Cosimplicial cohomology and two term extensions of coalgebras

By
Ming-Ting CHEN*)
(Communicated by Prof. Nagata March 15, 1976)

Introduction

In this paper we interpret the second cosimplicial cohomology group of a coassociative coalgebra A with coefficients in a two sided A-comodule M. In $\S 1$, we refer to some wellknown facts. We shall use the notation

$$
A \xlongequal{\left(f^{0}, \cdots, f^{n}\right)} B \text { instead of } A \xrightarrow[\frac{f^{n}}{\stackrel{f^{1}}{\longrightarrow}}]{\underset{f^{n}}{\longrightarrow}} B .
$$

A cosimplicial object A_{*} in a category \mathscr{A} is a diagram

$$
A_{0} \Longrightarrow A_{1} \Longleftrightarrow A_{2} \rightleftarrows \cdots \rightleftarrows A_{n-1} \Longleftrightarrow A_{n} \rightleftarrows \cdots
$$

which satisfies certain commutation rules. If A_{*} is a cosimplicial module, then the A_{n} has the following representation, $A_{n}=\tilde{A}_{n} \oplus \sum_{r-1}^{n} \sum_{n \geq i_{1}>i_{2}>\cdots>i_{r} \geq 1} \varepsilon^{i_{1} \varepsilon^{i_{2}} \ldots}$ $\varepsilon^{i r} \tilde{A}_{n-r}$ (direct sum). Furthermore, there exists a cofree functor F from the category \mathscr{M} of modules to the category \mathscr{C} of coalgebras, which is the right adjoint functor of the underlying object functor $U: \mathscr{C} \rightarrow \mathscr{M}$ (see Lee [5]). The standard cosimplicial resolution of a coalgebra A is an augmented cosimplicial coalgebra

$$
G_{0} A \rightleftarrows G_{1} A \nRightarrow \cdots \rightleftarrows G_{n} A \rightleftarrows \cdots
$$

where $G_{n}=(F U)^{n+1} A$. Using this complex and a functor $\operatorname{Coder}(M,-)$, the n-th cohomology $H^{n}(M, A)$ is defined. In $\S 2$, we discuss some properties of the cosimplicial cokernels. The cosimplicial cokernel of $A \Rightarrow B$ is written by Cosimp coker $(A \Rightarrow B)$. A cosimplicial object A_{*} in \mathscr{A} is called acyclic if the canonical morphism Cosimp coker ($A_{n-2} \Rightarrow A_{n-1}$) $\rightarrow A_{n}$ is an monomorphism for every $n \geq 2$, and the acyclicity of an augmented cosimplicial object A_{*} over $A_{-1}=A$ is similarly defined. The main theorem is given in §3. An augmented cosimplicial coalgebra

$$
A \longrightarrow E_{0} \rightleftarrows E_{1} \Longleftrightarrow E_{2} \cdots
$$

[^0]over A is called a two term extension of A by M, if it satisfies certain conditions (see § 3). For a given normal coderivation n-cocycle, the standard n-term extension is described in Proposition 14. With certain additional propositions, we get the main result, that the second cosimplicial cohomology $H^{2}(M, A)$ is in 1-1 correspondence with the set $E x^{2}(M, A)$ of all equivalence classes of two term extensions.

The auther wishes to express his heartful thanks to Professor Akira Iwai for kind advices and for valuable suggestions. Simultaneously, the auther is indebted to Professor Masayoshi Nagata, to Professor Nobuo Shimada for their critical reading and improvement of the manuscript, to Professor Tomoharu Akiba for his suggestion and encouragement.

§ 1. Preliminaries

Throughout this paper K is a fixed field. We understand by a module a K-module, and by a tensor product \otimes the one over K. A coalgebra A is a module with a coassociative comultiplication $\Delta_{A}: A \rightarrow A \otimes A$ and a counit $\varepsilon_{A}: A$ $\rightarrow K$. A comodule M over a coalgebra A is a two sided A-comodule, i.e. a module with linear maps $\Delta_{M}{ }^{l}: M \rightarrow A \otimes M$ and $\Delta_{M}{ }^{r}: M \rightarrow M \otimes A$ which satisfy relations $\left(1 \otimes \Delta_{M}{ }^{l}\right) \Delta_{M}{ }^{l}=\left(\Delta_{A} \otimes 1\right) \Delta_{M^{l}},\left(\Delta_{M}{ }^{r} \otimes 1\right) \Delta_{M}^{r}=\left(1 \otimes \Delta_{A}\right) \Delta_{M}{ }^{r},\left(\Delta_{M}{ }^{l} \otimes 1\right) \Delta_{M}{ }^{r}=(1$ $\left.\otimes \Delta_{M}{ }^{r}\right) \Delta_{M}{ }^{l}$ and $\left(\varepsilon_{A} \otimes 1\right) \Delta_{M}{ }^{l}=\left(1 \otimes \varepsilon_{A}\right) \Delta_{M}{ }^{r}=1$. A coideal is a two sided coideal.

Let M be a two sided A-comodule. We define

$$
\begin{aligned}
& \Delta_{A \oplus M}: A \oplus M \rightarrow(A \oplus M) \otimes(A \oplus M) \quad \text { by } \\
& \Delta_{A \oplus M}=\Delta_{A} \text { on } A \text { and } \Delta_{A \oplus M}=\Delta_{M}{ }^{t}+\Delta_{M}{ }^{r} \text { on } M,
\end{aligned}
$$

and $\varepsilon_{A \oplus M}$ by the composition $A \oplus M \xrightarrow{\text { proj. }} A \xrightarrow{\varepsilon_{A}} K$. Then $A \oplus M$ is a coalgebra. It is called the coidealization of M, and we shall denote this by $A * M$.

We denote by $A \xlongequal{\left(f^{0}, \cdots, f^{n}\right)} B$ a diagram $A \xrightarrow[\substack{\overrightarrow{f^{n}}}]{\stackrel{f^{0}}{\longrightarrow}} B$.
A cosimplicial object A_{*} in a category \mathscr{A} is a diagram

$$
A^{0} \stackrel{\left(\varepsilon^{0}, \varepsilon^{1}\right)}{\rightleftarrows} A_{1} \underset{\left(\delta^{0}, \delta^{1}\right)}{\stackrel{\left(\varepsilon^{0}, \varepsilon^{1}, \varepsilon^{2}\right)}{\rightleftharpoons}} A_{2} \Rightarrow \cdots \Rightarrow A_{n-1} \stackrel{\left(\varepsilon^{0}, \cdots, \varepsilon^{n}\right)}{\stackrel{\left(\delta^{0}, \cdots, \delta^{n-1}\right)}{\Longleftrightarrow}} A_{n} \Rightarrow \cdots
$$

which satisfies the commutation rules (the cosimplicial relations)
(i) $\varepsilon^{j} \varepsilon^{i}=\varepsilon^{i} \varepsilon^{j-1}$ if $i<j$,
(ii) $\delta^{j} \delta^{i}=\delta^{i} \delta^{j+1}$ if $i \leq j$,
(iii) $\delta^{j} \varepsilon^{i}= \begin{cases}\varepsilon^{i} \delta^{j-1} & \text { if } i<j, \\ \text { identity } & \text { if } i=j \text { or } i=j+1, \\ \varepsilon^{i-1} \delta^{j} & \text { if } i>j+1 .\end{cases}$

Moreover, if a morphism $\varepsilon: A \rightarrow A_{0}$ satisfies the relation $\varepsilon^{0} \varepsilon=\varepsilon^{1} \varepsilon,\left(A_{*}, \varepsilon\right)$ is said to be an augmented cosimplicial object over A.

If A^{*} is a cosimplicial module, we define

$$
\begin{aligned}
& \tilde{A_{0}}=A_{0} \\
& \tilde{A_{n}}=\bigcap_{i=0}^{n-1} \operatorname{Ker} \delta^{i}, \quad(n>0) .
\end{aligned}
$$

The Moore complex of A_{*} is a cochain complex

$$
0 \rightarrow \tilde{A}_{0} \xrightarrow{\tilde{d}_{0}} \tilde{A}_{1} \rightarrow \cdots \rightarrow \tilde{A}_{n-1} \xrightarrow{\tilde{d}_{n}} \tilde{A}_{n} \rightarrow \cdots
$$

where \tilde{d}_{n} are induced by $d_{n}=\sum_{i=0}^{n}(-1)^{i} \varepsilon^{i}: A_{n-1} \rightarrow A_{n}$.
The module \tilde{A}_{n} is a direct summand of A_{n}, and its projection is given"by

$$
t_{n}=\left(1-\varepsilon^{n} \delta^{n-1}\right) \cdots\left(1-\varepsilon^{1} \delta^{0}\right), \quad(n \geq 1)
$$

It satisfies the following relations:

$$
\begin{aligned}
& t_{n} \varepsilon^{0}=d_{n} t_{n-1}, \quad(n \geq 1) \\
& t_{n} \varepsilon^{i}=0, \quad(1 \leq i \leq n), \\
& \delta^{i} t_{n}=0, \quad(0 \leq i \leq n-1) .
\end{aligned}
$$

Proposition 1. If A_{*} is a cosimplicial module, then A_{n} has the following representation:

Proof. Since $1-t_{n}$ is written in the form $\sum_{i=1}^{n} \varepsilon^{i} \delta^{i-1} s_{i}$, we have

$$
A_{n}=t_{n} A_{n}+\left(1-t_{n}\right) A_{n}=\tilde{A}_{n}+\sum_{i=1}^{n} \varepsilon^{i} A_{n-1}
$$

Using an induction argument on n, we can easily get

$$
A_{n}=\tilde{A}_{n}+\sum_{r=1}^{n} \sum_{n \geq i_{1}>i_{2}>\cdots>i_{r}>1} \varepsilon^{i_{1} \varepsilon^{i_{2}} \ldots \varepsilon^{i_{r}} \tilde{A}_{n-r}}
$$

To prove the right hand side of this equation to be a direct sum, it suffices to show that if

$$
\begin{align*}
& \tilde{x}+\sum_{r-1}^{m} \sum_{n \geq i_{1}>\cdots>i_{i} \geq n-m+1} \varepsilon^{i_{1} \ldots \varepsilon^{i_{r}} x_{i_{1} \cdots i_{r}}=0,} \tag{1.1}\\
& \tilde{x} \in A_{n}, \quad x_{i_{1} \cdots i_{r}} \in \tilde{A}_{n-r}, \quad 1 \leq m \leq n,
\end{align*}
$$

then $x_{i_{1} \cdots i_{r}}=0$ for $i_{r}=n-m+1$.
Operating δ^{n-m} on (1.1), we get

$$
\sum_{r=1}^{m} \sum_{i_{r}-n-m+1} \varepsilon^{i_{1}-1} \varepsilon^{i_{2}-1 \ldots \varepsilon^{i_{r-1}-1}} x_{i_{1} \cdots i_{r}}=0
$$

Hence we can reduce to the case $n-1$.
Q.E.D.

The cofree coalgebra associated with a given module V is a coalgebra $F V$ with a linear map $\eta_{V}: F V \rightarrow V$ which satisfies the following universal property: For every coalgebra A and every linear map $\alpha: A \rightarrow V$, there exists one and only one morphism of coalgebras $\beta: A \rightarrow F V$ such that $\eta_{v} \beta=\alpha$. More precisely F is a right adjoint functor of the forgetful functor U from the category \mathscr{C} of K-coalgebras to the category \mathscr{M} of K-modules. For every coalgebra A there exists one and only one morphism $\varepsilon_{A}: A \rightarrow G A=F U A$ of coalgebras such that $\eta_{U A} \cdot U \varepsilon_{A}=1_{U A} . \eta$ and ε are natural transformations. Denote by G_{n} the com-
posite functor G^{n+1}. Put $\varepsilon^{i}=G^{i} \varepsilon G^{n-i}: G_{n-1} A \rightarrow G_{n} A$ and $\delta^{i}=G^{i} F \eta U G^{n-i}: G_{n+1} A \rightarrow$ $G_{n} A,(0 \leq i \leq n)$. Then we get a (functorial) augmented cosimplicial coalgebra over A

$$
G^{*} A: G_{0} A \Longleftrightarrow G_{1} A \Longleftrightarrow G_{2} A \Longleftrightarrow \cdots,
$$

which is called the standard cosimplical resolution of A.
A coderivation from an A-comodule M to a coalgebra A is a linear map $f: M \rightarrow A$ such that $\Delta_{A} f=(1 \otimes f) \Delta_{M}{ }^{l}+(f \otimes 1) \Delta_{M}{ }^{r}$. Denote by $\operatorname{Der}_{K}(M, A)$ the module of all coderivations from M to A. If A_{*} is an augmented coalgebra over A, then for each $n \geq 0$ all the compositions $\varepsilon^{i_{n-1}} \cdots \varepsilon^{i{ }_{1}} \varepsilon: A \rightarrow A_{n}$ are the same and independent of the choice of (i_{n-1}, \cdots, i_{1}). Therefore A-comodule M can be understood as an A_{n}-comodule. We get a cochain complex

$$
\begin{aligned}
& \operatorname{Der}_{K}\left(M, A_{*}\right): 0 \rightarrow \operatorname{Der}\left(M, A_{0}\right) \xrightarrow{\delta_{0}} \operatorname{Der}\left(M, A_{1}\right) \rightarrow \cdots \rightarrow \operatorname{Der}\left(M, A_{n}\right) \xrightarrow{\delta_{n}} \cdots \\
& \quad \delta_{n}(f)=d_{n+1} f=\sum_{i=0}^{n+1}(-1)^{i} \varepsilon^{i} f .
\end{aligned}
$$

Denote by $H^{n}\left(M, A_{*}\right)$ the n-th cohomology of this complex. Put

$$
\begin{aligned}
\widetilde{\operatorname{Der}}_{K}\left(M, A_{n}\right) & =\left\{f \in \operatorname{Der}\left(M, A_{n}\right) \mid \operatorname{Im} f \subset \tilde{A}_{n}\right\} \\
& =\left\{f \in \operatorname{Der}\left(M, A_{n}\right) \mid t_{n} f=f\right\} .
\end{aligned}
$$

Then we have a cochain subcomplex $\widetilde{\operatorname{Der}_{K}}\left(M, A_{*}\right)$ of $\operatorname{Der}_{K}\left(M, A_{*}\right)$, and they are cochain homotopic (see Lee [5]). If $f \in \widetilde{\operatorname{Der}}_{k}\left(M, A_{n}\right)$ is a cocycle then it is called to be a normal coderivation n-cocycle. The n-th cohomology $H^{n}(M, A)$ of a coalgebra A with a coefficient comodule is M is defined to be $H^{n}\left(M, G_{*} A\right)$.

§ 2. Cosimplicial Cokernels

Definition 2. Let

$$
A \xlongequal{\left(\varepsilon^{0}, \cdots, \varepsilon^{n-1}\right)} B \xlongequal{\left(\varepsilon^{0}, \cdots, \varepsilon^{n}\right)} C
$$

($n \geq 1$) be a diagram in a category \mathscr{A}. We assume the following conditions:
(i) $\varepsilon^{j} \varepsilon^{i}=\varepsilon^{i} \varepsilon^{j-1}(0 \leq i<j \leq n)$,
(ii) for every object X and morphism $\left(f^{0}, \cdots, f^{n}\right): B \Rightarrow X$ with $f^{j} \varepsilon^{i}=$ $f^{i} \varepsilon^{j-1},(0 \leq i<j \leq n)$, there exists one and only one morphism $f: C \rightarrow X$ with $f^{i}=f \varepsilon^{i},(0 \leq i \leq n)$.

Then we say that $\left(\varepsilon^{0}, \cdots, \varepsilon^{n}\right): B \Rightarrow C$ (or roughly speaking C itself) is the cosimplicial cokernel of $\left(\varepsilon^{0}, \cdots, \varepsilon^{n-1}\right): A \Rightarrow B$, which is written by Cosimp coker ($A \Rightarrow B$).

If \mathscr{A} has a finite colimit, then any diagram $\left(f^{0}, \cdots, f^{n-1}\right): A \Rightarrow B$ in \mathscr{A} has a cosimplical cokernel (Tierney-Vogel [7]). In the category of modules, the cosimplicial cokernel is represented as follows:
(2.1) Cosimp coker $\left(\left(f^{0}, \cdots, f^{n-1}\right): A \Rightarrow B\right)$

$$
=\oplus_{i=0}^{n} B / \sum_{0 \leq i<j \leq n} \operatorname{Im}\left(k^{j} f^{i}-k^{i} f^{j-1}\right),
$$

where $k^{i}: B \rightarrow \bigoplus_{i=0}^{n} B$ is the canonical inclusion
Proposition 3. Let $n \geq 2$. Suppose that a diagram

$$
D \underset{\left(\delta^{0}, \cdots, \delta^{n-3}\right)}{\stackrel{\left(\varepsilon^{0}, \cdots, \varepsilon^{n-2}\right)}{\rightleftarrows}} A \underset{\left(\delta^{0}, \cdots, \delta^{n-2}\right)}{\stackrel{\left(\varepsilon^{0}, \cdots, \varepsilon^{n-1}\right)}{\rightleftarrows}} B
$$

in a category \mathscr{A} satisfies the cosimplicial relations and $C=\operatorname{Cosimp}$ coker $(A \Rightarrow B)$. Then there exist unique morphism $\left(\delta^{0}, \cdots, \delta^{n-1}\right): C \Rightarrow B$ satisfying cosimplicial relations.

Proof. Put $X=B$ and $\left(f^{0}, \cdots, f^{n}\right)=\left(\varepsilon^{0} \delta^{j-1}, \cdots, \varepsilon^{j-1} \delta^{j-1}, 1,1, \varepsilon^{j+1} \delta^{j}, \cdots, \varepsilon^{n-1} \delta^{j}\right)$, ($0 \leq j \leq n-1$). By Definition 2, we get the desired morphism δ^{j}. Q.E.D.

Proposition 4. Let $\left(\varepsilon^{0}, \cdots, \varepsilon^{n-1}\right): A \Rightarrow B$ be coalgebra maps. If $\left(\varepsilon^{0}, \cdots, \varepsilon^{n}\right)$: $B \Rightarrow C$ is the cosimplicial cokernel of $\left(\varepsilon^{0}, \cdots, \varepsilon^{n-1}\right): A \Rightarrow B$ in the category \mathscr{M} of modules, then C has a uniquely determined coalgebra structure such that $\varepsilon^{i}: B \rightarrow C$ are coalgebra maps.

Proof. Consider the diagram

Since $\left.\varepsilon^{j} \varepsilon^{i}=\varepsilon^{i} \varepsilon^{j-1},(0 \leq i<j \leq n), \Delta_{B} \varepsilon^{i}=\left(\varepsilon^{i} \otimes\right) \varepsilon^{i}\right) \Lambda_{A}$, we have

$$
\begin{aligned}
\left(\varepsilon^{j} \otimes \varepsilon^{j}\right) \Delta_{B} \varepsilon^{i} & =\left(\varepsilon^{j} \otimes \varepsilon^{j}\right)\left(\varepsilon^{i} \otimes \varepsilon^{i}\right) \Delta_{A} \\
& =\left(\varepsilon^{i} \otimes \varepsilon^{i}\right)\left(\varepsilon^{j-1} \otimes \varepsilon^{j-1}\right) \Delta_{A} \\
& =\left(\varepsilon^{i} \otimes \varepsilon^{i}\right) \Delta_{B} \varepsilon^{j-1} .
\end{aligned}
$$

Hence $X=C \otimes C$ and $f^{i}=\left(\varepsilon^{i} \otimes \varepsilon^{i}\right) \Lambda_{B}$ satisfy the condition of Definition 2 and hence there exists a K-linear map Δ_{C} such that $\Delta_{C} \varepsilon^{i}=\left(\varepsilon^{i} \otimes \varepsilon^{i}\right) \Delta_{B},(0 \leq i \leq n)$. Using these relations and $\left(\Delta_{B} \otimes 1\right) \Delta_{B}=\left(1 \otimes \Delta_{B}\right) \Delta_{B}$, we can easily check $\left(\Delta_{C} \otimes 1\right)$ $\Delta_{c} \varepsilon^{i}=\left(1 \otimes \Delta_{c}\right) \Delta_{c} \varepsilon^{i}, \quad(0 \leq i \leq n)$. Hence $\left(\Delta_{c} \otimes 1\right) \Delta_{c}=\left(1 \otimes \Delta_{c}\right) \Delta_{c}$, i.e. Δ_{c} is coassociative. Similarly we can verify the existence of a counit $\varepsilon_{c}: C \rightarrow K$ with $\left(\varepsilon_{c} \otimes 1\right) \Delta_{c}=\left(1 \otimes \varepsilon_{c}\right) \Delta_{c}=1$.

Q.E.D.

Definition 5. Let \mathscr{A} be a categosy with finite colimits. A cosimplicial object A_{*} in \mathscr{A} is said to be acyclic, if the canonical morphism
(2.2) Cosimp coker $\left(A_{n-2} \Rightarrow A_{n-1}\right) \rightarrow A_{n}$
is a monomorphism for every $n \geq 2$. An augmented cosimplicial object A_{*} over $A_{-1}=A$ is said to be acyclic if the morphism (2.2) is a monomorphism for every $n \geq 1$ and $A \rightarrow A_{0}$ is a monomorphism.

Proposition 6. If A_{*} is a cosimplicial module over A, then
(2.3) Cosimp coker $\left(A_{n-2} \Rightarrow A_{n-1}\right)=\left(\sum_{i=1}^{n} \varepsilon^{i} A_{n-1}\right) \oplus \operatorname{Coker} \tilde{d}_{n-1}, \quad(n \geq 2)$.

Proof. Let $\underline{A}_{n}=\sum_{i=1}^{n} \varepsilon^{i} A_{n-1}$ and $C_{n}=\underline{A}_{n} \oplus \operatorname{Coker} \tilde{d}_{n-1}$. Since 1- $t_{n}: A_{n} \rightarrow \underline{A}_{n}$ is a projection, we can define $\underline{\varepsilon}^{i}: A_{n-1} \rightarrow C_{n}$ by

$$
\underline{\varepsilon}^{i} x=\left\{\begin{array}{l}
\left(\varepsilon^{i} x, 0\right), \text { for } i>0, \\
\left(\left(1-t_{n}\right) \varepsilon^{0} x, p t_{n-1} x\right), \quad \text { for } i=0,
\end{array}\right.
$$

where $p: \tilde{A}_{n-1} \rightarrow \operatorname{Coker} \tilde{d_{n-1}}$ is the canonical projection. For $y \in \tilde{A_{n-2}}$, we have $\underline{\varepsilon}^{0} \varepsilon^{0} y=\left(\left(1-t^{u}\right) \varepsilon^{0} \varepsilon^{0} y, p t_{n-1} \varepsilon^{0} y\right)=\left(\left(1-t_{n}\right) \varepsilon^{1} \varepsilon^{0} y, p d_{n-1} t_{n-2} y\right)=\left(\varepsilon^{1} \varepsilon^{0} y, 0\right)=\underline{\varepsilon}^{1} \varepsilon^{0} y$. Hence $\underline{\varepsilon}^{0} \varepsilon^{0} y=\underline{\varepsilon}^{1} \varepsilon^{0}$. The other relations $\underline{\varepsilon}^{j} \varepsilon^{i}=\underline{\varepsilon}^{i} \varepsilon^{j-1},(i<j)$ are easily verified. Thus

$$
A_{n-2} \xlongequal{\left(\varepsilon^{0}, \cdots, \varepsilon^{n-1}\right)} A_{n-1} \xlongequal{\left(\underline{\varepsilon}^{0}, \cdots, \underline{\varepsilon}^{n}\right)} C_{n}
$$

satisfies the cosimplicial relation. Suppose that

$$
A_{n-2} \stackrel{\left(\varepsilon^{0}, \cdots, \varepsilon^{n-1}\right)}{\Longrightarrow} A_{n-1} \stackrel{\left(f^{0}, \cdots, f^{n}\right)}{\Longrightarrow} X
$$

satisfies the cosimplicial relations. Using the unique representation

$$
y=\sum_{r=1}^{n} \sum_{n \geq i_{1}>i_{2}>\cdots>i_{r} \geq 1} \varepsilon^{i_{1} \varepsilon^{i_{2}} \ldots \varepsilon^{i_{r}} y_{i_{1} \cdots i_{r}}}
$$

of an element of \underline{A}_{n}, we put

$$
f(y)=\sum_{r=1}^{n} \sum_{n \geq i_{1}>\cdots>i_{r} \geq 1} f^{i_{1} \varepsilon^{i_{2}} \ldots \varepsilon^{i_{r}} y_{i_{1} \cdots i_{r} .} . . . \text {. } . .}
$$

Since $\left(\sum_{i=0}^{n}(-1)^{i} f^{i}\right) d_{n-1}=0$, we can define $f\left(\tilde{x}_{0}\right)=\sum_{i=0}^{n}(-1)^{i} f^{i}\left(x_{0}\right)$ where \tilde{x}_{0} is the canonical image of $x_{0} \in \tilde{A}_{n-1}$. Hence we have a linear map $f: C_{n} \rightarrow X$, which satisfies $f^{i}=f \underline{\varepsilon}^{i}(0 \leq i \leq n)$. The uniqueness of f is easily verified. Therefore $C_{n}=$ Cosimp coker $\left(A_{n-2} \Rightarrow A_{n-1}\right)$.
Q.E.D.

Corollary 7. If $C_{n}=$ Cosimp $\operatorname{coker}\left(A_{n-2} \Rightarrow A_{n-1}\right)$, then

$$
\tilde{C}_{n}=\operatorname{Coker}\left(\tilde{d}_{n-1}: \tilde{A}_{n-2} \rightarrow \tilde{A}_{n-1}\right)
$$

Proof. If we put

$$
\underline{\delta}^{i}(x, y)=\delta^{i} x \text { for }(x, y) \in \underline{A}_{n} \oplus \operatorname{Coker} d_{n-1}=C_{n}
$$

then

$$
A_{n-2} \underset{\left(\delta^{0}, \cdots, \delta^{n-2}\right)}{\stackrel{\left(\varepsilon^{0}, \cdots, \varepsilon^{n-1}\right)}{\rightleftharpoons}} A_{n-1} \xlongequal[\left(\underline{\delta}^{0}, \cdots, \underline{\delta}^{n-1}\right)]{\stackrel{\left(\varepsilon^{0}, \cdots, \varepsilon^{n}\right)}{\rightleftarrows}} C_{n}
$$

satisfy the cosimplicial relation (cf. Proposition 3). Put $\underline{t}_{n}=\left(1-\underline{\varepsilon}^{n} \underline{\delta}^{n-1}\right) \ldots$ ($\left.1-\underline{\varepsilon}^{1} \underline{\delta}^{0}\right),(n \geq 1)$, then $\underline{t}_{n}=0$ on \underline{A}_{n} and $\underline{t}_{n}=1$ on Coker \tilde{d}_{n-1}, hence $\tilde{C}_{n}=\underline{t}_{n}\left(\underline{A}_{n} \oplus\right.$ Coker $\left.\tilde{d}_{n-1}\right)=$ Coker \tilde{d}_{n-1}.
Q.E.D.

Note that the similar results also hold for augmented cosimplicial coalgebras.

Corollary 8. If E_{*} is an acyclic augmented cosimplicial module, and if

$$
\begin{aligned}
& C_{n}=\text { Cosimp coker }\left(E_{n-2} \Rightarrow E_{n-1}\right),(n \geq 1), \\
& \alpha: C_{n} \rightarrow E_{n} \text { the canonical map, }
\end{aligned}
$$

then there exists a K-linear map $\beta: E_{n} \rightarrow C_{n}$ such that $\underline{\delta}^{i} \beta=\delta^{i},(0 \leq i<n)$, and $\beta \alpha=1$.

Proposition 9. A cosimplicial module A_{*} is acyclic if and only if the associated cochain complex $\tilde{A}_{0} \rightarrow \tilde{A}_{1} \rightarrow \cdots \rightarrow \tilde{A}_{n} \rightarrow \cdots$ is acyclic. An augmented cosimplicial module A_{*} over A is acyclic if and only if the associated cochain complex $0 \rightarrow A \rightarrow A_{0} \rightarrow \tilde{A}_{1} \rightarrow \cdots \rightarrow \tilde{A}_{n} \rightarrow \cdots$ is acyclic.

Proof. By Proposition 6 and its Corollary, $C_{n}=\underline{A}_{n} \oplus \tilde{C}_{n}$.
The canonical map $f_{n}: C_{n} \rightarrow A_{n}$ is of the form

$$
1 \oplus \tilde{f_{n}}: \underline{A}_{n} \oplus \tilde{C}_{n} \rightarrow \underline{A}_{n} \oplus \tilde{A_{n}} .
$$

Hence f_{n} is a monomorphism if and only if so is \tilde{f}_{n}.
Q.E.D.

Lemma 10. (Cosimplicial Five Lemma)
Given an integer $n \geq 2$ and a morphism $\theta_{*}: E_{*} \rightarrow B_{*}$ of cosimplicial modules. Suppose that the sequence $B_{n-2} \Rightarrow B_{n-1} \Rightarrow B_{n}$ is acyclic, $E_{n}=$ Cosimp $\operatorname{coker}\left(E_{n-2} \Rightarrow E_{n-1}\right), \theta_{n-2}$ is an epimorphism and θ_{n-1} is a monomorphism, then θ_{n} is a monomorphism.

Proof. If $x \in \operatorname{Ker} \theta_{n}$, then $\theta_{n-1}\left(\delta^{i} x\right)=\delta^{i} \theta_{n}(x)=0(0 \leq i<n)$. Since θ_{n-1} is a monomorphism, $\delta^{i} x=0$ therefore $x \in \tilde{E}_{n}$. It suffices to show that $\operatorname{Ker} \tilde{\theta}_{n}=$ $\left(\operatorname{Ker} \theta_{n}\right) \cap \tilde{E}_{n}=0$. Since

$$
\tilde{B}_{n-2}=t_{n-2} B_{n-2}=t_{n-2} \theta_{n-2}\left(E_{n-2}\right)=\theta_{n-2} t_{n-2}\left(E_{n-2}\right)=\theta_{n-2}\left(\tilde{E}_{n-2}\right),
$$

we get a commutative diagram with exact rows.

By the usual Five Lemma, $\tilde{\theta}_{n}$ is a monomorphism.
Q.E.D.

Given a module M and a positive integer n, we define a cosimplicial module M_{*} as follows.

$$
\begin{aligned}
& M_{k}=0,(0 \leq k<n-1), \\
& M_{n-1}=M,
\end{aligned}
$$

$$
M_{k}=\operatorname{Cosimp} \operatorname{coker}\left(M_{k-2} \Rightarrow M_{k-1}\right),(k \geq n) .
$$

Especially, $M_{n}, \tilde{M}_{n}, \varepsilon^{i}: M_{n-1} \Rightarrow M_{n}$ and $\delta^{i}: M_{n} \Rightarrow M_{n-1}$ are represented as follows.

$$
\begin{aligned}
& M_{n}=M \oplus M \oplus \cdots \oplus M,(n+1 \text { times }), \\
& \varepsilon^{i} \text { is the } i \text {-th injection, }(0 \leq i \leq n), \\
& \delta^{i}\left(m_{0}, m_{1}, \cdots, m_{n}\right)=m_{i}+m_{i+1},(0 \leq i \leq n-1), \\
& M_{n}=\left\{\left(m,-m, m, \cdots,(-1)^{n} m\right) \mid m \in M\right\},
\end{aligned}
$$

we have the following diagram of isomorphisms

Morevoer, assume that A_{*} is an augmented coalgebra over a coalgebra A and M is a two sided A-comodule. Then M_{k} is a two-sided A_{k}-comodule via the morphism $\left(\varepsilon^{1}\right)^{k} \varepsilon: A \rightarrow A_{k}$. Hence the direct sum $B_{*}=A_{*} \oplus M_{*}$ is an augmented coalgebra over A such that $B_{k}=A_{k} * M_{k}$ for each k. We denote $B_{*}=A_{*} * M_{*}$. Since the inclusion $M=M_{n-1} \rightarrow A_{n-1} * M_{n-1}=B_{n-1}$ is a coderivation, the composite map $M \xrightarrow{\tau^{\prime}} M_{n} \rightarrow B_{n}$ is also a coderivation. $\tau^{\prime}: M \rightarrow B_{n}$ is called the canonical coderivation. If A_{*} is acyclic then B_{*} is also acylic.

Proposition 11. If E_{*} is an acyclic augmented cosimplicial coalgebra over a coalgebra A, then there exists a cosimplicial coalgebra map $\theta_{*}: E_{*} \rightarrow$ $G_{*} A$ over the identity of A.

Proof. We shall construct θ_{n} by induction on n. If $n=0$, then the assertion is obvious.

Let $C_{n}, \underline{\varepsilon}^{i}, \underline{\delta}^{j}, \alpha$, and β be the same as in Corollary 8 and let $\underline{\theta}_{n}: C_{n} \rightarrow G_{n} A$ be the map with $\underline{\theta}_{n} \underline{\varepsilon}^{i}=\varepsilon^{i} \theta_{n-1},(0 \leq i \leq n)$.

By the cofreeness of $G_{n} A$, there exists a unique coalgebra map $\theta_{n}: E_{n} \rightarrow G_{n} A$ such that $\eta_{n-1} \theta_{n}=\eta_{n-1} \theta_{n} \beta$, where $\eta_{n-1}=\eta_{G_{n-1} A}$ (see p. 57). Using relations $\eta_{n-1} \varepsilon^{0}=1, \eta_{n-1} \varepsilon^{i}=\varepsilon^{i-1} \eta_{n-2},(0<i \leq n), \delta^{i-1} \eta_{n-1}=\eta_{n-2} \delta^{i}(0<i \leq n-1)$, we can check
$\eta_{n-1} \theta_{n} \varepsilon^{i}=\eta_{n-1} \varepsilon^{i} \theta_{n-1}$, $(0 \leq i \leq n)$. We get $\theta_{n} \varepsilon^{i}=\varepsilon^{i} \theta_{n-1}$, since the both side are coalgebra maps. Similarly, we have $\eta_{n-2} \delta^{i} \theta_{n}=\eta_{n-2} \theta_{n-1} \delta^{i}$ and hence $\delta^{i} \theta_{n}=\theta_{n-1} \delta^{i}$, ($0 \leq i \leq n-1$).
Q.E.D.

§ 3. Interpretation of $\boldsymbol{H}^{2}(\boldsymbol{M}, \boldsymbol{A})$

In this section, A is a coalgebra and M is a two sided A-comodule.
Definition 12. An augmented cosimplicial coalgebra E_{*} over A with a K-isomorphism $\tau: M \rightarrow \tilde{E}_{2}$ is called a two term extension of A by M, if it satisfies the following conditions:
(1) E_{*} is acyclic,
(2) E_{r} is the cosimplicial cokernel of $E_{r-2} \Rightarrow E_{r-1}$, for $r \geq 2$,
(3) τ makes the following diagram commutative

Definition 13. Let $\left(E_{*}, \tau\right)$ and $\left(E_{*^{\prime}}, \tau^{\prime}\right)$ be two term extensions of A by M. A morphism $\psi_{*}: E_{*} \rightarrow E_{*^{\prime}}$ is defined to be a morphism of augmented cosimpliclal coalgebras such that $\tilde{\psi}_{2} \tau=\tau^{\prime}$.

If there exists a sequence of morphisms of extensions

$$
\begin{equation*}
E_{*}{ }^{0} \leftarrow E_{*}{ }^{1} \rightarrow E_{*}^{2} \leftarrow E_{*}^{3} \rightarrow \cdots \leftarrow E_{*}^{2 r-1} \rightarrow E_{*}^{2 r} \tag{3.1}
\end{equation*}
$$

then $E_{*}{ }^{0}$ and $E_{*}{ }^{2 r}$ are called to be equivalent, denoted by $E_{*}{ }^{0} \sim E_{*}{ }^{2 r}$.
Let A_{*} be an augmented cosimplicial coalgebra over A and $f: M \rightarrow A_{n}$ a normal coderivation n-cocycle. Denote by $B_{*}=A_{*}{ }^{*} M_{*}$ the coidealization.

$$
\text { Put } \quad \begin{aligned}
E_{n-1} & =\operatorname{Ker}\left(t_{n} \varepsilon^{0} p-f q\right) \\
& =\left\{a+m \mid a \in A_{n-1}, m \in M_{n-1}, t_{n} \varepsilon^{0}(a)=f(m)\right\},
\end{aligned}
$$

where $p: B_{n-1} \rightarrow A_{n-1}, q: B_{n-1} \rightarrow M_{n-1}=M$ are the canonical projections. Since $\varepsilon^{i} A_{n-2} \subset E_{n-1},(0 \leq i \leq n-1)$, we can define

$$
E_{n}=\operatorname{Cosimp} \operatorname{coker}\left(A_{n-2} \Rightarrow E_{n-1}\right) .
$$

We shall show E_{n-1} is a subcoalgebra of B_{n-1}. If $a \in A_{n-1}, m \in M_{n-1}$ and $t_{n} \varepsilon^{0}(a)$ $=f(m)$, then

$$
\begin{aligned}
& \Delta_{A_{n}} t_{n} \varepsilon^{0}(a)=\Delta_{A_{n}} f(m), \\
& \Delta_{A_{n}} t_{n} \varepsilon^{0}(a)=\left(\left(\varepsilon^{1}\right)^{n} \varepsilon \otimes f\right) \Delta_{M_{n-1}}^{l}(m)+\left(f \otimes\left(\varepsilon^{1}\right)^{n} \varepsilon\right) \Delta_{M_{n-1}}^{r}(m) .
\end{aligned}
$$

Operating $t_{n} \otimes \delta^{0}$ on the both side of the above equation, we get

$$
\begin{aligned}
& \left(t_{n} \varepsilon^{0} \otimes 1\right) \Delta_{A_{n-1}}(a)=\left(f \otimes\left(\varepsilon^{1}\right)^{n-1} \varepsilon\right) \Delta_{M_{n-1}}^{r}(m), \\
& \left(\left(t_{n} \varepsilon^{0} p-f q\right) \otimes 1\right) \Delta_{B_{n-1}}(a+m)=0 .
\end{aligned}
$$

Hence $\Delta_{B_{n-1}}(a+m) \in E_{n-1} \otimes B_{n-1}$.
Symmetrically we get $\Delta_{B_{n-1}}(a+m) \in B_{n-1} \otimes E_{n-1}$, and hence

$$
\Delta_{B_{n-1}}(a+m) \in\left(E_{n-1} \otimes B_{n-1}\right) \cap\left(B_{n-1} \otimes E_{n-1}\right)=E_{n-1} \otimes E_{n-1} .
$$

By Proposition 4, E_{n} has the canonical (and unique) structure of a coalgebra. By Lemma 10, E_{n} is a submodule of B_{n}, therefore E_{n} is a subcoalgebra of B_{n}.

Define a map $\tau: M \rightarrow B_{n}=A_{n} \oplus M_{n}$ by

$$
\tau(m)=f(m)+\tau^{\prime}(m)
$$

where $\tau^{\prime}: M \rightarrow B_{n}$ is the canonical coderivation. Since $d_{n+1} f(m)=0, f(m)=d_{n}(a)$ for some $a \in A_{n-1}$, and therefore $\tau(m)=d_{n}(a+m)$. Hence $\tau(M)=\operatorname{Im} \tilde{d}_{n}=\tilde{E}_{n}$.

Since $\tau^{\prime}: M \xrightarrow{\tau} B_{n} \xrightarrow{\text { proj. }} M_{n}$ is a monomorphism, $\tau: M \rightarrow E_{n}$ is a monomorphism, and therefore $\tau: M \rightarrow E$ is an isomorphism. Denoting by $E\left(A_{*}, f\right)$ the cosimplicial coalgebra E_{*} defined as above and by $\theta_{*}: B_{*} \rightarrow A_{*}$ the canonical projection, we obtain the following proposition.

Proposition 14. Let A_{*} be an acyclic augmented cosimplicial coalgebra over A, and $f: M \rightarrow A_{n}$ a normal coderivation n-cocycle. Then there exists an acyclic cosimplicial coalgebra $E\left(A_{*}, f\right)$ over A with a normal coderivation $\tau: M \rightarrow E\left(A_{*}, f\right)_{n}$ and a morphism $\sigma_{*}: E\left(A_{*}, f\right) \rightarrow A_{*}$ of cosimplicial coalgebra such that σ_{k} is an isomorphism for $k \leq n-2, f=\sigma_{n} \tau$ and $\tau: M \cong E\left(A_{*}, \tilde{f}\right)_{n}$.

In particular, if $A_{*}=G_{*} A$ we write $E\left(A_{*}, f\right)=E(f)$, which we shall refer to as the standard n-term extension of A by M.

Proposition 15. If two normal coderivation 2-cocycles f and f^{\prime} are cohomologous, then $E\left(A_{*}, f\right) \sim E\left(A_{*}, f^{\prime}\right)$.

Proof. If f and f^{\prime} are cohomologous, there exists a normal coderivation $h: M \rightarrow A_{1}$ such that $f-f^{\prime}=d_{2} h$, and therefore $d_{2} t_{1}(x-h m)=f(m)-d_{2} h(m)=$ $f^{\prime}(m)$ for $(x, m) \in E\left(A_{*}, f\right)_{1}$. We can define a linear map $\psi_{1}: E\left(A_{*}, f\right)_{1} \rightarrow$ $E\left(A_{*}, f^{\prime}\right)_{1}$ by $\psi_{1}(x, m)=(x-h m, m)$. It is easy to see $\psi_{1} \varepsilon^{i}=\varepsilon^{i},(i=0,1)$ and $\delta^{0}=\delta^{0} \psi_{1}$. Next, we should prove that ψ_{1} is a coalgebra map. Let $p: A_{1} * M \rightarrow A_{1}$, $q: A_{1} * M \rightarrow M$ be projections, and let $i: A_{1} \rightarrow A_{1} * M, j: M \rightarrow A_{1} * M$ be inclusions. Thus $\psi_{1}=i p-i h q+i q$. Note that $\Delta_{A_{1}} h=\left(\varepsilon^{1} \varepsilon \otimes h\right) \Delta_{M}{ }^{l}+\left(h \otimes \varepsilon^{1} \varepsilon\right) \Delta_{M^{r}}$,

$$
\Delta_{E\left(A_{*},-\right)_{1}}=\Delta_{A_{1}{ }^{*} M}=(i \otimes i) \Delta_{A_{1}} p+\left(i \varepsilon^{1} \varepsilon \otimes j\right) \Delta_{M}{ }^{l} q+\left(j \otimes i \varepsilon^{1} \varepsilon\right) \Delta_{M}{ }^{r} q .
$$

By straightforward calculations, we obtain $\left(\psi_{1} \otimes \psi_{1}\right) \Delta_{E\left(A_{*}, f\right)_{1}}=\Delta_{E\left(A_{*}, f^{\prime}\right)_{1}} \psi_{1}$.
The existence of a required morphism ψ_{2} follows from the universal property of cosimplicial cokernel (see proposition 4).
ψ_{1} is an isomorphism with the inverse $\psi_{1}^{-1}(x, m)=(x+h m, m)$ and hence ψ_{2} is also isomorphism. Especially ψ_{2} induces an isomorphism of $\widehat{E\left(A_{*}, f\right)_{2}}$ and $\widehat{E\left(A_{*}, f^{\prime}\right)_{2}}$.
Q.E.D.

Proposition 16. If E_{*} is a two term extension of A by M, then there exists a normal coderivation 2-cocycle $f: M \rightarrow G_{2} A$ and a morphism of extension $\phi_{*}: E_{*} \rightarrow E(f)$.

Proof. By Proposition 11 there is a morphism $\theta_{*}: E_{*} \rightarrow G_{*} A$ of augmented cosimplicial coalgebras. Using a normal coderivation 2-cocycle $\tau: M \rightarrow E_{2}$ in Definition 12 we put $f=\theta_{2} \tau$, which is also a normal coderivation 2-cocycle. Let $\sigma=\tau^{-1} t_{2} \varepsilon^{0}: E_{1} \rightarrow M$, then $t_{2} \varepsilon^{0} \theta_{1}=\theta_{2} t_{2} \varepsilon^{0}=f \sigma$ and we get a linear map $\phi_{1}=\theta_{1}$ $+\sigma: E_{1} \rightarrow E(f)_{1} \subset G_{1} A^{*} M$.

It follows from Definition 12 that $\left(1 \otimes t_{2}\right) \Delta_{E_{2}} \tau=\left(\varepsilon^{0} \varepsilon \otimes \tau\right) \Delta_{M}{ }^{l}$.

$$
\left(\varepsilon^{0} \otimes t_{2} \varepsilon^{0}\right) \Delta_{E_{1}}=\left(1 \otimes t_{2}\right) \Delta_{E_{2}} t_{2} \varepsilon^{0}=\left(\varepsilon^{0} \varepsilon \otimes \tau\right) \Delta_{M}{ }^{2} \sigma .
$$

Operating $\delta^{0} \otimes \tau^{-1}$, we get $(1 \otimes \sigma) \Delta_{E_{1}}=(\varepsilon \otimes 1) \Delta_{M}{ }^{l} \sigma$. Similarly we get $(\sigma \otimes 1) \Delta_{E_{1}}$ $=(1 \otimes \varepsilon) \Delta_{M}{ }^{r} \sigma$. Therefore

$$
\begin{aligned}
\left(\phi_{1} \otimes \phi_{1}\right) \Delta_{E_{1}} & =\left(\theta_{1} \otimes \theta_{1}+\theta_{1} \otimes \sigma+\sigma \otimes \theta_{1}+\sigma \otimes \sigma\right) \Delta_{E_{1}} \\
& =\Delta_{G_{1} A} \theta_{1}+\left(\theta_{1} \varepsilon \otimes 1\right) \Delta_{M}{ }^{2} \sigma+\left(1 \otimes \theta_{1} \varepsilon\right) \Delta_{M}{ }^{r} \sigma \\
& =\Delta_{G_{1} A^{*} M^{*}\left(\theta_{1}+\sigma\right)} \\
& =\Delta_{E(f)_{1}} \phi_{1} .
\end{aligned}
$$

Namely ϕ_{1} is a coalgebra map. Let $\phi_{0}=\theta_{0}$, then it is easy to see $\phi_{1} \varepsilon^{i}=\varepsilon^{i} \phi_{0}$ for $i=0,1$ and $\delta^{0} \phi_{1}=\phi_{0} \delta^{0}$. Therefore we obtain a coalgebra map ϕ_{2} such that $\phi_{2} \varepsilon^{i}$ $=\varepsilon^{i} \phi_{1},(0 \leq i \leq 2)$ and $\delta^{i} \phi_{2}=\phi_{1} \delta^{i},(0 \leq i \leq 1)$. ϕ_{2} induces an isomorphism of \tilde{E}_{2} onto $\widehat{E(f)_{2}}$ by the following commutative diagram

Q.E.D.

Proposition 17. If $\phi_{*}: E_{*} \rightarrow E(f)$ and $\phi_{*}{ }^{\prime}: E_{*} \rightarrow E\left(f^{\prime}\right)$ are morphisms from a two term extension of A by M to the standard two term extensions of A by M, then f and f^{\prime} are cohomologous.

Proof. By Proposition 16, we get the following commutative diagram.

Put $\theta_{i}=\sigma_{i} \phi_{i}$ and $\theta_{i}{ }^{\prime}=\sigma_{i}{ }^{\prime} \phi_{i}{ }^{\prime},(1 \leq i \leq 2)$, since $E_{2}=\operatorname{Cosimp} \operatorname{coker}\left(E_{0} \Rightarrow E_{1}\right)$ and the morphisms

$$
E_{0} \stackrel{\left(\varepsilon^{0}, \varepsilon^{1}\right)}{\Longrightarrow} E_{1} \stackrel{\left(\varepsilon^{0} \theta_{0} \delta^{0}, \theta_{1}^{\prime}, \theta_{1}\right)}{\Longrightarrow} G_{1} A
$$

satisfies the cosimplicial relations, we have a coalgebra map $\omega: E_{2} \rightarrow G_{1} A$ such that $\left(\omega \varepsilon^{0}, \omega \varepsilon^{1}, \omega \varepsilon^{2}\right)=\left(\varepsilon^{0} \theta_{0} \delta^{0}, \theta_{1}^{\prime}, \theta_{1}\right)$. Put $\gamma=t_{1}\left(\theta_{1}^{\prime} \delta^{0}-\delta^{0} \theta_{2}-\omega+\delta^{1} \theta_{2}\right)$, then $d_{2} \gamma \varepsilon^{i}$ $=t_{2}\left(\theta_{2}^{\prime}-\theta_{2}\right) \varepsilon^{i}$, $(0 \leq i \leq 2)$, hence $d_{2} \gamma=t_{2}\left(\theta_{2}^{\prime}-\theta_{2}\right)$ and $d_{2} \gamma \tau=t_{2} f^{\prime}-t_{2} f=f^{\prime}-f$. Since γ is a linear combination of coalgebra maps and τ is a coderivation, so $h=\gamma \tau$ is a coderivation, and since $\delta^{0} h=\delta^{0} \gamma \tau=0, h$ is normal. Therefore we proved $f-f^{\prime}=d_{2} h$.
Q.E.D.

Proposition 18. If $E(f) \sim E\left(f^{\prime}\right)$, then f and f^{\prime} are cohomologous.
Proof. If $E(f) \sim E\left(f^{\prime}\right)$, there exists a sequence (3.1) of morphisms of extensions with $E_{*}{ }^{0}=E(f), E_{*}{ }^{2 r}=E\left(f^{\prime}\right)$. By Proposition 16 there are normal coderivation 2-cocycles f_{i} and morphisms of extensions $E_{*}{ }^{2 i} \rightarrow E\left(f_{i}\right),(1 \leq i \leq r)$.

Therefore f and f^{\prime} are cohomologous by Proposition 17.
Q.E.D.

Theorem. Let $H^{2}(M, A)$ be the second cosimplicial cohomology of a coalgebra A with a coefficient comodule M and $E x^{2}(M, A)$ the set of all equivalence classes of two term extensions of A by M. Then there is a bijection between $E x^{2}(M, A)$ and $H^{2}(M, A)$.

Proof. Let $[f]$ denote the cohomology class containing f, and $[E(f)]$ the equivalence class of $E(f)$. Then from Proposition 15 we can define a map $\Phi:[f] \mapsto[E(f)]: H^{2}(M, A) \rightarrow E x^{2}(M, A)$.
By Proposition 16, we see that Φ is a surjection, and Φ is an injection by Pro-
position 18. Hence Φ is a bijection.
Q.E.D.

National Cheng-Kung University, Tainan, Taiwan, Kyoto University, Kyoto, Japan.

References

[1] J. Beck: Triples, Algebras and cohomology, Doctoral dissertation, Columbia University (1967).
[2] S. Eilenberg and J. C. Moore : Adjoint functors and Triples, Ill. J. Math., 9 (1965), 381-399.
[3] A. Iwai : Simplicial cohomology and n-term extensions of algebras, J. Math. Kyoto Univ., 9-3 (1969), 449-470.
[4] D. W. Jonah : Cohomology of coalgebras, Memoirs of A. M. S., 82 (1968).
[5] K. Lee: Cosimplicial cohomology of coalgebras, Nagoya Math. J., 47 (1972), 199-226.
[6] N. Shimada, H. Uehara, F. Brenneman and A. Iwai: Triple cohomology of algebras and two term extensions, Publ. RIMS Kyoto Univ., 5 (1969), 267-285.
[7] M. Tierney and W. Vogel : Simplicial derived functors, Category theory, Homology theory and their applications I, Lecture Notes in Math., 86 (1969), 167-180.

[^0]: *) The present work was done while the author stayed at Kyoto University as a research member during April, 1975-March, 1976

