
MEMOIRS OF THE COLLEGE O F SCIENCE, UNIVERSITY OF KYOTO, SERIES A
Vol. XXIX, Mathematics No. 2, 1955.

On the imbedding of a  non-singular variety
in  an irreducible complete intersection

By

Mieo NisHI

(Received March 17, 1955)

In  the present paper, we shall discuss the following question :
Let V ' be a  non-singular variety in  an  ambient projective space LE,
then does there exist a  non-singular irreducible complete inter-
section" U " ( r+1 <m <N - 1 ) , containing V , in  L N ?  When the
dimension n  of U  is not less than 2r, th e  above question can be
solved affirmatively. B ut in general, this is not true, and a counter
example will be given at § 2. It m ust be noticed that this ex-
ample also shows the fact that there does not necessarily exist a
non-singular variety which contains the given non-singular varety,
excepting the ambient space itself.

§  1 .  The imbedding theorem.

The following lemma is not new and  is essencially the same
as Lemma 3  of T. Matsusaka [21.' )

LEMMA 1. L e t X , X ' be tw o cycles in a projective space LE
def ined over k  and P ,  P '  tw o points ly ing on X , X ' respectively
such  that (X ', P ' )  is a  specialization o f  (X , P )  over k. T hen, if
P '  is contained in  only one component of X ' such that its coefficient
is  1  and P '  is sim ple on it, the sam e is true f o r X  and P .

LEMMA 2. L et V " (r_>,2) be a  projective model in  L-v and k  a
field of  definition f o r both L s an d  V .  T hen there ex ist a positive
integer M( J') an d  a rational number R ( V ), both depending only on
V , w ith the following property ; if  11,„ is a  hypersurface of  degree m
in I f  such that M ( ')  and that dim *(C(If„,)) rn) — R( 17 )

1) In what follows, we mean by an irreducible complete intersection such a
variety U 7 , that is represented as a complete intersection of (N— n) hypersurfaces
in L E .

2) Numbers in brackets refer to the bibliography at the end of this paper.
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m - 1 , the intersection-Product l'.11„, is defined and irreducible, where
l(N , m ) = ( N  m ) - 1 .

This lemma is a precise formulation of Theorem 1 of M. Nishi
and Y. Nakai [3], and the proof will be stated at § 3.

THEOREM 1. Let be a projective model in  L N . Then there
exists an irreducible complete intersection U ''(r+1<n N ) such that
V  is contained in  U  and that the singular locus of U  lies on V .

PROOF. Suppose that there exists an irreducible complete inter-
section U"(r+ 2 s N ) satisfying the required conditions of our
theorem, that is to say, U ' contains V and the singular locus of U'
lies on V. O n e  should notice that such a  variety surely exists for
some s ; in fact the ambient space LN itself satisfies these conditions.

It can easily be seen that the totality of hypersurfaces of degree
in on which the given variety V lies constitutes a projective space
L ' of dimension io ( V, m)"-1, a n d  it is defined over any field of
definition of F.

Let K  be a  common field of definition fo r  V, TY and L ,  then
L ' is also defined over K, and let be the hypersurf ace of degree
In corresponding to th e  generic point of L ' over K .  Clearly we
have dim =  ( V, m )-1 .

If  m  is sufficiently large, 7(1', m ) shows the Hilbert's charac-
teristic function and therefore is a polynomial of m  whose degree is
r. Since s _ r+ 2, the conditions of Lemma 2 are fulfiled by U ' and
11„, for sufficiently large m .  Hence the intersection-product LP -1:1„,
is defined and irreducible. L et us put U=

Now we shall show that the singular locus of U  is contained
in V .  Let P  be any point of U  not belonging to V . Let P (x „,
x,, •-•, x,„), then we may assume, without loss of generality, that x0 =1.

L e t Y be the locus of c(tr,,) over the algebraic closure K(x)
of K (x), and Z  the locus of C(Ii, + ir,„_,) over the algebraic closure
k of K , where 11 , is a generic hyperplane in LN over K  and 11_ ,

3 )  Let 21 be an homogeneous ideal of the polynomial ring k [X o ,  X ,, ••-, X , v ],  then
we denote by x(21. m) the maximal number o f linearly independent forms of degree
m  modulo 21, and by (p (21, m )  that o f  lin ea ly  independent forms o f  degree m  in 21.
Then clealy we have v(21, m ) ±x(21, m ) - - ( N 4

N
- m ). When 11",•  is  a projective model

in  L N  defined ovef-  k ,  w e  put x (11 ; m )= x (V (IV ), m )  and v( i t ;  m ) =w(91( IF ),
m ) ,  where 91(11") is the defining homogeneous ideal o f  IV in  the polynomial ring
k  [X o , X J ,  • • • ,  X s ] .  Th e  numbers x ( W ,  m )  and v (IV, m )  are independent of the
choice of the defining field k.
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a  hypersurface of degree m - 1  defined over K  such that it contains
V b u t not P  a n d  the intersection-product U 1 •11-„,_, is defined and
irreducible. Then, since dim .,-P <s ,  we have

dim 1- >(p( V, m )-1— s,
and

dim Z =N .

Now the varieties Y  and Z  are embedded in a projective space
▪ Then the fact that dim 1 + dim ( V, In) —1 +N — s leads
us to  the  conclusion that there exists a  .point in  i n  Z  such that
die,„;J > N — s . There corresponds to a  hypersurface H ,  of the
form H ,+  H , , where II, is a hyperplane in 1/v, and ditn,„ ) C(H„,)
>N — s. Since C( 11„,) E Y , we have the specialization if„--->H  with
reference to K ( x ) .  Then the point  P = ( x )  m u s t  l ie  o n  H „ since

does not contain P.
Suppose that H , and U ' are transversal to each other at P  on

L -v. Then th e  intersection-product is defined and therefore
II' • 11, i s  th e  uniquely determined specialization o f  11'. H .„, over
K ( x ) .  Moreover the transversality shows that there exists only one
component of the cycle  U' • 11-„, to which the point P  belongs (the
coefficient of this component is 1) a n d  P  is  sim ple  on  this com-
ponent. Hence, by Lemma 1, P  must be sim ple on U =U '•11 .„„

W e shall now  sh o w  that U ' and I T  a re  transversal to each
other at P .  Since dirn.,,.,C(//„) —s a n d  If„„_, is defined over
k, we have dim ,,.,, C (//,) N — s. L e t T  be the  tangential linear
variety of U ' at P , then all the  hyperplanes in  L . ' passing through
T ' build up the  (N — s-1)-dim ensional linear subspace in  the  dual
space of /Z . H ence H ,  cannot contain 1', and the  intersection-
product T. /1 , is defined. T h u s  th e  proof of our lemma is com-
pleted. q. e. d.

Now we a re  in  position to prove th e  imbedding theorem.
THEOREM 2. Let be a non-singular projective model in

Then, i f  n  i s  a  p9sitive integer such that 2r1-•-lin <N , there exists a
non-singular complete intersection U.", containing J as a subvariety.

P R O O F . S uppose  that there exists a  non-singular complete
intersection 1.17 '  ( 2 r + 1 s _ N ) ,  containing V a s  a  subvariety. As
in  Theorem 1, such a  variety surely exists fo r  some s.

Let :?1( V ) ,  1(17') be the  deGning homogeneous ideal o f  V , (7'
respectively a n d  ( f ) , • f (f/(", •• • , be homogeneous
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ideal bases of 'A (17 ), ( U ') respectively. Let K  be a common field
of definition for both I' and U', and 1:1„, the hypersurface of degree
m  introduced in the proof of Theorem 1, namely the most general
one over K  containing V . Then the defining equation H,,, (X) =0
of 11„, is as follows ;

_ 11-> +t _
H„,(X ) (X )f") (X) =0,i=1

where H„,,(X ) (1=1, N — r+ t )  are independent generic forms
of degree m ,=m —  deg( f " ) ) .  Let 174,4 )  ;  i =0, • • • , ii ----( N +

N
m 1 ) - 11 be

the coefficients of the form (X ), then we may assume that
{/4.,(1)  ;  1=1, •••, N — r+t ,  j=0 , 1, • • i,} are independent
variables over K.

By Theorem 1 , if m  is sufficiently large, U8- 1 =U'.11,„ is defined
and is  an irreducible variety such that the singular locus of U  lies
on Y .  Let now P =  (x ) be any point of V . W e m ay again assume,
without loss of generality, that xo=1.

Let us define the matrix

A -

Now we shall show that U is a non-singular varie ty . For this pur-
pose, it is sufficient to prove that the matrix A is of rank N — s+1
a t P.

Suppose tha t the rank of m atrix  A  is not greater than N — s
a t P ,  then we have the following N  equations

a r i m A  p
I I   _ E 2 1 , /  

&Xi j = i

for some quantities (),, • • •,
Since

(i=1, • • • , N)

m + I_ f (1)
H a)

1=i
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we have

af" )a f ' " ) •
( * ) , ( 1 - 1 ,  • • • ,  N ) .

1 - i

Now P  is sim ple on U, hence we can assume that

ap i ) afor-s)

dx,

Then from (*), we have

;,;) (x) K(x, A ,  •., k v -0) (1=1, 2, • • • , N— r)

This shows that

dim A-c„  Itt i v) ; + t,
dim K itt;' ) ; r + t, — (N—r).

Hence we have dim A-K(x, A).>__N—r. Therefore dim _,( ) 1f(x, A) N
—2r, since P= (x )  lies on J defined over K . This is a contradiction.

q. e. d.
COROLLARY. I f  r  is  a  non-singular projective curve in  L -v, then,
f o r any  integer n(2___ n N), there ex ists a  non-singular complete
intersection U', containing r  as a subvariety.

2 .  A  counter example.

In  Theorem 2 it is desirable to eliminate th e  additional con-
dition on the dimension n of the variety U , b u t it is not true in
general as will be shown in the following counter example.

Let k  be the f eld of rational numbers and t,, t, two independent
variables over k. In an affin 4-space S ',  we consider a  variety V",
which is the  locus of the  poin t (t1 4, ti, t2 , t )  over k. Then it is
easy to see that th e  defining ideal o f  V ' in the polynomial ring
k[X„ X2 , X ,  X,1 are  generated by f '  X 2X,— X , and f ' ( 2 ) = X22 — X4.
Now if  we immerse 17 '  in a projective 4-space 1 4,  we can get the
projective model 1' and -17  is the locus of the point (A, At 4, 2 1,, 4,
At1

2)  of L 4 over k , where ; is a variable over k (t„ 4).
Now we a re  going to prove that th e  defining homogeneous

ideal f(1 7)  o f  J -  is generated by three forms f") X,X.— X0 X„
X,' — X,X„ and f "  X ,X ,—  X ,X ,. Let the ideal generated by j",

det - 1=0.



182 Mieo Nishi

f ( ' ) and f (") be 'it ; and we shall show that 1 ( V) —;i1. Let g be any homo-
geneous form in 'A ( V), then for suitable choice of an positive integer
ni, we can find that, by using the fact that X X ,E-----X X i )  and

(1) , (Xo, X2, X2) (v!), where h is a form in the polynonial
ring k [X„, X 2, X 11. Since t„ t, are variables over k, the right hand side
must be identically zero. Hence X 0 ".g=. --0 (ii). Now, for the proof that
VI( V) it is sufficient to show that, if X f----- --0(ef )  for any form f
in ;)1( V) , we have f---= 0  ( i i ) .  Since X, f  belongs to the ideal '2f, we can
find the following expression X f =g ,f ( 1 ) +g ,f (='+g,f ( 3 ) . Let us put
g i =  g .11 g  j 2  ( j  

= 1 , 2, 3), where g 0 (X 0 ) and gp, is free from X, (g2
may be zero for some j). Then we have

g,2XX3+g22X22 +g32(X1X2— X,X) =0,
and hence ge-=-0(X ). Put g„,=Z X 2 . Again we have

gi 22(3 + g22X + e2(X)X2— XX4 ) =0,
and (g,,— g 2 X ,)X ,+ (g 2, + gX ,) X,— O.

Therefore we can get the follewing expression

g2=g2X 4+ X 2q, g22= XTfi,

where q  is a form, and it follows that

X (g,,X ) + g„X )

= X o q (X ,X —  X ,X )
X o q f  ( 3 ) •

Hence /1=-001).
The Jacobian matrix J  o f V is as follows ;

/ — X, —  X „  X  0 \

J = - x 1 O X , - x,
\ 0 X  X  —X, —X,/ •

And it can easily be shown that the rank of this matrix is of 2
at each point o f V . Hence Ir is a non-singular varietY.

Now we shall prove that the singular locus of any 3-dimensional
varity  passing through V  is not empty. For this purpose, by
Lemma 1, we have only to prove it for the most general one which
passes through V. Let V 3 b e  the most general hypersurface of
degree in which passes through V. We shall examine two caces
separately :
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Case 1. m =2."
In this case, V2 is defined by the equation

H 2 (X )=u f " ) +v f ( 2 '+w f ( 8 ) =0,

where u, v , w are three variables over k. The point (w2 , —uv,
uw, — vw, u 2 )  of V  is surely a multiple point of V .

Case 2. m>_3.
The defining equation of V„„ is as follows ;

f l„,(X )=M )_2(X) f '1> (X) + (X) j ' '  (X) + (X) =0 ,

where 1-M 2(X ) (1=1, 2, 3) are independent generic forms of degree
m - 2  over k. We first consider the following equations :

—IgL2 (X) x0+ 1-1 2 (X) x 2=0
- (X) X, - 112L2(X)X,= 0,

and let X, ï be the cycles on V  defined by the above equations (X
by the former and Y the latter) respectively. Further let X ', Y '
be the cycles defined by the following equations respectively :

— fg12(X ) X0= 0, — 1 4 2 ( X )  = O.

Then we can see immediately that X' and Y ' are the speciali-
zations of X  and Y over k  respectively. Therefore we have the
following specialization (17 -X , Y)—>(1"-X', P )  with reference to k.

The intersection-product ( V. X ')  -Y ' is not defined, but if we
denote by H ,n 2 (i=1, 2) the hypersurfaces of degree m - 2  defined
by the equations 1-4 2 (X )=0  (i=1 , 2), each component of the cycle
V. i i ; ) , ) , • / -1  is a proper component of the intersection (V. X') n
Y ' .  Let IV ' be such a component, then 31 ' is clearly a generic
point of V  over k. A s  is well known, there exists a  proper
component 3 /  of the intersection ( V- X) n Y  such that 311 is  a
specialization of I T  over the specialization (V-x, Y)--*(1 7 - X ', Y )
with reference of k. The point 111- must be a generic point of
over k , since 3T ' is so.

Let us put 31= (x ,, xi, x2, X3, x4), then x0+ 0 .  A t  this point
AV= (x ), we have

a ft "' —  I t ? - 2  (X ) • X0 ± f 2 (x) •x2 =0
ax,

4 )  It is easy to see that I" is not contained in  a hyperplane in  L.',
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aft„, =— 14:212(x) xo + 11 2(x) x„ o ,a xi
and since .31 is a  generic point of IT over k, it follows naturally
that

— o  (j= 0, 2, 3).ax,
This yields the conclusion that if is a multiple point of r„,.

Thus we have established that our non-singular surface 17  can-
not be contained in  any non-singular 3-dimensional variety.

Remark. After a straightfoward computations, we can see that
the degree of the variety 17  is 3.

§  3 .  The proof o f Lemma 2.

To prove Lemma 2, we need some lemmas.
Let 2 (r , d ; N ) be the algebraic system built up by the cycles on

L-v whose dimensions are r and degrees d; l e t  e (r , d; N ) be the
m axim al dim ension of the components in  2 (r, d; N ) .  Then we
have the following lemma :

LEMMA 3. I f  d  is  a  sufficiently large positive integer, we have
e (r , d; N) (N +1) • dr*".

PROOF. We shall use the induction on the dim ension N of
the ambient projective space LN.

When N  is 2, our assertion is trivially valid.
Assume that our lemma is verified fo r  any projective space

of dimension < N - 1 .  And now we shall proceed to the case LN.
Let .1-•  be a  member of 2 (r, d ; N )  such that dimk, (c(r))=

e (r , d ; N ) ,  where ko is  a field over which LN  is defined. Let P
be a k0-rational point of LY, k, being the algebraic closure of 14, such
that P  does not belong to F. (Here we assume that r_ N— 2,
because our assertion is trivial for r= N— 1.) Projecting r from the
point P , we get a projecting cone P'+' of F  with the center P .  Then
P  is a (r+1)-dimensional irreducible variety, since r  is a  r-dimen-
sional irreducible one, and moreover deg P =deg F  L et H  be
a  hyperplane, defined over ko , such that Hi) P  and the intersection-
product P .11 is defined and irreducible.

S e t F ', . 1 1 .11. Then clealy we have dimkocc» (c(r'))=0.
On the other hand, let P' be an arbitrary specialization of P  with
reference to ko (c (r'))  . Then, since the intersection-product P ' H
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is defined, 5 ) P • H  has the uniquely determined specialization P'. H
over the specialization r->P' with reference to ko ( c ( r ) ) .  This
yields that t , •H—r , . r .H ,  and hence P'=.P, thus we have
dimkow(r , ))C (r )  =O. Therefore it holds that dimko(C(P)) =dim
ko ( c ( r ) ) .  But now, by induction assumption, dim ko ( c ( r ) )
N-d'÷' for sufficiently large d .  Hence we have dimk0 (C (P ))<N -ct+ 1

for sufficiently large d.
Let 1Jrlv- - 2 be a linear variety in _V' defined over ko such that

the intersection F n M  is empty and that the projecting cone 17/N- 1

of r  with the center M  does not contain P .  Then it is easy to see
that

< ir+1+d\
k f idim o (C( n r+1

<dr+ 1 for sufficiently large d,

and now we can estimate e (r, d ; N ) as follows ;

e(r, d; dimko(C(r))+dimkocc(T,),(c(r))

<dimko (C (r) ) + dimk o w  ( C ( i l

<dimko (C (r ) ) + dimkocc(F)) ( C (  ) )
dimko (C(P)) +dimko(C(K))

(N +1 )  -d ,
where we assume that d  is sufficiently large. Thus the proof is
completed. q. e. d.

LEMMA 4. For any integer there exists a positive
integer mo ( r ) ,  depending only  on r, with the folloing property; if

is  a  hypersuiface o f  degree m in  LN such that dim0C(11- ) >._
l(N, m)—m7N ! an d  that m>_mo (r ),  then 11„, has no subvarieties
of dimension r  and of  degree d_In'' 1/N+1, where k is any f ield
over which L N  is defined.

PROOF. There exists a positive integer m 0 ' (r) such that, if
m m o ' ( r ) ,  then the inequality

t r r n+\ )_>m 7IV !+ (N +1 )(m r1 "1/N +1 )'+ '+1

5 )  We can easily see that each component of fr is also a cone with the vertex
P ,  and P  does not lie on H .  Therefore i v • I l  can be defined.
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holds. Let a positive integer m," (r) be such that, by Lemma 3, if
m>_m o" (r) , then e(r, [m 'i" 1 / N  +1]; N ) (N  +1)  /  N  +  1r ,
where [ ]  shows the Gauss' symbol. Put m 0 (r) = max (m,' (r), mo"
(r )).  The number m 0 (r) will satisfy the requirements of our lemma.

In fact, suppose that there exists a  hypersurface 11„, of degree
m  in  V ' such that in_in c,(r) and dimk (C( 11„,)) m) —  / N !
and that Iir„, contains a subvariety I ' of dimension r and of degree
d m'I'+'/N+ 1. Then we have

dimk ( c ( r) ) (c (H „)) 4(N , m ) —  m 1N ! — e (r,d ;N ) .
Now, since m in ,,( r) , it follows that

r+i
4; 111)>_m7N ! + (N +1) • (le ' / N  +1) +1

_ m'/N I+ e(r, [mrl'n /N +1]; N) +1
_in'./N .L Fe(r,d;N )+1.

Hence dim k ( e ( r ) )  (C( > 1 (N, m) — ( 7  ±
r

m ).

On the other hand, since 11„, contains F ,

d im gcon.(C (H))!=l-ip (r  , ni) — 1
=1(N , m ) z  (r ,

Therefore we have

y (F , in )  < ( r ±
r

m ).

But, if m  is sufficiently large, 7 (1 ', m ) has th e  following ex-
pression"; ( F  ,  ni)= (deg r) • el;) + a.,( r " 1m 1 ) +  • • • + a, _ a,

(1_ r) being integers. And this shows that x(r,
This is a contradiction. q. e. d.

Now we can state the proof of Lemma 2.
Set iTz=[m - - ) 1 7d„(N+1)], where cl„ is the degree o f 17. Then

there exists a positive integer mo"(r), depending only on  -17, such
that if  m i n "  (V) ,

1(N, —  ( V , = /do' (N+ 1) r 1
By Lemma 4, there exists a positive integer m r (r -1 ).  L e t

6 )  Cf. W. K rull [ 1] .
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us set M (1) = max (m„", m e"), and R ( V) — 1/ (N +1)x -r ! Then
these two numbers M (1 ') and R(V ) will satisfy the requirements
of Lemma 2. The proof is as follows.

Suppose that there exists a hypersurface of degree ni such
that m >_.M (r) and dimk C(11,„) m) — R(11 7 ) m— '  and further
that V. is reducible.

Let now Y be the locus of C(/.1„,) over k, the algebraic closure
of k. There exists a hypersurface H„,...; of degree m I, defined
over k, such that V is defined and irreducible. Let Z  be
the locus of C( 1-T„,_;+ii;„-,) over where H  is a generic hyper-
surface of degree if/ over k . Then dim Y ; n )  —  /  ( N + 1 ) A r
r ! and dim Z=1(N, W O . Hence there exists a point ‘; in Y n Z
such that dimk -f / (N , ni) — m- 1  / do'. • (N + 1) ( V ,  .  There
corresponds to a hypersurface IT,; of degree m such that H ,'=
11-„, +  z. Then the fact that dim (V, M ) shows that the
intersection-product 17 .H„,' is defined. Since Ii,„ is reducible,
IT,, must contain a subvariety r  of dimension r -1  and of degree

d„in<m'' - 'fr/N + 1.
On the other hand,

dimk  (C ( / /„) ) m) — / (N4-1)' • r!

m) / N ! .

Hence, by Lemma 4, IT,„ cannot contain such a variety F . Th is
is a contradiction. Thus the proof is completed. q. e. d.
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