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The theory of harmonic functions has been extensively developed
since M. Brelot introduced the axiomatic method. Brelot’s axiomatic
theory consists of a (complete) presheaf s# of vector spaces of con-
tinuous functions such that there exist sufficiently many open sets for
which Dirichlet problem is solvable, and such that Harnack’s principle
is satisfied for s, on any open set U. But B. Walsh is the first
who adapted the general sheaf theory to the study of harmonic func-
tions. B. Walsh, as in the case of classical potential theory, investigated
the cohomology groups of s# (or s with certain limitation at infinity).
He also proved, in the presence of the adjoint sheaf s#* of s, a
fundamental duality relation between (X, #) and s#%.

In this paper we shall study the theory of duality and cohomology
of the sheaves @ on a Brelot’s harmonic space that are obtained
from s by limiting it at infinity. (This is the general scheme of
solution sheaves of an elliptic second order differential equation with
various boundary conditions.) ¢ is a sheaf on the one-point com-
pactification X U {a} of a Brelot’s harmonic space (X, s##) such that,
(i) 0|X =s¢ (ii) there is a neighborhood system of a formed by open
sets w such that any continuous function on the boundary of w is
uniquely extended to a section of @ on w. @ is no more a sheaf of
continuous functions, and a germ in @, is recognized as a local
solution near the boundary of the above elliptic differential equation.

In section 1 we shall construct various resolutions of ¢. One
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of those is the fine resolution due to B. Walsh;
0—O0— R4 P —0

where # is the sheaf of germs of differences of non-negative continous
superharmonic functions and £ is the sheaf of germs generated by local
potentials. (As for the sheaf theory see Gunning-Rossi [4]). The
other two resolutions are obtained from this if we take out from £
the part which represents the singularity at infinity. This is the sheaf
theoretical versoin of a method in potential theory which we can find
in articles of Z. Kuramochi[9], F.Y.Maeda [12] and T. Kori [7].
More precisely the resolution 0 >0 —» F 4,%—0 plays a fundamental
role through this paper, where #|X=4# and #,=lims, , and %,
is the germs at a of the differences of local potentia‘i’:awhich are har-
monic except at the point a (HS,-functions if we follow the terminology
in [9]), of course, ¢|X =0.

In section 2 we shall construct a sheaf which represents Dirichlet
boundary condition if we use the terminology of boundary conditions
of elliptic differential equations. This sheaf is found to be the minimal
one among the sheaves ¢ by an appropriate order.

In section 3 the cohomology groups of @ are calculated:

Hi(Y, 0)=0 @z2),
H\(Y, 0)=0 if 1¢0y,,

H'(Y,0)=R' if leo

ye

These are also obtained by B. Walsh. But our proofs are more simple
and somewhat more suggestive. We also have HY(X, #)=0 for g=1.
This was classically proved by Mittag-Leffler’'s argument, where it
was essential that any section of s# on a relatively compact open subset
U of X can be approximated by the sections on X. B. Walsh proved
the vanishing of H!(X, s#) for a Brelot's harmonic sheaf satisfying
the approximation property. We do not assume this property. Our
argument reduces to the fact H'(Y, #)=0.

In section 4, in the presence of the adjoint sheaf 0* of ¢ we



Sheaf cohomology theory on harmonic spaces 557

shall prove
(0) = 0y_x [0y =H(Y, 0%),

where K is a compact subset of V. This fundamental relation classical-
ly due to Kothe-Tillmann-Grothendieck yeilds some duality relations,
for example, we have the following exact sequences in duality;

0— 0y, — 0,— HY (X, #)— H'(Y,0) — 0
0 — HY(Y, 0%) «— HI(Y, 0*) «— #%} — 0% «——0
HI(X, #) =ot%, 0,2 HL(Y, 0%) = g%,

Section 5 is devoted to the decomposition of the singularity of
%,. Here Kuramochi boundary with respect to @, which was introduc-
ed in [7,12], is important. Every germ in &, is represented by the
integration of extreme germs in %, and the latter corresponds to the
minimal boundary points. We shall introduce analogous normal deriva-
tives of germs in @, at the adjoint boundary (extremes in %*) and
express the above duality by the integration of this normal derivative
(Greeen-Stokes’ Theorem). By virtue of thus formulated duality rela-
tion we can give a condition for the duality between ¢, and ¢* to
be separated.

Some results of our previous paper [7] are quoted. If we view our
present paper as the development of global theory of harmonic sheaves,
our previous one may be interpretaed as the treatments of local theory.

§1. Resolutions of harmonic sheaves.

Let X be a non compact Brelot’s harmonic space and s be the
sheaf on X of harmonic functions. We assume that 1 is harmonic
on X. Let Y=XU{a} be the one-point compactification of X. We
consider the following sheaves @ on Y of linear spaces;

(1.1) 0,=s¢, for every xeX,

(1.2) 0, is a linear subspace of the linear space lim 5#).,, Wwhich

Vaa
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is the inductive limit of linear spaces s#,., as V ranges over
a neighborhood system of a.

An open set GcY with the boundary G contained in X is said
to be O-regular if any continuous function f on 0G possesses a unique
continuous extension f to G\a such that the restriction f|G\a coincides
with a ue®s=I(G,0) on G\a and such that f is non-negative if
f is non-negative.

For any O-regular set G and feC(0G), the above uel@; is
uniquely determined and is denoted by HYf=?HSf. For a uedlg;
we shall adapt the notation u, to represent the germ of u at yeG.
On the other hand the value at xeG\a of u viewed as a continuous
function on G\a is denoted by u(x). These notations are adapted for
any sheaf on Y if its section on a set G can be considered as a con-
tinuous function on G\a. Now, since the linear form f—HSf(x),
xeG\a, on C(0G) is positive, it defines a Radon measure H¢(dy) on
GcX;

Hof(={ 1)Hay)

for any fe C(0G) and xeG\a.

Definition. A sheaf @ on Y of linear spaces is called a harmonic
sheaf it if satisfies (1.1), (1.2) and

(1.3) O-regular sets form basis for the topology on Y.
(1.4) 1 is O-superharmonic on Y.

Here we give explanations of these conditions. The condition (1.3)
may be stated merely for a base of topology at a, because Brelot’s
axiom 2 and the fact 0,=s¢, for xe X imply the same condition stated
on X. Following the terminology of [7], [12] we might say a full-
harmonic sheaf rather than a harmonic sheaf, but we will not use
this. @-superharmonic functions are defined as follows.

Let G be an open set. A function s on G—a is said to be 0-
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superharmonic on G if; (i) s is lower semi-continuous, >—oo and is
not identically equal to +oo on any connected component of G-—a,
and (ii) for any O-regular set w, @W<=G, and any fe C(dw), the relation
f<s on dw implies the relation H®f<s on w—a.

A non-negative O-superharmonic function p on G which have
the following property is called a potential on G: If an O-super-
harmonic function u on G such that u+p=0 exists then u=0. A
domain V<Y is called a (¢-) small set if there is a non-zero potential
on V. Every regular set is small and there is an exhaustion of X
by relatively compact small sets, hence there is a cover {U, V} of Y
formed by small sets with UcX, Vaa.

We note that Harnack’s principle for the sheaf @ are valid,
that is, if h, is an increasing sequence of sections of ¢ on a domain
G, then either suph,=+ o0 or suph,€ ;.

We have the following criterion:

(1.6) Y is small iff 1¢0y

The proof is as follows. Every non-negative @-superharmonic
function u on G has a unique decomposition u=p+h with he 04
and p a potential on G. Let 1=p,+h, be the decomposition. If
1¢0y p, must not be identically equal to 0, hence p,>0 (a con-
sequence of Harnack’s principle for ¢). Thus Y is small. If 1e0,,
H®1=1 on w\a for any regular neighborhood w of a. Let K be
a compact subset of X such that KoY\w, and let p be a non-zero
potential on Y. We have p=2H®p=cH“l=c on w\a, where c¢=infp>0.
Therefore p=c on Y\a. Since —c is O-superharmonic on KY and
p—c=0, it follows —c¢=0 from the definition of a potential. This
is absurd and there is no non-zero potential on Y.

After B. Walsh [18] (See also W. Hansen [5].) we shall give a
fine resolution of the sheaf 0.

For any open set G, let £¢ be the convex cone of potentials
on G that are continuous on G\a. Let 2;=2¢(—-2¢(={p—q; p,
qge Pt} and let Z;=0;+P;. P and RZ; are R-modules and
Z¢ is a direct sum (as modules) of 0; and 2;. Let ig: 0g—>%; and
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Jo: Pg— Rs be the natural injections, and dg: #5— P; be the pro-
jection; dgeojg=Identity on 2;. If we denote by r¥Y: #,—»2%, (VoU)
the restriction map, (%, ry) forms a presheaf of R-module. (£,
pY=dyeryej,) is also a presheaf of R-module and the next diagram

commutes;

gy-—d-v—)?y

U U
o

QU L—) ‘?U'
The sequence
(1.6) 0— 0y 2 2y Y, 2, — 0

of R-modules is exact. Let # and £ be the associated sheaves to the
presheaves (%, r¥) and (2, pY) rsepectively, and let i and d be
the induced homomorphisms of i, and d, respectively. We have the

exact sequence;
1.7 0—0-‘ 24, 2—0.

We can verify easily that felI'(U, #) iff, for any xeU, there
exist s, s,€%y, 20, on a neighborhood V of x, VcU, such that
rhf=s;—s, on V\a. Where &, is the convex cone of @-super-
harmonic functions on V which are continuous on V\a. Here we note
that the definition in [18] of the sheaf # is incorrect. There fe
I'(U, #) for Usa iff there is a neighborhood V of a in U such that
fIV\a=ZXua;s;, where {a;} are scalars and the {s;} non-negative O-
subharmonic functions on V which are continuous on V\a. But the
existence of nonnegative @-subharmonic functions is not assured for
certain @. For example, take the minimal harmonic sheaf @ in
section 2 such that 1¢0y.

The following results are due to B. Walsh ([5], [18]).

(1.8) For any open set G, I(G, #) becomes a ring as the multipli-
cation is defined pointwisely on G\a.

(1.9) 2 is a fine sheaf.
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Now let & be the sheaf of bounded measureable functions on Y.
To give a #-module structure for the sheaf £ and to introduce some
important subsheaves of £, we shall here study potential kernels on
a small set following T. Kori [7]. As for small set UcX, such a
potential kernel is now well-known [14], so we may assume U3a.
Let

g-{/=9‘{j n @U\g={pe'¢5;plU\aewu—a=‘#U—a} .

Let p<q be an order defined in P, by the cone P{. By this order
2, becomes a lattice [6, 7]. Let

Sh={pe P}§; if there is a ue®} such that u<p, then u=0).
Then £} is the direct sum of ¥} and £§. The ¥j-part of pe 2}
is denoted as BYp; p—BYpe s}V

Theorem 3.16 of [7] states the following:

For any pe@} there is a unique kernel K(x, dy)=KP(x,dy)
=Kr:Y(x, dy) on U\a that satisfies;

(i) Kl=p—-BYp,

(ii) for any bounded measurable function f on U\a, Kfe s}
and Kf is bounded continuous on U\a, and belongs to Oy_g,,pis1-

Lemma 1.1. Let V be a small set and U be an open set such
that acUcUcV, and let pe PY. We have,

(i) pHBYp)=BY(p3p)
(ii) p¥(p—B"p)=pYp—BYpyp)

(i) pYKPf)=Ka(f|U\a), where q=pYp and f is a bounded
measurable function on V\a.

1) There is a strictly positive function on ¢} for any small set U containing a.
Moreover, for any small set U and any point yeU, there is a strictly positive
function of £} which is harmonic on U—y. (Thm. 161. of [6], Proposition 5.1
of [7])
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Proof. Let p=q,+h, be the decomposition of rYpes} to h, e
Oy and q,e€2}; q,=pYp. By the same way, let B'p=q,+h,, q,=
pYB'pe 2} and h,e0f, and let p—BYp=q;+h;, hye O}, q3=p%p—
B"p)e #§. We have q,=q,+4q;. ¢, is obviously harmonic on U\a,
S0 ¢,€%}. Set t=p—B"pesF. For any compact subset K of X
such that dU cK (the interior of K), let

(Oy_x=inf{ue 2¥; u=t+s on V—K for some se &y, _g},
and
(g3)y-x=inf{u e 2¢; u=q;+s on U—K for some se Ly,_g}.

From [12], t,_xe 2} and there is a we 25 n0,_x such that t=t,_g
+w, hence q3=pPt=pP(ty_x)+pYw and pYweOy_g, that is, p¥(ty_x)
belongs to the bracket of the right-hand side which defines (q;),_k.
We have (q3)y-x=p¥%(ty-x). Now since we know

BYqy=inf({g3)y_x; K is a compact set of X such that K>dU}

from [12], we have
BUq, <inf {p¥%t,_x); K compact in X, KooU}

éinf(ty_x) =Byt N

which equals to zero because of teJf}, so BUqgy;=0 and gq;e.f}.
Thus we have the decomposition ¢q,=qg,+43, 4, €%}, q;€£4. From
the uniqueness of the decomposition we have the first and the second
equalities. To prove the third, it is enough to show that pY(Krl)=
K41 and pY(K*Pf) € Oy_supprs; for any feC/ U). From these the
third assertion follows by virtue of the uniqueness of the potential
kernel. But pY(KP1)=pY(p—B"p)=pYp—BYpYp=K1l, and p§(h)elg;
for any he®g; and any open set GeGcU. These prove the above.
For any bounded measurable function f on U and pe2y; =
p*—p-, pfe 2§, we shall define the multiplication as follows; fop=
K?*(flU\a)~ K" (f|U\a) +f(a)Bp* —f(a)B'p".
Lemma 1.1 shows that pY(fop)=0Yf)-(pYp), where rY: B, B, is
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the restriction map. Thus {(By, 2y), (¥, p}¥)} is a presheaf with
the presheaf (4, ry) as its coefficient. By taking inductive limit we
have;

(1.10) &2 is a sheaf of %#-modules.

Theorem 1.2. (B. Walsh). £ is a fine sheaf.

The proof is given in Proposition 1.6.

In the following we shall give other resolutions of ¢ which will
simplify the calculus of cohomology groups of 0.

Lemma 1.3. Let U be a small set and V, W be open subsets
of U such that WcV. For any se€&y, there are p,qe P} such
that q=s+p on W and pelOy.

Lemma 1.4. Let U,V be as in the above. If se€&, has as its
carrier a compact subset of V, that is, if se€eS, is O-harmonic
out of some compact set in 0, there is a unique pe P} whose carrier
is the same as that of s such that p—se0,.

Proof of Lemma 1.3. The case when Uc X is proved in Theorem
13.1 of [6]. First we suppose that s=0. Let D,(i=1,2) be an open
set such that VoD ,oD,oD,oD,oW. Let s<M on 0D, and s<m
on 4D,, and, for any ¢>0, let a continuous function f on oD, U dD,
be defined as f=M+¢ on 0D,, =m—¢ on 0D;. There are p,, p, €2}
such that |—f+(p,—p,)<e on éD,UdD,. (For example, see Proposi-
tion 1.7 in [7]). Moreover p;(i=1,2) is chosen so that p;e0y.
Then the function

s+p, on D,
q=¢ inf(s+p,, py) on D;\D,
py on U\D,

belongs to 2}, and g=s+p, on W. In general we proceed as follows;
(i) If there is an @-regular set D such that WcDcDcV and such
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that infs=m>0, then we have s2mHP?120 on D\a from the minimum
princi‘;ﬁe. Applying the above to the functions u=s—mH”1 e &} and
v=mHP”1 e %}, we have the desired result. (ii) If for any regular set
D such that WeDcDcV it holds infs<0, choose such a D and let
m=infs. By the minimum principlewt:s—rne.sf’;‘,, so we may apply
the gll))ove to t and —me &3, and have our result.

The proof of Lemma 1.4 is carried in the same manner as in
Theorem 13.2 of [6] by virtue of Lemma [.3 and the results of
(7, §3].

Let 9,=%}—9% for any Usa. For UcX, since 95=2ny
={0}, we set ¥,={0}. Let Sy=SF—SF}, UcY. Obviously £,=2,
for UcX. As is easily verified (S, pl)) and (¢, pl) are presheaves,
hence fy=l,i_£’1’(fu, pY) and %=Li_;ri(gu, pl) are subsheaves of 2.

From Lemma 1.1 we have the following commutative diagrams of

presheaves:
Py -8 5 g, Py, L 5y
8| o8| & 8|
P, -8 .9, Py, 55,

where CUp=p—BUp for pe#,. Passing to the inductive limits there
exist sheaf homomorphisms b: 2—-% and c: 2-.# such that the

diagrams
?U —L) gu ‘@U C_U) JU
l’ul Pvl and Pul Pul
P b,z P —C 5 F
commute.

Proposition 1.5. (i) ¢%,={0} and S#,=2, for any xeX.

(i) 0 —9 =P -<>F—0 is a split exact sequence.
b

(iii) For any small set Usa, I'(U, ¥)x>9%,.

Proof. (i) is obvious. (ii) follows from the fact that £, is the
direct sum of &, and #y. As for (iii), since %, ;> I'(U,¥9) is
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injective, we shall prove it is surjective. For any Mel(U, ) there
is a neighborhood w of a, wcU, such that M|w=p,p for a pe¥,.
If we note that the carrier of p is the point a, Lemma 1.3 yields the
existence of a ue¥%, such that u—pe?d,. pyu=p,pu=p,p=M
on w. On the other hand pyu=0=M on U-w, so pyju=M on U,
this proves that p, is surjective, hence is a linear isomorphism.

We shall show that the sheaves £,.#,%, are fine. As we have
mentioned in (1.10), & is a sheaf of %-modules by the multiplication
BxPe(f, pp—»fopaP, where the sheaf homomorphism fo: 22
is defined by

'?Uf—°>yu

o o

2 L s,

From Lemma I.1 it can be verified easily that foMe.s, (resp.¥,)
whenever Mes, (resp. 9,), so # and ¢ are also sheaves of 4£-
modules. The sheaf homomorphism fo is a zero-map on the stalk
2, for yeY-—Supp[f]. because fopeOy_g,,,;;; for any peo,
and any small set V. Let (U)%, be a locally finite cover of Y and
{@}i=, be a family of bounded measurable functions on Y such that
@;=0 on an open neighborhood of Y-U, Y@, is a well defined
bounded measurable function on Y, and for any Me2, yeY, we have
(X @)eM =p}((X@;)op), where V is a small neighborhood of y which
meets only finitely many U; and M =p}p. Since the support of the
kernel KPPV is contained in V and BYp#0 only if aeV, we have

(£0)ep=KAL0)+(L0)@B'p= LK*oi+ L o(@B'p=3 ¢:op, for

large n. Hence (X¢)oM=py((X9)p)=2 pi(orp)=2 @M. But,
if Supp[p]n V=0 then ¢oM=0 from the above remark, so the
last expression of the above equality becomes f (@;oM);

i=1

(Zp)eM =3 (¢ M).

The same relations are valid for the sheaves # and @. By the
argument we have done hitherto, we get the following:
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Proposition 1.6. 2, # and ¥ are fine sheaves.

Now we shall proceed to resolutions of the sheaf O other than
(1.7). Let Fy=0y+%, and X y=0,+F, for any open set U.
These are seen to be direct sums. We have commutative diagrams:

Fy—v g, Ay —tv s g,
1 pzj 1 nzl
fy —L) gy ) fV _4_ij .

For example, rft"y, <o, is verified as follows:

Let fex', be written as f=h,+p,, h €0y, p,efy. If we write
ripi € Ry as r4p,=h,+p,, h, €0y, p, € Py, we have riif=rth, +h,+p,,
p2=ptp;. But BYp,=pl(BUp,)=0 (from Lemma 1.1) implies p,ef,,
thus rffex#,. From htis observation, if we proceed to the inductive
limits of presheaves (&, rf)) and (¢ y, r}), we get the following sheaf
exact sequences:

(1.11) 0—mO0—F —%—0,
and
(1.12) 00— 00— N — 5 —0,

where £, =;l7i5 (Fu, rh), f’=% (Xy, r}). It is obvious that F, =
#H.=0,, and A ,=R,, for any xe X.

Now if we consider the homomorphism of presheaves CUVody:
Ry— Fy, we find that the kernel is the direct sum of kerdy=0y
and {j,f; feKerCU}=%,, hence kerClUedy,=%,. CVody induces the
sheaf homomorphism ced: Z-.5;

0— Fy— Ry £, 5, — 0

(1.13) l ’ul pul

0—F — R —Fq—>F —0.

The last sequence is exact. Similarly we have the exact sequence;

(1.14) 00— o —> R 224, 9 — 0.
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Proposition 1.7. I'(U, #)=%, for a small set U.

This follows from I'(U, ¥)=%, for small U.
Proposition 1.8. I',(U, #)=0,
r(u,2)=r, ).

Proof. We may assume U3a. Let Mel (U, #). M=p,(p—q)
for some p,qesf}t, aewcU. M=0 on w\a implies h=p—qe0,_,.
From [7], [12] we have p=p—Bp=inf{ue 2}; u=p+s on w\a for
some s€¥,_,}. Since q satisfies the condition in the bracket, p<gq.

Similarly ¢<p, hence h=0 and M=0. I'(U, #)=0 is proved. From
Proposition 1.5 we have

0— IV, 9)—rU,2)— r (U, s)— 0.
Therefore I'(U, 2)=I'(U, ¢)=I'(U, %).

§2. Minimal harmonic sheaf

We shall show that the collection of harmonic sheaves ¢ on Y
contains a minimal one, which can be constructed from J#.

For any open neighborhood V of a and feC(dV), let Hf(x)=
inf {s(x); s is a superharmonic function on V\a such that

liminfs(y)=f(¢) on oV,
Vay=¢
and

liminfs(y)=0

Vay—a
v:

HYf is a harmonic function on V\a, and HYf=—HY(—f) for any
feC(0V). Following P. Loeb [10] we see that, for any outer regular
compact subset K of X,

Vlaiyrgéﬁyf(y)=f (¢) on oV,
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where V=Y\K, and that ¥"={Y—K; K is an outer regular compact
subset of X} forms a fundamental system of neighborhoods of a.
For any open set Vaa, we set

0,={hes#,_,: there is an we¥", @<V, such that

h=H*[hldw] on w-—a},

and

011:' umw_y.

Vaa

We define a harmonic sheaf @ on Y be letting @,=0, if y=a,
and 5y=.}fy if yeX. The quantities corresponding to @ are indicat-
ed by the line over the letters (H®f, ¢, Z, P, X, £, etc.);

are exact. We shall list some elementary properties:

0— 00— R — P — 0, etc.

(2.1) Let U be an open neighborhood of a. Then every non-negative

superharmonic function on U\a is O-superharmonic on U.

(2.2) Every Uey is an O-regular set for any harmonic sheaf 0O
on Y. ([8], [18])

(2.3) Let 0 be a harmonic sheaf on Y. We have H°f2H“f on
w\a for any we¥ and feC(ow), 0.

(2.4) Every non-negative O-superharmonic function on G is O-super
harmonic on G. This follows from (2.3).

(2.5) Every O-potential on G is an O-potential on G. For, let
K be a compact subset of G, then we have

inf{se #,(V); sZzp on V-K}<
inf{se&#,(V); s=zp on V—-K},

from (2.4). If p is an O-potential the last quantity tends to O as
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K runs through all compact subsets of ¥, hence p is also an O-
potential.

Here we shall introduce an order between the harmonic sheaves
on Y and show that @ is the minimal sheaf. For any two harmonic
sheaves @, and 0@, we denote 0,>0, if; for every we¥" and every
feC(0w), =0, we have H!*f>HZ%<°f on w\a. Here H"?, i=1, 2,
have the same meaning as in section 1 for @, and it is well defined
by virtue of (2.2). This relation defines an order on harmonic sheaves
and @ is a minimal one.

The harmonic space (X, ) is said to be hyperbolic if, for some
(any) wev”, the lower envelope H(s, w) of functions in {ue%,_,:
liminfu(x)=0 on Jw and liminf u(x)=1} is not zero, and parabolic

o\ a3x—>¢ o\ asx—a

if H(a, w)=0 for some (any) we¥ .
Proposition 2.1. The following conditions are equivalent.
(i) (X, #) is parabolic.
(i) Hel=1 for any wev¥ .
(iii) 23=(0)
(iv) ledy
(v) 2¢=(0).

Proof. The equivalence of conditions (i), (ii) and (iii) is found
in [10]. Conditions (ii), (iv) and (v) are obviously equivalent.

Proposition 2.2. If (X, s#) is hyperbolic, then; (i) the O-super-
harmonic functions on Y coincide with the non-negative superhamonic
functions on X and they are O-potentials on Y, (ii) £t=2%, 93=o¢%,
(iii) we have JLn;aiPIaﬁ”’l(x)=0 for any regular neighborhood w of a.

Proof. (i) and (ii) are verified easily (Thm. 11. of [7]). To prove
(iii) let o= liminf H®I(x). «=0 is obvious. Suppose a>0. Since X

wnXsx—a
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is small there is a pe 2% such that p=H®l on w'nX for some
aewc @' cw (Lemma 1.3), and such that pg-‘,’;— on o'nX. p—%

being a superharmonic function on X,pgi“— follows from the mini-

2
mum principle. We have seen pe.si, -%e?‘; and p>%, that is
p—%esf’};?;, hence % must be zero. This is a contradiction and

we have o=0.

Theorem 2.3. If (X, ) is parabolic then O is the unique har-
monic sheaf on Y.

Proof. Let @ be a harmonic sheaf on Y. From (2.3) we have
1>H*1>H*1=1, so 1e®,. Let feC,(dw) and u=H°f—H®f. ue
H-, and 0Su<MH®l—mH®l=M—m, where M=supf and m=inff.
By the definition we have —u=(m—M)H(s, w), but the latter is equal
to zero since (X, &) is parabolic. Hence u=0 and H¢f=H"f. This
shows 0=0.

§3. Cohomology groups of harmonic sheaves

In this section we shall calculate various cohomology groups of
the sheaf 0, for example, H%(w, 0) for a small set w, HI(X, 5#) and
H4(Y, 0). The vanishing of the cohomology H'(Y, #) is fundamental.

As we have seen in section 1, @ has the fine resolution 0—-0—-2
4,250, so we have Hi(Y, 0)=0 for g2, and H}(Y, @):%
where @ is any support family.

Theorem 3.1. If 1¢0y then H'(Y, 0)=0 and 0y={0}.

Proof. The facts that 0y=0 and Y is small are easily proved.
Take MeI(Y, ?). For each xeY there are domains U,, V, with xe
V.cU, such that M|V,=p, (p,) on V, for some p,e?,. We
can choose a finite set x,,...,x, and corresponding V,=V,, U;=U,,
with the above properties such that Y=‘\jj V.. Moreover we may

i=1
assume aeV, and a¢V,1=5is<n—1. Let s, t,€2$, be such that
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si—i=pbipy); MVi=p,y(s;—t). Now let {p;} be a partition of
unity (for the sheaf ) subordinate to {V;}. We have @, M =py (@;s;—
@pt;) on V. Since Y is small and the carrier of ¢os; is a compact
subset of V,, there is a p,e 2} with the same carrier such that p,—
@8, €0y, (Lemma 1.4). Similarly there is a q;€ 2} such that the car-
rier is compact in V; and such that q,—¢et,€e0,,. Hence @M=
pv. (PY'Pi—pPYia) = py(pi—q;) on V. Evidently ¢,oM=0=py(p;—q,)
out of V, and so ¢@poM=py(p;—q;). Let f=§:l(pi—q,-). fe?y and

pyf=3 @M =M, that is, df=M if f and jy,feI(Y, ) are identified.
i=1

This proves H!(Y, 0)=0.
Given a sheaf & on Y. For any open two cover {U, V}, UU V=

Y, we have the following exact sequence:
@3.1) 0 — oy 2 AyxLy L oy y —s HI(Y, ),
where of=(f|U, f|V), fe oy, and

Blg, H=glUnV=hlUnV, (g, h)esyxLy.

This is Mayer-Vietoris theorem. If (3.1) is applied to @ with 1¢0y,
the exact sequence

00— 0y 25 O0yx0yp L 0y.y — 0

follows. But in case |€0,, ¢,,, does not coincide with the image
of f. M. Nakai and B. Walsh introduced the concept of flux functionals
to characterize the image of f when |e@,. Here we summarize it.

Theorem 3.8 of [18] states that, for any open cover {U,V} of Y
such that V3a and UcX, there corresponds a linear functional
YWY (called the flux functional) on Oy., such that:

(1) se0y.y is in the image of B iff YW.V)[s]=0.

) If {U',V'} is another open cover of Y such that U cU, V'cV,
then YW"YI[s|U' n V'] =PYWUY[s] for seOyny.

() If seOy,y is a restriction of an O-superharmonic function p
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on U (resp. V) then YU:V)O[s]=0 (resp. Y-V [s]<0), equality hold-
ing iff p is O-harmonic in U (resp.in V).

Lemma 3.2. Suppose 1€0, and let {U, V} be an open cover of
Y such that either U or V is contained in X and V is small. For
any yeV\U and hes#y., we can find peP}, feO, and geOy,
with the properties;

(i) h=¥OV[h] p+f—g on UnV,

(ii) the carrier of p is the point {y} and PYW-V[plUnV.]=1.

Proof. Take a ge 2} with the carrier {y}. Property (3) of flux
functionals implies PV:")[qlUnV]>0 or <O according to V=X or
Vaa. Let p=(YWUV[qlUnV]) ' q (resp. —(PPUV[q|UnV])!-q), and
set u=h—¥YUV[h]-(plUNnV). The flux WYUWY[u] being 0, u is of
the form u=f—g for fe®, and ge®,. Lemma is proved.

Before we proceed to the cohomology H'!(Y, ®) we shall inves-
tigate some fundamental properties enjoyed by the sheaf &#: # depends
only on the initial harmonic space (X, s#) and H%(Y, #)=0 for g=1.

Proposition 3.3. (i) I'(U, #)=s#\, for any open set U, con-
sequently F ,=lims#,_, for any yeY and % does not depend on
Usy

the choice of 0.
(i) Hy(Y, #)=0
(iii) HY(Y, #£)=0 for q=2 and any support family .

Proof. By virtue of the fine resolution (1.18) of & we have
r,(y,s)

q — > 1 =__—a - J

HY(Y, #)=0 for any @ and ¢=2, and we have H!(Y, &) (coda)l“,,(Y, @)

From Proposition 1.8 H!(Y, #) vanishes. By the same reason H}(U,

F)=0 for any open set U. Hence we have the exact sequence;

0=r (U, F) — I(U, F) —> [(U—a, F) — 0.

Therefore I'(U, F)=I'(U—a, F) =5y,
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Theorem 34. H!(Y, #)=0

Proof. By the above proposition we have the exact sequence;
0-0->F ->%—-0. If (X,s#) is hyperbolic we have H'(Y, 6)=0
from Theorem 3.1. Hence the exactness of 0=H!(Y, &) >H(Y, #)-
H(Y,9)=0 yields H'(Y, #)=0. Next suppose that (X, ) is
parabolic. In this case O is the unique harmonic sheaf on Y. We
rey,s)

(cd)T (Y, 2)
ends of this proof, we shall omit the upper lines of the letters which

shall prove H!(Y, )= 0. (In the following, to the
indicate the quantities related to the minimal harmonic sheaf @.)
Take a MeI(Y, #). As in Theorem 3.1. we can choose a finite cover
{U}i=y of Y and q,esf,, for each i such that aeU, a¢ U, (1<
isn—1) and M|U;=py,q;. Let {V}]-, be an open cover of Y such
that V;cU, i=I,...,n and no proper subfamily covers Y. Let {p;}",
be a partition of unity for the sheaf # subordinate to V;, which was
explained in section 1. We have ¢oM=p,(¢peq) on U; Take a
yieV,— \:V, for each i=l,..,n—1, and y,=a. Lemma 3.2 applied
to ¢ioqi|JU:\ Vie#y v, yields the existence of w;e 2, with carr.(w)=
{yi}, hieOy, and u;eOy_y, such that ¢@pq;,=aw;+h;—u; on U;,—V,
where o; =YV Y"Vd[¢,0q,|U;— V;]. In particular w,e%, . Let

@ieq;—ow;— h; on U,

—u; on Y-V

Then fiel'(Y, #) for each i. It is easy to verify that (cod)f;=df,=
pu(@req;—a;w) on V,, =0 on Y-V, for each i=1,...,n—1, and that
(ced)f,=pu,(@ueq,) Oon V,, =0 on Y—V,. If we set N=M— Z (cod)f; €
I'(Y, #) we have N, = Z((p,oM (cod) f)), =p¥ (a;w;) for er,,z—l

n—1, and N|V,=0. Take a small set Wc X containing .U V.. Lem-
ma 1.4 yields, for each i=1,...,n—1, the existence of a v, e.@w such

n—l
that the carrier of v; is {y,.} and v;—w;€0y,. Since Y ow; is har-
i=1

-1

monic on WnV,, again applying Lemma 3.2, we have "2 v, =p+g—h
i=1

on WnV, for some pe¥y, ge®,, and heOy. Let
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n—1

> o+ h on W
f=1 =

p+g on V,

n—1
It follows that feI'(Y, #) and (cod)f=pH( X o) on W, =0 on V,.
i=1
On the other hand, by the choice of w;,i=1,.,n—1, we have
n—1 n—1
pw( X o) =ph (aw;) if yeV,1<isn—1, and =0 if yeW\U V,
j=1

Thus we have shown (ced)f=N on Y. Therefore M =(cod)(f+ Z”: fie
i=1
(cod)I'(Y, ).

Theorem 3.5. HY(U, #)=0 for any open set U, in particular
HY(X, s#)=0.

This follows from Excision Theorem;
0=HY\(Y, ¥#)— H'(U, F)— H}_y(Y, F)=0

If we take U=X we have H!(X, #)=0.

HY(X, s#)=0 was proved by B. Walsh [19] under an additional
hypothesis; X possesses an exhaustion by small relatively compact
open sets {U;}2, such that U;cU;,, and every element of I'(U,,,
#) can be uniformly approximated on U by restrictions of functions
in I'(U;;,, o) to U;,,. The argument there was the classical one
due to Mittag-Leffler [4].

Theorem 3.6. H'(w, 0)=0 for any small set w.

Proof. Since #|X=0|X=s, we have H'(w, 0)=0 for any
open set w=X. Now suppose that w is a small neighborhood of a.
From Proposition 1.5 (iii) we have I'(w, ¥)~¥%9,. Let Mel(w, 9)
and let pe%, be such that p,p=M. Then f=r,pel(w, #) and df=
M. This shows the exactness of I'(w, #)-4T'(w,%)—0. On the
other hand we know that the exactness of the following sequence
holds:

INw, )-»Iw,%)->H (0, 0)>H' (0, #)=0, which follows from
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(1.11) and the above Theorem. Hence H'(w, 0)=0.

In the following we shall show H!(Y, ®)=R' when the constant
1 is 0-harmonic on Y. Let MeTl(Y,¥) and let {U, o} be a cover-
ing of Y with w small and Uc=X. There is a pe%, such that p,p=
M|w. We shall define Y(M)=¥U-9[p|Unw]. This is well defined,
that is, does not depend on the choice of (U,w) and pe¥%,. For,
let {U’, o'} be another pair such that aew’'cw and U’'cU, then
M|w' =p, p' with p'=p%'pe¥,. We have p—p'el, and, from the
above property (3) of flux functionals, Y U)[p'lw nU']=¥«U)[p|
o' N U+ P U[(p —p)lo' nU]=P@ V) [plw’' nU’]. This equals to
Y@.U[plon U] from the property (2).

Lemma 3.7. Let MeI(Y,¥%). There is a tel(Y, #) such that
dt=M iff ¥Y(M)=0.

Proof. Suppose M =dt with tel'(Y, #). Take a small neighbor-
hood @w of a. From Proposition 1.7, I'(w, F)=%,, so r¢t has the
decomposition r§t=h+p with he®, and pe¥, Since Mlw=
dr¢t=p(d, r¢t)=p,p, we have VY(M)=¥@U[p] with a cover {U, w}
of Y, UcX. On the other hand from the property (3) of the flux
functional it follows that Y@ U[tjwn Ul=¥©V[hlwn U]=0. Hence
Y(M)=Y@U[p]=P@U[]—P@U[h]=0. Conversely let Mel(Y, %)
be such that P(M)=0. For a small open set w>3a, let pe%,
be such that M|w=p,p. Then ¥©.U[plwn U]=¥Y(M)=0, and the
above property (1) yields p=f—-g on wnU for some fed, and
geby. Let

p—f on o
1=
—g on U.

Then teI'(Y, #) and dr¢t=dr$(p—f)=p,p=M on w. Obviously dt=
0=M on U, so dt=M on Y.

Lemma 3.8. There is an MyeI'(Y, %) with ¥(My)>0.
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Proof. As was noted in section | there is a non-zero function pe
@¢ for any small set Vaa. Let Myel(Y,%) be defined as —p,p
on V and 0 on Y-V. We have ¥(My)>0 from the property (3)
of flux functionals.

Theorem 3.9. If €0y, then Oy ~R' and H'(Y, O)=R!

ry, )
dar(y, #)

Lemmas 3.7 and 3.8 yield I'(Y, 9)2{Mel(Y, 9); ¥(M)=0} =dI(Y, %).

Proof. H!(Y, 0)x follows from (1.11) and H!(Y, #)=0.

Hence H!(Y, 0);{%MO}QRI. Oy=R' is easily proved.
0

Theorem 3.10. H!(Y, 0O)=I(Y, 9).

Proof. From the exactness of 0=I(Y, #)—- (Y, 9)>H.(Y, 0)—
HL(Y, #)=0, we have the assertion because I'(Y, ¥)=I(Y, %).

§4. Duality of harmonic sheaves

In this section we shall introduce the adjoint harmonic sheaf @*
of 0, and shall investigate some fundamental duality relation between
0 and 0*. In particular it can be shown that the space of germs
of @-harmonic functions at infinity (equipped with an inductive topolo-
gy) has as its dual the space of adjoint harmonic functions on X,
whenever (X, o) is hyperbolic. This is a generalization of a classical
result obtained by H. G. Tillmann [17] and A. Grothendieck [3]. First
we shall explain some additional hypotheses and their consequences.

(4.1) For any small set U every potential of £f with the one-
point carrier is proportional to each other; if p, geSfEn0Oy_y,, yeU,
then there is a constant c¢=c(y) such that p=c(y)q.

Note that the above y is necessarily in U\a, for any potential
with one-point carrier {a} belongs to %,.

Under assumption (4.1) there exist kernel functions on small sets.
More precisely, if V is a small set, one can find, for each yeV\a,
a potential p()e#f in such a way that p, has carrier {y} and that
the function (x, y)—=p,(x) on (V\a)x(V\a) is a lower semicontinuous
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function, continuous off the diagonal [6, Prop. 18.1] [7, Prop. 5.8].
From Theorem 5.9 of [7] every pe.#, has a unique integral represen-
tation:

0 ={poun  on Na,

by a Radon measure p on V\a supported by the carrier of p.

After B. Walsh we patch together local potentials to give a system
(on Y) of normalized kernels.

(4.2) (B. Walsh [19] Thm. 1.6.) Let {V};,; be a cover of Y by
small regions. There exists a corresponding set of kernel functions
{pi()}ier such that for each ordered pair (i, j) of indices with V,nV;
#¢ and each region UcV,nV;, the relation p{l,p§=p91p;' in 2y
holds for all yeU\a, and this quantity gives a kernel function on
U.

(4.3) ([19], Prop. 1.8.) For any small set V there is a unique
kernel function p-) on V such that for every yeV\a and every i€l
with yeV, there exists a neighborhood U of y in VnV, on which
Py Py=pV, P}

Though B. Walsh stated the aboves for small sets contained in
X, we can verify them in the above form by virtue of some results
from [7]. The pair ({V;}, {pi}) is called a normalization for ¢ and
the above p, on V is called a normalized kernel (with respect to
the given normalization).

Adjoint sheaf of O

The adjoint sheaf of ¢ is introduced in the same manner as it
was done by R. M. Hervé and B. Walsh for the case of Brelot’s harmo-
nic sheaf s. Though we must modify them to introduce the germ at
infinity of the adjoint sheaf, but it is easy and here we shall not give
proofs.

Definition. A subdomain G of a small set V is called a c.d.
«complétement déterminant> set if VRV Cp=p for every potential
p on V which is harmonic on G. Here VRA4s, the reduced function
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of nonnegative @-superharmonic function s on AcV, is defined as

inf{t; t is a non-negative @-superharmonic function on ¥V such
that t=s on A}.

We shall, henceforth, for the rest of this paper, make the follow-
ing hypothesis.

(4.4) There is a basis for the topology on Y composed of c.d.
sets.

Let V be a small set, and w a relatively compact open subset of
V. Let p, be a kernel function on V. Since YRY"®p es} and is
0-harmonic off dw for any yeV\a, there is a unique measure *H%(dz)
20 on dw which represent YRV~ “p :

VRV ®p,= SP:;(‘)*H ®dz) on V-a.

The adjoint presheaf YO (formed on V by using p,) is defined
as follows;

(Y0*), ={fe C(U\a):; f(y)=S f(2)*Ho(dz) for every c.d. set

wcwowcU and every yew}.

Yo* is seen to be a complete presheaf on V. VYO@*-regular sets
are defined as in section 1 and the Y@*-regular sets coincide with the
c.d. sets in V, hence forms a basis for the topology on V. Harnack’s
principle for *@¥ also holds. The proofs are carried in the same
way as [6]. If Y0*, UcV, is the adjoint sheaf formed on U by q,()
=pYp,, we have Y0*|U=V0*. This is proved with the aid of the
following property of reduced functions [19, Prop. 1.14 and Lemma
1.15].

(4.5) Let U be a small set and V, W open subsets of U with
WceWcV. Let s be a potential on V with the carrier a compact
subset of W. Then (VRVU=Ws)|V=VRV-¥(s|V).

(4.6) [19, Thm. 1.16] If ({Vi}ier, {P}}ier) is a normalization of
0 on Y, then '0¥|V,nV;=I0*V,nV; for any indices i and j. Here
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i0* denotes the adjoint sheaf on V; formed by pi.

We define the global adjoint sheaf 0* of @ by the following;
for any open set GV, fe C(G\a) belongs to 0¥ iff fIV;nGe(0*)y, ¢
for each index i with V,nG#¢

Let V be a small domain and p, be the normalized kernel on V
given in (4.3). Then the adjoint sheaf induced on V by p, is precisely
o*|Vv, [19, Prop. 1.18]. If we set #*=0*X, then (X, #*)? satisfies
Brelot’s axioms 1,2,3, and ©@* satisfies our hypothesis (1.1)~(1.3).
Moreover, by taking an appropriate normalization, we may assume that
les#%* and the hypothesis (1.4) are satisfied. (X, ##*) is hyperbolic
iff (X, o) is so.

Now we shall establish a duality between O@x=lim @, and Oy x
for any small set V and its compact subset K. ek

Let Oyxef. f is O-harmonic on a neighborhood UcV of K.
Take open sets w,, w, such that Kcw,cw,cU, each w; is relatively
compact in the following. Since £ is a fine sheaf there is a ¢e€
I'(V, #) which equals to 1 on w, and 0 on V\w,. Let t=f¢ on
U, =0 on V-U, then tel'(V,#). There is a pe, with dt=p,p.
Since dt=0 on w,, pes£, follows if K>3a, and if K3$a we may
suppose V$a, so p is also in S, in this case. p has the integral
representation

p= Spyu(dy)

be a measure u supported by @,\w,, for p is @-harmonic on (V\@,) U w,.
By the way, t—ped@®, follows from the definitions of ¢ and p. But
the facts that t=0 near 0V and pes, yield t—p=0 (Minimum
principle), consequently, f=p on w;,.

Lemma 4.1. f=0 in Oy iff the corresponding measure u satisfies
u*HS=03% for some open set GecG<=V\K with SuppucG.

2) (X, #*) is nothing but the Hervé’s adjoint sheaf of (X, 5#) [6], so it is determined
from 5 and independent from 0.

3) #*Ha(f)=S/-'(dJ)*H”f(J) for any f€C(3G).
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Proof. Since f=p on w,, f=0 in Oy implies p=0 on a neigh-
borhood of K. Take G so as to satisfy SuppucGeGcV\K and
p=0 out of G. Let p=p,—p_,p;sefy. Then p,=p_ on V\G, so
VRY=¢p,=YRV"C%p_. Hence

{2 pytgan = RV =Gp, ) = VRV,

=R = p. )y 1),

From the uniqueness of represention of potentials in £F, we have
U ¥*HG=p_*HS, that is, p*H%=0. Conversely, from u*H¢=0 follows
VRV=6p, =YRVGp_, so p,=p_ on V\G. Thus p=0 on a neigh-
borhood of K and f=0 in 0.

We define a bilinear form of he @ and h*e0f_x by

Z(h, h*)= Sh*d,u ,

where u is the above measure corresponding to /. This expression
is in fact independent of the choice of p and depends only on I and
h*. For, if p' is another measure which also corresponds to h, then
the Radon measure p—p' represents the zero elements of ¢ and by
the above lemma there is a G=G<V\K such that Supp(u—p)<=G
and (u—p)*HS¢=0. Since h*=H*Gh* on G we have Sh*d(u—p')=0.
Since p()e0,_,, for yeV\K it defines a k,=rf(p,) € Ox.*

Lemma 4.2. (i) The map y—k, from V\K to Oy is continuous,
where Oy, for any open U, is equipped with the topology of uniform
convergence on compact subset of U, and Oy is given the inductive
limit topology Ok= lim 0.

(ii) Let w be ZD:'(. d. set, ocV—K, and yew\a. Take a finite
partition n=(3;)"-, of Odw, 0w=jK"=Jl(5j, and choose a point y; from

each 6;. The sum

sr= ;k”(')gaj*H‘y"(dz)

4) 18 I'(V, #)—s I'(K, ).
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converges to k, in Og as m becomes finer.

Proof. (i) Let y,—y, in V\K. Take an open neighborhood
of K such that @®@%{y, yo}. Then p, converges to p,, uniformly
on any compact subset of w [7, Prop. 6.10]. Hence k, —k, in 0.
(i) Let G be a neighborhood of K with Gnw=¢. Ite0;

and x—+sz(x)*H‘;(dz)e(DG. The Riemann sum [{(x) converges to
gpz(x)*H’;(dz)=py(x) for each xe G, so uniformly on compacta of G

(consequence of Harnack’s prinicple). Thus I5—k, in 0.

Lemma 4.3. Let w,w be open sets such that Kcow cw co.
Then the closed linear hull of
H={y—’ py(x)lyew—(T)’; xew’\a}

in O%_y contains the restriction O%_g|o-o -

Proof. It is enough to show that, for any measure v on U=

w—a' with compact support, the relation Spy(x)v(dy)=0 for any
xew'\a implies the relation Sh*(y)v(dy):O for any h*0f.x. But
r’,ﬁ(Spy(x)v(dy)) defines an element of @ which equals to zero from

assumption, hence #(h, h*)=3h*dv=0.

Lemma 44. Let h*e0f_x. h*=r}"Xf* for some f*eO} iff
Z(h, h*)=0 for any he0y.

Proof. #(h, h*) was defined as Sh*du by the measure representing

p=Spyu(dy)eJ v such that p=h on a neighborhood of K. Moreover
as we have seen at that paragraph p=0 near dV. This yields, as in
the proof of Lemma 4.1, u*HG=0 for an open set GcoV. Now let
h*e 0F_x be such that h*=r} Kf* f*e0y. Then «(h, h*)=Sf*du=

S*HGf*du=Sf*du*HG=O. Conversely suppose that #(h, h*)=0 for
any he0®g. Choose a c.d. set U such that KcUcUcV and ye



582 Tosiaki Kori

U\K. Let pu=e¢,—*HY. Since r,’$(Spy(~)u(dy))e(9K, it follows from

the assumption Sh*dﬂ=0, that is h*(y)=*HYh*(fi). Let f*=h* on
V\K, and =*HYh*(-) on U. Then f* is a well defined element of
0F, and h* =y} Kf*,

Theorem 4.5. (i) For every continuous linear form F on Ok
equipped with the inductive topology, there is an h}e0f_g such
that F(h)y=«(h, h¥) for any he 0.

(ii) Each linear form h—#(h, h*) induced by an element h*e O%_g
on Ok is continuous.

(iii) The dual of Ok is isomorphic to OF_x[OF by the pairing
induced by #(,").

Proof. () For yeV\K, let h¥(y)=F(k,). From Lemma 4.2 (i)
h% is continuous on V\K. From Lemma 4.2 (ii) F(I}) converges to
h¥ as n becomes finer, where I% is the same as Lemma 4.2 for a c.d.
set ocwcV\K and yew\a. The sum F(I5)=3hf(y;)*H{(d;) con-

verges to gh’;(z)*H‘y"(dz). Hence h¥(y)=*H*h¥(y), and hfeOp k.

Let he® and let p be the corresponding measure; h=r',$<gpyu(dy)>,
Supp.p is compact in V\K. Take a partition n=(d;) of the support
u; .\"_Jéj=Supp.u, and from each 0; take a y;jed;. As in Lemma
4.2 l(_111) it can be proved that the sum ;pyj(-),u(éj) converges to

Spy(-)u(dy) in Ogas nl0. Therefore > A¥(y;)u(d;) converges to F(h).
On the other hand X A¥(y;)u(d;) obviously converges to Shﬁ(y)u(dy),
so we have F(h)=gh§du=/(h, h%).

(ii) We shall prove that h—#(h, h*) is a continuous linear form
on 0, for any open set U containing K. Let w be an open neighbor-
hood of K with @<cU. By Lemma4.3 we can find a sequence of
functions on U—® of the form y— _”Z:klaj,‘p,(xj,,) (k=1,2,...) where
{x;}cw\a, that converges uniformly 01; compacta in U—@® to h*
as k—oo. We may suppose rfhe@y has the representation hjw=
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(S pyu(d y))\ —»w with suppucU—®. Therefore Z",(l aph(x;) converges
=

to Sh*(y)u(dy)=/(h, h*) as k—oo. Since h— gn a;h(x ;) is a continuous
linear form on @, for each k, Banach-SteiJnhaus theorm yields the
continuity of h—-#(h, h*) on 0y. Thus Z(h, h*)|.,.,€(0y) for each
open neighborhood U of K, which proves (ii).

(iii) follows from Lemma 4.4.
Corollary 4.6. (Ox)' =HL(V, 0¥)=Hy(Y, 0%)

Proof. If we consider the Cech two cover {V, V\K} of V. we
have HY(V, 0*)=0%_¢/0} by Leray’s theorem and the fact H(V, 60*)=
0. The latter follows from a version of Theorem 3.6 for the adjoint
sheaf. HL(V, 0*)=HL(Y, 0*) comes from excision theorem.

Corollary 4.7. (0,) =HI(Y,0*)=T(Y, 9*).
Corollary 4.8. If xe X is polar we have dim(0,) =1.

Proof. We have (0,)~H(V, 0*)=I [V, 2*), where V is a small
neighborhood of x. If xeX is polar then every ajoint potential on
V with the one-point carrier {x} is proportional to each other, so dim
(0 =1.

Let H!(X, 5#£)) be the cohomology group of s# with compact

supports. We have HI(X, ”’):7.151%' (Note 2|X, 2|X and d|X

are determined from s# only.) In the following we shall investigate
the exact sequences that are in duality;

@47 0—0y‘1s50,-25 HY(X, #)-Ls H(Y,0) — 0
0 — HU(Y, 0*%) & HI(Y, 0*%) &£ #% L 0% «— 0,
I
r, g%

where ¢ is a harmonic sheaf on Y. First we define the map ¢ as
follows. Let he@, Let h be @-harmonic on a neighborhood U
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of a. Take open sets w,;, w, such that aew, cw,cU, each w; is re-
latively compact in the following. Then there is a telI'(Y, #) which
equals to h on w,; and to 0 on Y—w,. We have dt|Xel (X, #)
and if we take another ¢ in the same manner as the above we have
t—t'el (X, #), hence dt is uniquely determined from h up to dI'(X,
R). Thus eh=[di]e H/(X, s#) is well defined. If h=r¢g with a ge
Oy then t—gelJ (X, %) and dt=d(t—g). so ¢@h=0. Conversely if
heo, satisfies @h=0, there is a ('€l (X, #) such that dt=dt’. Let
g=t—t'. Then ge®, and g=t=h near a, that is, h=r¢$g. We have
proved the exactness of 0-0,—0,-2H!(X, ).

If 1¢0y then 0,=H!Y(Y,0)=0 and Y is small. Let Me
I'(X, #). We can think Me(Y, #) by letting it equal to 0 at a.
M =pyp for some pePy. Obviously peOy_g,,,;m; and h=riped,.
oh=[M] in H}X, #) is verified from the definition. This proves that
¢ is a surjection and the exactness of the upper line of (4.7) follows.

For the case | €@y, we shall define the flux of an Mel (X, 2)
and shall define the map ¢: HI(X, #)-H'(Y, O)=R"'.

Let V=X be a small set containing the support of M and w be
a neighborhood of a with wU V=Y, wnSupp(M)=¢. Let p,p with
pe?,. plonVesH#,., and by virtue of Properties (2) and (3) of
flux functionals YY" [plon V] is independent from the choice of
V,wo and p. We set Y(M)=¥@V [plonV]. Suppose M=df for
some fel' (X, #). Let V be a small neighborhood of K=Supp(f)>
Supp (M). We have M|V=p,p for a pe?, and h=f—pes#y, hence
p|V—K is the restriction of h on V—K. From Property (3) of flux
functionals Y(M)=0 follows. By these arguments, for any a e H}(X, o),
Yo=¥(M) is a well defined real number, here Mel (X, 2?) is a
representative of o.

We shall prove; (i) ¥ is surjective, (ii) Yo =0, (iii) if Ya=0,
ae HY(X, #), then a=¢h for some hed,.

Proof of (i). It is enoguh to show the existence of a Myel (X,
2) with ¥Y(My)<0. Fix an arbitrary point zeX. Let ({V}, {pi})
be a normalization for @, ((4.2), (4.3)). Take a V; containing z and
let Mo=py,(pi) on V,=0 on X-V. Myel(X,2) and from (4.3)
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M, is defined independently from the choice of V; containing z. The
number ¥(M,) is strictly positive from Property (3) of flux functionals.

Proof of (ii). Let he®, and w;, i=1,2, and tel(Y, Z) be as
in the previous, that is, t=h on a neighborhood w, of a and ¢h=
[dile H\(X, s#). Let W be a small set in X with WUw,=Y, and
let pe?y, be such that dt|W=pup. g=(t—p)|W is harmonic on W
and we have p=h—g on Wnow,. Hence ¥YW:*I[p|Wnw,]=0, that
is, Yo(h)=¥[dt]=0.

Proof of (iii). Suppose Ya=0,ae H!{(X, s#). Let Mel (X, )
be a representative of a. Take a small set V with K=Supp(M)cVc
X. Let M|V=p,p with pe#,. Since ¥YV:V-B[pV-K]=¥(M)=0,
p can be written as p=h—g on V—K with heOy,_x and ges#,.
Let kel(Y,#) be defined by k=p+g on V, and =h on Y-K.
If tel(Y, %) is chosen as in the above to satisfy t=h near a and
o(r§_gh)=[dt], we have (t—k)|Xel[(X,%) and M =dt+d(k—1).
Therefore a=[M]=[dt]=p(r$_gh).

Remark: Given a normalization {(V;},{p}}), we define M, eI (X, 2)
for each yeX, by M;=p,(p)) on V, =0 on Y-V. If we let
q,=(Y(M;))~'pi, the renormalization ({V;}, {q}}) satisfies ¥Y(M =1,
here M, =p, (q}) on V, =0 on Y-V, In the sequal we shall deal
with the normalization of ¢ with Y(M,))=1 for any yeX. This
implies that the constant functions are in H} because y—Y¥Y(M,)e#%
can be verified as in Lemma 4.2.

Proposition 4.9. We have the exact sequence;

050y — #x L HI(Y,0)=T(Y,¥9) > H(Y,0) — 0.

Proof. Since #,xI'(Y, #) from Proposition 3.3, we can define
u: #x—I(Y, %) as the composition of the maps#y—TI'(Y, #£) and
d: I'(Y, #)-I'(Y,9). If 1¢0, we have Fyx=I(Y,¥) as is easily
verified. In case 1e€0, the flux Y(M) of a MeI(Y,¥) was defined
in section 3. We shall define the map v:I'(Y,%)- H'(Y, ®)=R! by
v(M)="Y(M). Lemma 3.7 and some observation yield the exactness
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of the above sequence.

From the discussion we have made now the exactness of the
sequences of (4.7) follows. Now we come to the duality assertion of
these sequences. Again it is easy to show the duality for the case
1¢0y. In this case we have H!(X, #)~0, and #§=I(Y,%*).
Hence Corollary 4.7 implies H}!(X, o) ~s#%. Here the topology
of H}(X, s#) is defined as the inductive topology by the map ¢: 0,—
Hl(X, o).

In the following we assume |e@,. The duality between 0,
and I'(Y, ¢*) is denoted by <h, M*>. Remember that <h, M*> =
Z(h, h*), where M¥*|V=%*p,p* with a p*e¥y for a small set Vea
and h*=p*|V—aes}_,.

For any aeH!(X, s#) and h*>3s¢, we define the bilinear form

[o, h*] =Sh*dm ,

where the measure m is defined as follows: let Mel'(X, #) be a re-
presentative of «. For a small set V=X containing the support of M,
there is a pe 2, with M|V=p,p. m is the measure of the representa-
tion of p,

p= Spym(dy) ,

for the unique kernel function p, on V subordinate to the normalization
stated before ((4.3)). From [19] this is a well defined belinear form on
HI(X, s#)x #%.

Here we shall show <h, u*h*>=[¢ph, h*] for any he®, and
h*es#%. Let w;, i=1,2, and tel(Y, #) be the same notation as we
have used frequently; t=h on w,, ph=[dt]. Let V be a small neigh-
borhood of w, and W be a small subset of X such that WU w,=Y.

<h, u*h*> was defined as #(h, h*IV—a)=Sh*dn with the aid of a

measure n such that dt|V=py(S"pyn(dy)), and the support of n is

contained in ®,—w,. On the other hand, as we have seen in the
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above, [oh, lg*]=Sh*dm for a measure such that dt|W=pw(SWpym(dy)).
The support of m is also contained in @,—w,. Since p"p¥(¥p,)=

pVp¥(Yp,)=q, for any yeWnV, we have dilWn V=an,,(qum(dy))
=pw,,y(gqyn(dy)). Hence m=n and <h, uy*h*> =[¢h, h*].

Theorem 4.10. The exact sequences of (4.7) are in duality. In
particular HS(X, #) = %.

Proof. We have seen that,
0,— HMXX, #)— R! — 0,
and
ry,*) «—H}«—R!'«—0

are exact and that [@h, h*]=<h, p*h*>. If we prove ya=[a, 1],
ae HI(X, #), the relation H!(X, s#) =~ #% follows from 0,=I(Y, *).
Let MeI'(X, #) be a representative of a and M|W=pW(SWpym(dy)).
Let w be a neighborhood of a with Supp(m)cWnw. As we have
remarked: before Y(M))=¥YW.o)[Wp [Wnw]=1 for yeWnw. Since
the flux functional Y. js continuous on &, .,[19], we have ¥Y(M)

=S‘I’(My)m(dy)=gm(dy)=[oa, 1. Hence yo=[o, 1].

Corollary 11. ya=[a, 1],
v¢*M =<hy, M> for some hyed,.

We need to prove the second. Fix a small sets V, V' such that
Vaa, V'eX, and VU V' =Y. Take a refinement of this cover composed
by cd. sets wcV and o' <V’. In [18] the flux functional on %y
is defined by *W.VI[h|Vn V’]=ghd(n-n*H‘°’) for a measure n on

0w satisfying n=n*H* H®'. Let ho=r‘,&(S"pyn—n*H”')(dy)). Then

hoe0®, and, for any Mel(Y, ¥*), <hy, M> =Sg(y)d(n—n*H"")(y)=
*P.VI[g|lVnV']=*¥(M), where ge¥§, M=*o,g.
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§5. Decomposition of ¢,. Further description of the duality
of ¢, and H)(Y, 0%)

In the following we shall blow up the point at infinity to obtain
a fine structure of the stalk ¢,; every germ in %, is represented as
an integral of extreme germs. We shall introduce an ideal boundary,
called Kuramochi boundary with respect to ¢, in which the extreme
germs of ¢, are homeomorphically embedded. When the adjoint
structure exists these are carried also for ¢¥, and it can be shown that
for any germ in 0@, there corresponds a function (like a normal deri-
vative) on the Kuramochi boundary with respect to ¢*. The duality
/(h, h*) of 0, and H)(Y, 0*) is represented by an integral of these
normal derivative-like functions, this is Green’s formula. The condition
for the duality to be separated is given.

Let V be a small neighborhood of a and {w} with aewcwcV
be ordered by inclusion relation. If each ¥, is equipped with the
topology of compact uniform convergence on w\a, (%,, p3) forms a
(strict) inductive system of locally covex topological vector spaces
(moreover, nuclear spaces). ¥,=lim¥, is complete (and nuclear).
Since ¥} is a lattice with respect to the order defined by; u>v iff

u—ve¥} (Thm. 1.6 of [7]), £¢+—Upg,€9+ is a lattice by the in-
duced order and ¥, ordered by the cone ¥} is also a lattice; ¢,=
@t—gt. Every ¢! being a metrisable convex cone with a compact
base, ¥ is also a metrisable convex cone with a compact base,
which is denoted by . Things being so we can apply Choquet’s
representation thoerem; every M e} has a unique integral representa

tion
(.1) M= Sml(dm)

with the aid of a measure 1 on X supported by the extreme points
of &#. Let o, be a compact base of the convex cone %} and X~
be the canonical image of x,; A =p2x4,, which is obviously compact.
It is easy to verify that pg gives a bijective correspondence of the
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extreme points of ¢, to those of .

In the following we shall summarize the results in [7, 12] concern-
ing ideal boundary of (X, ) with respect to @, and shall translate
(5.1) to the integral representation on the boundary.

Suppose that the proportionality hypothesis is satisfied on V,
and let p,(x) be the kernel function on V introduced in (4.3). Let
xo€V\a and «o(y) a continuous function on V\a such that oy(y)=
py(xo) on w\a for some aewcocV, and let k(x)=[xo(y)] 'p,(x).
There is a locally convex topological vector space E which is a vector
lattice with positive cone the set of potentials on V. Let &', be the
same as £; and £} except the elements being continuous on V\a.
2’ is a complete metrisable convex cone with a compact base, and ¥}
is closed in P’. (The topology of E induced on &%} coincides with
the topology of compact uniform convergence on V\a.) Let &; (resp.
&,) be the set of extreme points of ' N (resp. ¥4 N A"') where
X' is a compact base of 2’ such that k,e . Then the map y—k,
gives a homeomorphism of V\a onto &;. The uniformity on V\a
given by the fundamental system of entourages

{1, y2)s yi, y2€V\a, |fj(}’1)ky.(xj)—fj(}’2)ky2(xj)|<3, 1<j<n},

where x;eV\a, and f;eC/(V\x;),j=1,2,..,n, is the inverse image
by the map y—k, of the uniformity on E restricted on &; and
y—k, gives an isomorphism of these two uniform spaces. Therefore
the completion ¥ of V\a is homeomorphic to the closure &; of &,
and y—k, is extended to be a continuous map {—k, from V to &,
V contains a point &, where kg, =0, that is, if y,eV\a converges to
a point of 9V then k, -0 in E. We shall omit this point.

We have proved in [7] that the relation &,=&\(&;U {0})c¥%}
holds. Let A=W\(V\a)U{&} and 4,={fed; ke&,}. 4, is a Gjset.
Every ue @} has the unique integral representation

u(x)= Sk;(x)u(dé). xeV\a,

by a measure u4 on I';. A4 and 4, are unchanged if we carry the
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above procedure for any w,aewcV, and every ue%} has the
representation;

u(x)={ | (prkIOONE).

this is a consequence of Theorem 7.8 of [7]. We call 4 the 0-
ideal boundary and A4, the minimal points of A4.

Let o ={pgg;gex'n%y}. Then X is a compact base of the
cone ¢, and X' n %} is homeomorphic to »# by the definition of the
topology of ¢, and the bijective property of p§. As was mentioned
previously the extreme points of 4 n¥} corresponds one to one and
onto to the extreme points of ¢, hence 4,~the extreme points of
X5 E-pi(ks). Thus (5.1) becomes

(52) M= psikoucas).

where M =pgg, g€ ¥), and
g =S keu(dg) .
4,

Now suppose that the adjoint sheaf @* of 0 exists as in section
4. An appropriate quotient of any germ in ¢} has a continuous
extension over 4. In fact the adjoint assertion of Lemma 1.3 shows
that every he 0} is represented as h=r€,<g p;‘v(dx)) by a measure v

on V with its support contained in a compact set of V\a, that is,

h(y)=$py(x)v(dx) on w\a
for some neighborhood w of a. Hence

1
————h =Sk x)v(dx on w\a.
o) M) = Y (v(dx) \
If we let y converge to a point £eA4, the right-hand side integral
converges to Sk(;(x)v(dx), for k, converges to k. uniformly on any

compact subset of V\a. Therefore we have proved that, for every
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heo* the limit lim h (y) exists at any £eAd.
a *

y=4 X0
For the consideration below we must transpose the above statements
to those related to the sheaf @0*. Let A* and A% be the ¢*-ideal
boundary and its minimal points, which are introduced in a similar
manner as the above to obtain representations of functions in #§
or germs in ¢, and let k¥(y) be the corresponding kernel of ((V\a)u
A*)x (V\a) such that ki(y)=p£’%g)— in w\a for a neighborhood
X0
of a. Let h*e#p ,=I'(V, F¥). d*h*el(V,¥*) can be represented

in the form

d*h*=*py(Sd,l KEAO)).
Hence h* has the representation
(5.3) e =p=+ { kA

on V\a, where f*e 0}

In parallel with the fact that h*e @} has the limit lim( h* )(x)

*
x—=&

X0
h
Pxo

at £ed, every he@, has the limit Dh(§)= lirr;< )(x) =Sk§(y)u(dy)

at any &eA*, where the measure p is given by h=ri’,<gpyu(dy)) from

Lemma 1.3.

Theorem 5.1. (Green’s formula). Let he@, h*eOy\,. Then Z(h,
h*)=g J(DhY(ENAE), where A is the measure of (5.3).
44

Proof. Let he(, and h=r‘,’,<gp,y(dy)> with a measure of compact
support in V\a, and let h* be represented by (5.3). Then #(h, h*)=
¢ (h, g9+ fucan({ - x00n@0) = a@p(§rzoman). here we used

Z(h, f*)=0 since f*eo0y, and Fubini’s theorem. The last expression
is nothing but the right-hand side of the equality to be proved.
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Corollary 5.2. 7 (h, k¥)=(Dh)(«) for any ae€ A%.

Corollary 53. {he0,; #(h, h*)=0 for any h*e0} ,}={hel,;
Dh=0 on A4%}.

Corollary 5.4. 0, is a Hausdorff topological vector sace iff
{heo,; Dh=0 on A4%}=0.

In [19] it was proved that if H!(X, s#) is a Hausdorff topological
vector space then every exhaustion of X by relatively compact subre-
gions {U,}¥., possesses a subsequence {U,}%; such that U,,cU,,,,
and every element of I'(U,,,,, #*) can be approximated uniformly on
U,, by restrictions of elements of I'(X, #*). In the next theorem
A% is the minimal points of the ideal boundary with respect to

0*, the adjoint of the minimal sheaf @.

Theorem 5.5. If (X, #) is hyperbolic and every he®, with
Dh=0 on A% is equal to zero, then the above approximation property
holds.

In fact HX(X, H)=~0, becomes a Hausdorff topological vector
space.

Suppose 1€@y and let hye@®, be as in Corollary 4.11; <hy, M>
=*Y(M) for any Mel(Y,¥9*). Then Dhy(&)=<hy, M;>=¥Y(M;)<0
for any £eAd%*. For every tel'(Y, #*) let Nt(df) be the measure on
A% which represents d*t;

d* V=*py(SA ,lkg,l(dg)).

The following theorem which concludes from Lemma 3.7 is an analogy
of Neumann-problem:

Au(z)=0 for |z]<1

W= for gl=1={ f&e@=0.
1¢1=1

Theorem 5.2. For a measure A on A* supported by A%, there
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is a tel(Y, #*) with Ni=2 iff gDho(c)l(d.f)=0.

§6. Applications

Let QcR" be a bounded domain. The following results (1) and
(2) are due to R.M. Hervé and M. Hervé [21] and J. Bony [20] res-
pectively.
(1) Let

L=——§"‘dj%‘i<a” ai,. >+zb, -

be a uniformly elliptic differential operator such that a;i(x) are measu-
rable functions with |a;;|SM <o, and by(x)e L"(2), r>n, and Z‘,gb‘ <0.

The continuous local solutions of Lu=0 (in the sense of variational
problem) gives a presheaf of harmonic functions that satisfies Brelot’s

axioms;
#y={reCW)n WiW);
55022 (58 o
———y
) Let

= 3 aym i+ Eb0g
be a differential operator with C«-coefficients such that
(a) >a;(x)E&;20 for any £eR", and

(b) Lu= kg'l (X,)2u+ Yu

for some C®-vector fields X,,...,X,, Y on Q, and such that the Lie
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algebra generated by X,,..., X, has rank n at every point of Q. Then
Hy={ueC>(U); Lu=0}, U opencQ,

satisfies Brelot’s axioms.

In both cases Green functions on appropriate subdomains are con-
structed, and such domains exhausts Q. All our results are applicable.
In particular H'(Q, s#)=0. This assures the global existence of the
solution of Lu=f. Before we state this problem more precisely we note
that the sheaf P is isomorphic to the following sheaf % of measures
[19]; I'(U. £)ep iff for every xe U there is a small neighborhood V
of x and a compact neighborhood K of x with K<V such that

x— | ¥, (dluly)
is continuous on V.

Theorem 6.1. Let L be either of the above differential operator.
Then for any measure pel(Q, %) there is a continuous solution u
of Lu=p (in the sense of variational problem or that of distribution).
In particular, for any continuous function f on Q, there is a con-
tinuous solution of Lu=f.
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