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0. Introduction

Let f: M>N be a Cr map between manifolds and 4 be a subset
of M. Sard has shown that if the tangent map Tf vanishes on the
tangent spaces over A then f(A) is small (Theorem 1). Moreover one
may well expect that:

If Tf vanishes at least on the tangents of A, f(A) is small.
In this note we remark that Glaeser’s linearized paratingents immediately
enable us an accurate description of the above intuitive statement as
a corollary of Sard’s theorem. As for the case when A is connected
and f is sufficiently smooth, we obtain a necessary and sufficidnt con-
dition for f(A) to be one point (Theorem 2). Then lightness of a
sufficiently smooth map can be expressed by a property of Tf (or first
derivatives)*.

Now we prepare the notation. Through this note, by a manifold
M we mean a finite dimensional separable Hausdorff C?¢ manifold
(1£9=w*) without boundary. The dimension m of M is indicated as
Mm™. A submanifold means always a regular submanifold. TM denotes
the tangent bundle of M. = is its projection onto M and T.M=

* Church pointed out the importance of assuming lightness in the study of the struc-
ture of differentiable open maps. For, non-light maps are often too complicated
to admit some positive assertions. A few simple and natural sufficient conditions
are known for light maps; see [4].

* @ means real analyticity.
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n~1(x). When we mention of C" mapf: M—»N, M and N are assumed
to be C9 manifolds with 1<r<gq. f canonically induces the tangent
map Tf: TM—TN.

1. Paratingent spaces

First, let us review the notion of the (linearized) paratingent
of order s* in a form adapted to a manifold. Let A4 be a subset
of a C4 manifold M and x a point of M. Condiser the set {V,};4
of all C* submanifolds (1 <s<q) which include 4 in a neighbourhood
of x (i.e. the germ of V, at x includes one of A). The map of in-
clusion ¢;: V,—»M induces the tangent map T,,;: T.V,—»TM. We put

Pfi,x =N Tx‘).(TxVi.) cT,M,
AeA

Py=\J P cTM.

We call P5 , the partingent space of order s of A at x and its element
a paratingent of order s. It is obvious that

Proposition 1. If V is an element of minimal dimension among
the C* submanifolds including A in neighbourhoods of x then T.(T.V)
=P ., where ¢: VoM denotes the canonical injection.

Corollary 1. P35, is a closed subset of TM.
These proofs are standard and we omit them.
If we put

~

A,=A5={xeM:dimP5  =v}, A,=45=45n4,

it is also easy to see the following:

* The notion of linearized paratingent of order s is due to Glaeser [5]. His Pj,(x)
denotes the set of directions while our P$,, expresses the set of vectors. Here we
introduce only a part of his theory on linearized paratingents.
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Corollary 2. \\'J A, is an open subset of \U A, for —1=Zj<i<m.
v=j v=j

v A, (resp. ("JAv, U A,) is M (resp. A, the derived set of A).
1 v=0 ' v=1

v=-—

The following is foundamental for paratingents.

Proposition 2. Let f: M"—>N" be a C-map and A be a subset of
M. Then Tf maps PS5 intoPy, where B=f(A) and 1=<s<r.

Proof. We follow Glaeser’s proof of the next corollary. Suppose
that there exists a vector ee PS5 , such that Tf(e)¢Pj. Put

dim P . =t, dimPy ,=u, y=f(x).

We can choose a local coordinate system (x', x2,..., x', x'™*1,..., x™)
at x of M as a C° manifold such that (9/0x!),, (0/0x?),, ..., (0/0x"),
form a basis of PS5, and the C* submanifold V defined by

xtHl=xt+t2—...=xm=(

includes A in a neighbourhood of x. Let (y', y2,..., p% y**1i,.., y")
and W be the correspondents of (x!, x2,...,x% x'*',...,x™) and V,
for {N, B, y} instead of {M, A, x}. We may assume that

e=(0/ox"),,  Tf(e)=(d/oy**"),

without loss of generality. This means (0/0x!),(y**'of)=1 and hence
the equation y“*'of=0 defines an (t—1)-deminsional C* submanifold
of V which includes A4 in a neighbourhood of x. Then dimP§ ,<t—1,
a contradiction. Thus we have proved

Tf(PYy) < P,y

Corollary [5,p.55]. Let f: M—>N be a C' map and let A
be a subset of M. If f(A) is one point then Tf(P%)=0 for 1<s<r.

2. Hausdorff measure of f(A4)

Since our manifold admits a Riemannian metric we can canonically
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define the (outer) t-dimensional Hausdorff measure p, on M for t=0%*.
A subset 4 of M is called t-null, t-finite or t-sigmafinite respectively
when p,A=0, when pA<oo or when A4 is a countable union of t-
finite sets. t-nullity and t-sigmafiniteness are invariants of changes
of the Riemannian metric and regular imbeddings of M into other
manifolds. Sard has proved the following:

Theorem 1 [8, Theorem 2]. Let f: M">N be a C' map. If
AcM is t-sigmafinite (t>0) and if Tf(n~'A)=0, then f(A) is (t/r)-null.

Remark. If dimP} ,<t for any xeA, especially if m<t, then
A is t-sigmafinite.
Putting Ps5=P5nn~!(4), we can sharpen the theorm as follows.

Corollary 1. Let f: M—>N be a C" map and let A be a t-sig-
mafinite (t>0) subset of M. If Tf(Ps)=0, f(A) is (t/u)-null (u=min
(r, 5)).

Proof. Every xe A,n A has an open neighbourhood B, in A which
is included in a v-dimensional C* submanifold V,, where A, is the set
defined in §1. Let ¢: V,»M be the canonical injection and =n': TV,—
V. be the canonical projection. If yeB,n A4, then Tz(Tny)=PfM
by Proposition 1. Hence we have

T(fo (T, V:) =T {T«T,V,)} =Tf(P5,,) =0
and
T(foe){n'"'(B,n 4,)} =0.

Since for is a C* map on V. f(B.,nNA)=fe(B.NA,) is (t/u)-null
by the theorem. A is a countable union of sets of the form B,n A,.
Then f(A) is also (t/u)-null.

A continuous map between topological spaces is defined to be
light when the inverse image of any one point does not contain a

* See [8] or [6, p. 102] for the definition.
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continuum (a connected compact set containing at least two points).
If the space of definition of the map is a separble metric and localy
compact space, the map is light if and only if the inverse image of
one point is either empty or 0-dimensional.

Corollary 2. Let f: M>N be a C" map and let A be a con-
nected subset of M satisfying Tf(P3)=0. If A is u-sigmafinite (u=
min(r, s)>0), then f(A) is one point and f is not light.

Proof. By Corollary 1, f(A) is 1-null and hence O-dimensional
[6, p. 104]. In other words f(A) is totally disconnected. Since f(A4)
is connected, it is one point. Then f(4) is also one point. A locally
compact connected set, if not a single point, contains a continuum
[7, p. 83], hence f is not light.

3. Crushing conditions

Theorem 2. Let f: M™>N be a C° map with r=zm and let A
be a connected subset of M. Then the following conditions are mutual-
ly equivalent.

(i) f(A) (or f(A)) is one point.
(ii) Tf(Py)=0.

(iii) Tf(Py)=0.

(iv) Tf(P3')=0.

(v) Tf(Py')=0.

Remark. If r=m-—1, (i) does not mean (i) by the example of
Whitney [10]. (see also [5]).

Proof. Here we treat the case m=2. The case m=1 is easily
justified by the definition of P$ in §4. By Corollary of Proposition 2,
(ii) follows from (i). It is obvious that (ii) means (iii), (iv) and each
of them means (v). Therefore we have only to prove (i) assuming (v).
If xe":\;J;Z'v"“ (see §1) then x has an (in— 1)-sigmafinite neighbourhood
B, in A. Then f(B,) is 1-null by Corollary 1 of Theorem 1. If xe
An-t, Pml=TM. Hence Tf{n !(Am"")}=0 and f(Am"1) is 1-null by
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Theorem 1. Thus f(Z)=f(qJOZ'V'"1) is 1-null and one point as in the
proof of Corollary 2 of Thve_orem 1.

Now we have obtained the following.

Let f: M">N be a Cr-map with r=2m. Then f is not light if
and only if there exists a connected set (or continuum) AcM satisfying
any one (or each) of (i)~(v) in Theorem 2.

We remark that the condition of open light maps can be also
expressed by properties of the first derivatives. Because of the above
result we have only to express the condition of openess for light
maps. This is just done by the following theorem due to Titus-Young
and Church*

Let f: Mm™—>N™ be a light C" map (r=m) between m-dimensional
manifolds. Then f is open if and only if there are covering charts
{(Uy, )} of M and {(V; ¥;)} of N such that the jacobian of
Y jofopr! does not change sign on @ (U;nf~'(V)).

It is also known that if f is a light open C* map on M™ (r=m)
f~1(y) is discrete for any yeN", see [3, (1.9)].

4. Classical paratigents

Let A be a closed subset of M. The paratingents of A was defined
by Bouligand [1]. We write the set of Bouligand’s paratigents P$=

U PY,. Glaeser characterized P} as a minimal subset L=\U L, of
x€A x€A

TM satisfying the following:

(i) LoPyY.

(ii) L, is a linear subspace of T,M.

(iii) L has upper semi-continiuty of inclusion on A.
On the condition (ii), (iii) is equivalent to:

(iii)y L is a closed subset of TM
[2,p.67]. Let f be a C" map (t=1) defined on M. Since the kernel
of Tf satisfies (ii)) and (iii)’, the condition Tf(P.)=0 is equivalent to
Tf(P) =0.

* “if” part has been proved by Titus-Young [9, Theorem 2] for C!-maps. ‘only if”
part has been established by Church [3, (1.7)].
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If A is not closed we define P$=PY%. (This is equivalent to

Bouligand’s definition.) Then it is trivial that Theorem 2 is justified

also in the case m=1.
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