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We consider a space V" with an asymmetric Euclidean con-
nection L;. Since the metric of V" is defined by means of the
fundamental tensor g;;, we have the differential equations of geo-
desics, applying the calculus of variations, as well as for the case
of Riemannian spaces. But the equations do not coincide generally
with that of paths, because the symmetric parts of L;; are not
equal to the Christoffel symbols I;; constructed by the funda-
mental tensor g;;. '

If both of them are identical, then the fundamental tensor g;;
is covariant constant with respect to (L) and (/'), so that we
may define the covariant differentiations with respect to (L) and
(I"). Such a connection will be called S-connection and the Rie-
mannian space, whose fundamental tensor is same as that of V*,
will be called the space induced by V*. The concept named by
S-extension of Riemannian space is converse of concept of the
induced Riemannian space.

§ 1. Definition of S-connection and S-extension

Let V" be an n-dimensional space with an asymmetric Euclidean
connection ard P a current point of V", whose local co-érdinates
are . The connection is defined by the equations

dP(x) =e,(x)dx’,
de;(x) = Lyi(x) e;(x) dx”,

where (e;) is the natural frame attached to the point P(x) and
L,i(x) are the coefficients of the linear connection. The metric of
V" is defined by the quadratic differential form

ds’=eg;dx'dx’ (e=+1),
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where e is taken such that ds’ is non-negative. Then we have

e.e;=gi;.
It is well known that there exist the following relations between
the fundamental tensor g, and the coefficients L, of connection.
08; A

1 =2 g L —g,.Li=0.

(L) Py 8hs Lz — &in Lji
We denote by /i and S, the symmetric and skew-symmetric
parts of L}, respectlvely, and then Lj, are written in the form

(2) L,‘,‘=[',',,+S:,;¢ .

Under a transformation of local co-Ordinates (x) —> (%), the co-
efficients L} of connection are transformed to L,?, which are given
by the equations

LI 2
3) Tie 1.2 23* 31’ oxt o, *x* 0%

ax' 3% 0% X' IF Ax'

It is clear that the symmetric parts /). of L;. are subjected to the
same transformation (3), while the skew-symmetric parts Si are
components of a tensor, which is usually called the forsion tensor
of V™

Substitution in (1) from (2) gives

4) %—EM I'ié—gu ;=S + Siu
oxt
where by definition Si;,=g.S?:, which will be called the covariant
torsion tensor of V*".

We see from (4) that the symmetric parts /), coincide w1th
the Christoffel symbols constructed by the fundamental tensor g,
if and only if the covariant torsion tensor S, is skew-symmetric
with respect to all the indices. This condition will be named the
S-condition and we shall say that the space V" is of Sconnectzon
when the S-condition is satisfied.

If V" is Riemannian, then the coefficients Lj is of course
symmetric and so the torsion vanishes. Hence, such a V" is clearly
of S-connection. Moreover, we consider V" with so-called half-
symmetric connection, namely

f;k— 1 (” Sk_()L‘SJ) (Sy=S%).
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If such a space is of S-connection, it is easily seen that the space
is Riemannian.

We consider V* of S-connection, the underlying »-manifold be
M*. Then we may define a Riemannian #n-space R”, the underlying
manifold and the fundamental tensor be same as V”*. The co-
efficients I'j, of the connection of R* are the Christoffel symbols
constructed from g;; and coincide with the symmetric parts of the
coefficients L} of connection of the original space V*. The space
will be called the Riemannian space induced from V" of S-connection.

Conversely, let R* be a Riemannian space and g;; the funda-
mental tensor of R*. We take arbitrarily a skew-symmetric
covariant tensor S, of the third order and define the function Lj;
by the equation

@) Li=T}\+S  (Siu=g"Siu),

where ['j, are the Christoffel symbols of R". It is obvious that
L}, as thus defined are subjected to the law of transformation (3).
Therefore we may define a space with asymmetric Euclidean con-
nection V” on the underlying space of R", such that the funda-
mental tensor is common with R" and the coefficients of the con-
nection are given by (2’). The space as thus defined is clearly
of S-connection and its induced Riemannian space coincides with
the original space R*. The space V* will be called the S-extension
of the Riemannian space R* with respect to the tensor Sy. Since
we may choose arbitrarily a skew-symmetric tensor S;; and then
construct a S-extension, we shall have a number of S-extension of
R". Especially any S-extension of flat space is a space with absolute
parallelism, due to Einstein".

The geodesic (g) of R" is defined by the differential equations

ax dx? dx*
— = 4+ 11‘ = T =
dss " ds ds
where the parameter s is arc-length (g). Making use of (2), the
above equations are expressed in the forms
dx dy’ dx*
S+ LE 2 =
ds’ *ds ds
These equations define, as well known, the path of V* the S-ex-

tension of R", and we see that the parameter s is the affine para-
meter of the path. Thus we have the

0,

0.
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THEOREM. Let R" be a Riemannian space, the underlying
manifold be M. Then any curve of M", which expresses a geodesic
(2) of R, is a path of any S-extension of R, and the arc-length of
(g) is the affine parameter of the path.

It is to be noted finally that the Riemannian space K" and the
S-extension V* have the same topological properties, since they
have the same underlying manifold.

§2. Curvature and torsion of space with an asymmetric
Euclidean connection

In this section, before entering on the main subject of this
paper, we shall examine the general properties of V" with an
asymmetric Euclidean connection. Most of the following formulae
are already well known”, so that we shall describe in outline the
theories.

The covariant derivatives of a tensor u! with respect to the
connection (L) are defined as follows:

(5) u'.'v,-/j=uf,~'j+u'.',l.ag—uf'a Li; ’
where comma means the ordinal partial differentiation. The

covariant derivatives of a scalar are equal to the ordinal one. By
the well known methods we have the Ricci identities

(6) Vise—Vims= —201aS%
) u{‘x’/j/lt - uf;/k,‘ S=UY La?jlc —ul, Li:lj/.« — 274{‘[/:: S ke
where by definition L;!; are components of the curvature tensor
of V* given by the equations
f{le:L(.’;.k_ i:,j+ L?J (’:k_ ?,L::] .
Since the fundamental tensor g is covariant constant, we have
Zeinenn—Gisnpe™= — 8as Li%u— Gia Li7u=0.

Hence, if we put L,;,=g.;L%, then we have the identities satisfied
by L. as follows:

(8) Luu: —Lmzz —Lmk .
Further we differentiate (6) covariantly with respect to x and sum
the equations obtained by cyclic permutation of the indices j, %, [,

and make use of the Ricci identities. This process gives the fol-
1owing formulae.
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Lty =2S%5m + 45404 S,
Luiw= =256 +4Sia@ S -

We contract (9) with respect to % and &, and put L;,=L.%, and
S;=S%; Then we have

(10) %(LU—LJI) = S?,:;/,,'I' S,/,—Sm-f- ZS’.‘US,; .

The tensor L,, will be called the Ricci tensor, S; the torsion vector
and S?%y. the derived torsion fensor. The Ricci tensor does not
always be symmetric and the above equations give the skew-
symmetric parts of the tensor.

Next, we differentiate the equation

)

Ugpsin— Wigk)3= —Ua li?qk— 2Usjq S:‘jlc ,

covariantly with respect to & and sum the equations obtained by
cyclic permutation of j, k l and then we get 1mmed1ately the
Bianchi identities

A S h
LGy =2L;S%y

(11) .
mec/z) = 2Lua< ;S '-'m .

§3. Curvature and torsion of S-connection

Let V* be a space with S-connection and R* the induced
Riemannian space. We denote by semi-colon the covariant differenti-
ation with respect to the Christoffel symbols 7'}, which are equal
to the symmetric parts of the connection L} of V. Any tensor
of R*(V") may be regarded as tensor of V*(R"). Hence both of
the covariant derivatives #!;; and u’;; of the tensor u! are tensors
of R* as well as of V*. Especially, the fundamental tensor g;; is
covariant constant as the covariant differentiations with respect to
(L) and (I').

The curvature tensor R/; of R" defined by

| Rly=Tha—lhy+ [5Th— T4 T
is a tensor of V*, which will be called the curvature tensor of the
second kind of V*; while the curvature tensor L}, of V" is called

of the first kind. The Ricci identities for the covariant dlfferentl-
ation (;) are given by

(12) u!f;j;k M zlcj_u Ra e U aR.f(:jlc .
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Making use of (2) we have
L{?jk:R{?jk + S,:‘j;lc_ S{lﬂc;j"" S(.lzjsfak_‘ S'-'ilc Sfuj )
(13)
thjk:RhMIc'— Sm;u"’ Shllc:j+ S?ij Sahk+ S?u alj «

There exist the following relations between the covariant derivatives
;) and (/) of the torsion tensor S%, which are easily obtained.

(14) S{:U:k: S’.‘s‘”k— S?{jS?,,L + Sfa‘, S(.luc—‘ S{'MS?};E .
It is a remarkable property of S-connection that the forsion vector
S: vanishes identically, by means of skew-symmetry of the covariant
torsion tensor S.;. Hence we obtain from (14) the interesting
identities
(15) S'.';j;,,ZS'.'cj/a .
The equations (13) and (14) give the equations
L‘{iljk == 1'?;], + Sfij/]c - Si’ik/j + S?‘j S?Im - S?ik St‘ja - 28?‘;{ S?jk y
Lln‘glc = RM ik Sh’lj/lc + Sh{k/j + S?&j Sazk - S’-’hk Safj - ZS?H Sajlc .

It is well known that the curvature tensor R, of the Riemannian
space R" satisfies the identities

Rhijlc_ lechi =0.

Making use of this we have from (16)

(16)

Lhijlc - Lw.-; = Siglc/h + Sh k|3 + Sh’ik/ i Shu/k

a7
= — Sisn+ Snjei + Swin,j— Sissn «

From (10) we have immediately
(18) . ;_):(L(j_Lj;) =S?lj/a .

Therefore the Ricci tensor L,; of the space V”* of S-connection is
not generally symmetric and the skew-symmetric parts of L, are
the components of the derived torsion tensor. On the other hand,
we obtain the expression of components of the Ricci tensor as
follows : :

19) Lij=Ru+ S%iat S :'aj ,

in virture of (16), where R,; are the components of the Ricci
tensor of R", namely R;,=R.%,, which is symmetric, as well known.

Further we put L=g*“L,; and R=g"R;, These scalars are
respectively called the scalar curvature of the first and the second
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kind of V*, the latter be the scalar curvature of R*. From (19)
we obtain

(20) L=R—S"Su..

If the fundamental form of V* is positive-definite, the scalar S®°S,.
is non-negative and hence we have the

THEOREM. If the fundamental form of V" of S-conmection is
positive-definite, then the scalar curvature of the first kind is not
greater than that of the second kind. In the other words, the scalar
curvature of the first kind of any S-extension cof the Riemannian
space R, the fundamental form of which is positive-definite, is not
greatey than the scalar cuyvature of R".

It is concluded from (15) and (18) that the Ricci tensor L,
is symmetric, if and only if the skew-symmetric tensor S;; satisfies
the equations

(21) S'.',j;,AZO y

namely, the derived torsion tensor vanishes identically. If S is
a harmonic tensor, the above equations are satisfied by means of
the definition of harmonic tensors®. Therefore

THEOREM. If the tensor S.; is havmonic, then the Ricci tensor
L., of the S-extension with vespect to S;; is symmelric.

‘Next, we take a Killing tensor Sis, SO that the covariant
derivatives S;j, are skew-symmetric’. In this case, we see from
(17) that the curvature tensor L, satisfies the identities

(22) Lhijlc=lechi .

Consequently the curvature tensor satisfies the identities, which are
satisfied by the curvature tensor of Riemannian space. Further
the equation (21) are clearly satisfied for the Killing tensor S;.
Thus we have the

THEOREM. If the tensor S, is a Killing tensor, then the
curvature tensor Ly of the first kind of the S-extension with respect

to Si;, satisfies (8), (9) as well as (22), and the Ricci tensor Ly is
symmeltric.

§4. S-extensions of completely harmonic Riemannian spaces

The Riemannian space R" is centroharmonic, when the follow-
ing equation is satisfied. '
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(23) gie.,.,=1(9),

where £(x, x) is the characteristic function with respect to the
point (x,) and (x), which is named so by Synge® and is given by
Q= (e/2)s’, s be the geodesic distance from (x,) to (x). The
covariant differentiation (;) in (23) is taken at the point (x), and
the point (x,) is called the base point. If the equation (23) holds
for all choices of the base point, the space is called completely
harmonic®.

Let V" be a Sextension of the Riemannian space R" with
respect to the tensor S,;, then we have

Q.0s=2,;+21aS%,
Therefore (23) is expressed in the form

(24) 89 %,;=1(2)

Now we shall call completely harmonic a space with an asym-
metric Euclidean connection V*, such that the equation (24) holds
for all choices of the base point. If V* is of general asymmetric
Euclidean connection, the methods used in the 7th section of the
paper by Copson and Ruse®, does not be applicable. Because the
equations (7-4), ...., (7-10) in their paper have been found by
Synge®, obtained by the successive covariant differentiations of the
equation £= (e/2)s’ along the geodesic. In our case, the geodesic
of V*

)

a (i) dxt
ds’® jk! ds ds

is obtained by the c_alculus of variation by means of the funda-
mental form and {J’k} in the above equation are the Christoffel

symbols constructed by the fundamental tensor. But the symmetric

parts I'j, of the coefficients L, of the connection are not always
identical with { jlk}’ as shown in the first section. Besides, ¥;,....x
in their paper is the covariant derivatives with respect to {]2}

vi

Now, if V" is of S-connection, the symmetric parts /', coincide
with { ]lk} and the equation

g{j‘glf/:::g”‘g;f;j

is satisfied, and hence the process, by which they gave the complete
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condition for harmonic space, may be applicable equally well to
V* of S-connection. Consequently we have the

THEOREM. If the Riemannian space R" is completely harmonic,
any S-extension of R* is also completely harmonic. Conversely, if V"
is of S-conmection and complelely harmonic, then the Riemannian
space induced from V™ is completely harmonic.

§ 5. Subspaces of spaces of S-connection

We consider a variety V* of the space V™ of S-connection*,
which is given by the equation y*=3y*(x). When a current point
P of V™ displaces along V", we have

dP=e¢,dy*=e,B{dx’ (B? = %{—) .

Hence we put

(25) e,=e,B;
it follows

(26) dP=ce.dx'.
We see that (e;) are n vectors of frame attached to P of V"
We take further m—n vectors ¢, (P=n+1,...., m), which are

orthogonal to e; and matually orthogonal, whose lengthes are unit.
Then we have ‘

(27) e.~8p=0 y ePeQ=(),,Q
Now we put

de;= (Lie;+ Lle,)dx”,

(28) de,= (L} e;+ L7.e,)dx",
(29) e,=e,B}.

The equations (28), (25), (29) and
(30) de,= L. e,dy’

give the equations
(31) ixt BiBiLy—B;Li=L4yB;
(32) B} +B}.Bi Ly =L;.B+ L} Bj.

* In this section we assume that the fundamental form of V= is positive-definite.
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The equations (31) give _
S BiBI=3%(L{—Lj)Bj+4%(LEL,—L[) B3 .

Hence we denote by [, and S%, the symmetric and skew-symmetric
parts of Lj, and also by H/ and S/ the symmetric and skew-
symmetric parts of L. Then we have

(33) 4 BiBL=S!,B;+ S/.B3 .
and from (31)
(34) B: . +B;B.l—B;.,=H/.B},

where /. are the symmetric parts of the coefficients L3 of the
connection of V™, that is, the Christoffel symbols constructed by
the fundamental tensor g,; of V", and S%, are components of the
torsion tensor of V™.

We contract (33) by g.s;B; and then we have
(35) Shir=Sasy By B; B (Shik:gh.js-jik) .

It follows from (35) that S, is the projection of the torsion tensor
S.«r of the enveloping space V™ on V* on hence S, is skew-
symmetric tensor. Similarly we have from (33), contracting by
Z.s B3

(36) Sou=Sex BeBiBl  (Sou=0peSi=5%).

It follows from (86) that S/, (P: fixed) are components of a skew-
symmetric tensor of V"

The induced metric of V" from V™ is given by the fundamental
tensor

(37) 8ij= 8 B:B; .
Differentiation of (37) gives by means of (31)
(38) Zije— 8Laj Li—g. LJZZO .

We know now from (38) and skew-symmetry of S;;. that L}, are
the coefficients of the induced connection of V* from V™ and S,
are the components of the torsion tensor of V*, and further I}, are
the Christoffel symbols constructed by the fundamental tensor g;;
of V*. Thus we have the

THEOREM. If V" is a space of S-connection, then a subspace
of V™ is also of S-connection.
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The symmetric parts H/, of L!, are the second fundamental
tensors of R"*, which is the Riemannian space induced from V™
Hence H/; are the second fundamental tensors of R*, which is the
subspace of Riemannian space R™ induced from V™.

The asymptotic directions of R* are defined by the differential
equations

H!B}dx dx'=0.
Similarly we define the asympiotic directions of V™ by the equations
LB;dx'dx’=0.
Since HY; are symmetric parts of Lf, the asymptotic directions of
V* coincide with that of R*. We see easily that the similar results

hold for the lines of curvature of V" and R*.
Now, from (27) and (28) we have

(39) Li=—g"L&dn=—g"Li, Li=—LE.
The conditions of integrability of (31) and (32) are given by
(40)  LuwsB:BiBiBi=Lu—LiL5+ L L.
(41)  Lows B3 BiByBi=— Liy+ Liy,— L, L+ L3.LE,
—2I7.8%,

: 5 __
(42) Lasys B ByBY By= Lg%y ;— Lfy+ Ly L% — Ly, LY
+ L3 LY— ﬁj L:+2L%, Siis

where L, are components of the curvature tensor of V". These

equations are respectively the generalizations of the Gauss, Cadazzi

and Ricci equations in the case of Riemannian space.
Differentiation of (33) gives

S%s Bi By Bi+ Sty By (L B+ LY, BY)
(43) =S Bi+S%, L By+ S5 B
+SL (L& Bi+ LE.BY)
from which we have by means of (36)
(44) Saivjs Bi BBLB; =S,y — Siu Ly + S Ly — SHLE,
(45) Sasris By BBy Bi= S/} + S%y L+ S LY,

+ SI’Q(L;}Ic— Sp(n :)A ’
where we put
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(46) ' Srov=—Seri=Su B:. By BI
In R" instead of (28), we put
de;= (I'},e;+ Hlep)dx¥,
de,= (Hi.e,+ Hfe,)dx",

Where .+ arc the Christoffel symbols constructed by the funda-
mental tensor g, of R*(V"), and HI; are the symmetric .parts of
L{;, and that HJ,= —g"™H!,. From (47) we obtain (34) and further

(48) B;.+BBil'%=H;.B;+H¢B}.
Subtraction (48) from (34) gives '
wByBi=—g"SiBi+3(LA—HZE) B .

Therefore (m—mn) (im—n—1)/2 vectors Spy: defined by (46) are
given by

(49) ) Sl'Qi:Hl?l—LI()i .

If V* is a hypersurface of V™, that is, #=m—1, then vectors S
are obviously equal to zero.

47
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