (N - N T

>m’/N!+e(r, ("' /N+1]; N) +1
>m’/N!+e(r,d; N)+1.

Hence dim ey (C(H.,)) > 1 (N, m) *(7 -t,m)

On the other hand, since H,, contains I',
dimy e (C(H,))<yp (F, m) —1
=I(N, m) —yT", m).

Therefore we have
N ‘r+m
y (I, m) <( ” )

But, if m is sufficiently large, 7(I", m)khas the following ex-
pression“’ ; Z(I" 1’)2) = (ng F) 'k’z,/l)'}'al(;,nll +a, - (1 )+(l:, a,
as i g.r) being integers. And this shows that (I, m)g(“;m),

This is a contradiction. qg.e d.
Now we can state the proof of Lemma 2.
Set m={m"""/d,(N+1)], where d, is the degree of V. Then
there exists a positive integer m,”” (¥V), depending only on V, such
that if m=>m,)" (V),

I(N, ) —g (V, m) =y (V, i) —1=m’ =" /d, (N+1) %7 !

By Lemma 4, there exists a positive integer m,”’(r—1). Let

6) Cf. W. Krull [1].
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us set M(¥)=max(m,’,m,””"), and R(}")=1/d, (N+1)~-»! Then
these two numbers M (V) and R(}') will satisfy the requirements
of Lemma 2. The proof is as follows.

Suprose that there exists a hypersurface H,, of degree m such
that m=M (V") and dim,C(H,)=I(N, m) —R(V)m ™' and further
that V- H,, is reducible.

Let now Y be the locus of C(i/,)) over k, the algebraic closure
of k. There exists a hypersurface H,,_; of degree m—#i, defined
over k, such that V-H,_ is defined and irreducible. Let Z be
the locus of C(H,_;+ H;) over k, where H; is a generic hyper-
surface of degree m over k. ThendimY=I(N, m) —m'/d, (N+1)¥
! and dim Z=I(N, m). Hence there exists a point ¢ in ¥nZ
such that dimg&=I(N, m) —m™~'/d,;- (N+1) %7 I=¢(V, m). - There
corresponds to ¢ a hypersurface H,' of degree m such that H,'=
H, -+ H; Then the fact that dim, & =¢(V, #) shows that the
intersection-product ¥V-H,’ is defined. Since V- H,, is reducible,
H,, must contain a subvariety I' of dimension »—1 and of degree
<dm<m"/N+1.

On the other hand,

dim,(C(H,)) =I(N, m) —m™'/d; (N+1)¥-r !
2I(N, m)—m""'/N!.

Hence, by Lemma 4, H,, cannot contain such a variety I'. This
is a contradiction. Thus the proof is completed. g.e.d.
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