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Introduction
In this paper we interpret the second cosimplicial cohomology group of a
coassociative coalgebra A with coefficients in a two sided A-comodule M. In
§ 1, we refer to some wellknown facts. We shall use the notation
0
L
(fO% ™ . !
A =———= B instead of A— B.
_'_’
fn
A cosimplicial object Ax in a category & is a diagram
ATRA =42 24 =42

which satisfies certain commutation rules. If Ay is a cosimplicial module, then
the A, has the following representation, A,=A, @ X7_1 X ysi;>iy> i, »q €62+
¢"A,_, (direct sum). Furthermore, there exists a cofree functor F from the
category # of modules to the category € of coalgebras, which is the right
adjoint functor of the underlying object functor U : % — .# (see Lee [5]). The
standard cosimplicial resolution of a coalgebra A is an augmented cosimplicial
coalgebra

GA=G A2 - 2GAZ -

where G,=(FU)"*'A. Using this complex and a functor Coder (M, —), the
#n-th cohomology H*(M, A) is defined. In § 2, we discuss some properties of
the cosimplicial cokernels. The cosimplicial cokernel of A= B is written by
Cosimp coker (A=> B). A cosimplicial object Ay in & is called acyclic if the
canonical morphism Cosimp coker (A,_:= A,_;)—> A, is an monomorphism for
every #>2, and the acyclicity of an augmented cosimplicial object A4 over
A_;=A is similarly defined. The main theorem is given in § 3. An aug-
mented cosimplicial coalgebra

A— E,—E,=E;

*  The present work was done while the author stayed at Kyoto University as a research
member during April, 1975-March, 1976
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over A is called a two term extension of A by M, if it satisfies certain condi-
tions (see § 3). For a given normal coderivation #-cocycle, the standard #-term
extension is described in Proposition 14. With certain additional propositions,
we get the main result, that the second cosimplicial cohomology H?*(M, A) is
in 1-1 correspondence with the set Ex*(M, A) of all equivalence classes of
two term extensions.

The auther wishes to express his heartful thanks to Professor Akira Iwai
for kind advices and for valuable suggestions. Simultaneously, the auther is
indebted to Professor Masayoshi Nagata, to Professor Nobuo Shimada for their
critical reading and improvement of the manuscript, to Professor Tomoharu
Akiba for his suggestion and encouragement.

§1. Preliminaries
Throughout this paper K is a fixed field. We understand by a module a
K-module, and by a tensor product X) the one over K. A coalgebra A is a
module with a coassociative comultiplication 4,: A—>A® A and a counit ¢4: A
—>K. A comodule M over a coalgebra A is a two sided A-comodule, i.e. a
module with linear maps 4,': M—>AX M and 4,7 : M—>M K A which satisfy
relations (1 4,4y =4, Q1) 4,4, (4, @Dy =1 R d)4y", (4 RQ1)4,, =1
R4,y and (e,® 1) ' =1 &K e )dy"=1. A coideal is a two sided coideal.
Let M be a two sided A-comodule. We define
Low ADM—>ADMSADM) by
dyou=44 on A and dugy=4y'+ 4, on M,

and e4gy by the composition A(—BM—pESL A-i» K. Then A@M isa co-

algebra. It is called the coidealization of M, and we shall denote this by A*M.
0
sy 7
We denote by A (i’::z:' B a diagram A — B.
_—
f n

A cosimplicial object Ay in a category . is a diagram

(60’ el) (60, el’ 52) (80’ ) en)
AO JAI :51422"'2141;—1 g Ané"’
a° (0°0") (0% -, 0"71)

which satisfies the commutation rules (the cosimplicial relations)
(1) elet=ele/™t if i<,
(ii) o&/9i=a0/* if i<y,
el if i<y,
(iii) ¢/e’={identity if i=j or i=j+1,
197 if ©>j+1.
Moreover, if a morphism e: A—>A, satisfies the relation e’ =ele, (Ay, ¢) is said
to be an augmented cosimplicial object over A.
If A* is a cosimplicial module, we define
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A0=Ao
A,='NKerd, #>0).
i=0

The Moore complex of Ay is a cochain complex

Y RILLN SN LN
where d, are induced by d,=X " (—1)e: A, 1—A,.
The module A, is a direct summand of A4,, and its projection is given'by
ta=(1—e""1).--(1—¢'0%, m>1).
It satisfies the following relations:
t,e®=d,t,.y, (m>1),
t.et=0, (1<i<n),
0't,=0, (0<i<n—1).

Proposition 1. [If Ay is a cosimplicial module, then A, has the fol-
lowing representation:

A.=A,® f} > eheteceir A, (direct sum).

7ol m2i>i>>ir21
Proof. Since 1—t, is written in the form >]7.,¢%0*"!s;, we have
An :tnAn'l'(l —tn)An:A-n'l' Z eil&ln-l
t=1
Using an induction argument on #, we can easily get
-~ n .. .o~
A=A+ > ghgizeegir 4,
r=1n2i1>i2>->ir21
To prove the right hand side of this equation to be a direct sum, it suffices to
show that if
m
(1' 1) X+ Z Z ell”'elrxil“'ir:Oa
r=1n2i1>>ir2n—m+1
x€A,, x,..€4,, 1<m<n,
then x;,.‘.i,:O for i,zn—m-l-l.
Operating 0" ™ on (1. 1), we get

m
Z Z ell—lslz—l...elr-l—lxilmirzo
r=1lir=n—m+1

Hence we can reduce to the case n—1. Q.E.D.

The cofree coalgebra associated with a given module V is a coalgebra FV
with a linear map 7,:FV—V which satisfies the following universal property:
For every coalgebra A and every linear map a:A—V, there exists one and
only one morphism of coalgebras : A—FV such that »,=a. More precisely
F is a right adjoint functor of the forgetful functor U from the category € of
K-coalgebras to the category .# of K-modules. For every coalgebra A there
exists one and only one morphism ¢,: A—>GA=FUA of coalgebras such that
PpaUe,=1y. 7 and e are natural transformations. Denote by G, the com-
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posite functor G**!. Put e'=G'eG"*"*:G,_1A—>G,A and 6'=G' FpUG"*:G,,1;A—>
G.A, (0<i<n). Then we get a (functorial) augmented cosimplicial coalgebra
over A

G*A : G A=GA=GAZ2 -,
which is called the standard cosimplical resolution of A.

A coderivation from an A-comodule M to a coalgebra A is a linear map
f:M—A such that 4,f =(1® f)4s'+(f®1)4,". Denote by Derx(M, A) the
module of all coderivations from M to A. If Ay is an augmented coalgebra
over A, then for each #>0 all the compositions &i-1-.-ef1ie: A— A, are the same
and independent of the choice of (7,3, -+, #;). Therefore A-comodule M can
be understood as an A,-comodule. We get a cochain complex

0 0,
Derx(M, Ay):0— Der (M, A,) - Der(M, A,)—---—Der(M, A,) —> -+
n+1
0 ) =dus f =2 (— 1)
Denote by H*(M, Ay) the n-th cohomology of this complex. Put
Dery(M, A) = {f€Der(M, A)|Imf  A,)
= {f&€Der(M, A,)|t.f=f}.
Then we have a cochain subcomplex I/)—e/r,( (% Ay) of Derx(M, Ay), and they

are cochain homotopic (see Lee [5]). If f&Derx(M, A,) is a cocycle then it is
called to be a normal coderivation #-cocycle. The #-th cohomology

H"(M, A) of a coalgebra A with a coefficient comodule is M is defined to be
H"(M, Gy A).

§2. Cosimplicial Cokernels
Definition 2. Let
(eo’ '..’ e"-l) (eo’ ..., en)

A B — C,
(#>1) be a diagram in a category /. We assume the following conditions:
(1) eet=eled™! (0<i<j<n),
(ii) for every object X and morphism (f9, -, f*):B=>X with fle'=
fief™1, (0<i<j<n), there exists one and only one morphism f:C—X with
fi=fe, (0<i<n).

L f

v

X
Then we say that (&%, ---, e"): B=C (or roughly speaking C itself) is the cosim-
plicial cokernel of (¢ --+,e"'):A= B, which is written by Cosimp coker
(A= B).
If & has a finite colimit, then any diagram (f°, ---, f*!):A= B in & has
a cosimplical cokernel (Tierney-Vogel [7]). In the category of modules, the
cosimplicial cokernel is represented as follows:
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(2.1) Cosimp coker ((f9, -, f*1):A=B)
= @ggoB/OSigsn Im (kjfi _kifj—l),

where ki: B>@,B is the canonical inclusion

Proposition 3. Let n>2. Suppose that a diagram

(Eos ) en—l)

(609 ) en—Z)
D — A —
(60’ M) 511—8) (50: ttt 51;—2)
in a category & satisfies the cosimplicial relations and C=Cosimp coker
(A= B). Then there exist unique morphism (8°, ---, 0" ):C= B satisfying
cosimplicial relations.
Proof. Put X=B and (f°,---, f")=(e%’"1,---,e/71771, 1, 1, /%187, ..., e*"1§7),
(0<j<n—1). By Definition 2, we get the desired morphism é/. Q.E.D.

Proposition 4. Let (% -+, " '): A= B be coalgebra maps. If (&° -, &"):
B=C is the cosimplicial cokernel of (% --,e**): A= B in the category M
of modules, then C has a uniquely determined coalgebra structure such
that ¢': B—>C are coalgebra maps.

Proof. Consider the diagram

A (809 .”? E"_l) B (80! “.) sn) . C
| 5
J‘:’A iAB ;AC
<0 0 .. gnm1RQ)en-1 0 0 ... gn n ¥
A@A (" ®€3 » € XE€ )'B®B (6®€, ’E®€>’C®C

Since e/ef=¢'e/™!, (0<i<(j<n), dpe’ =(e!®e")4,, we have
(e ®e?)dpe’ = (e R ef) (e ®ei)d,

=( @) @,

=(e!®e’)dye’ L.
Hence X=C®C and fi=(¢!Qe)d; satisfy the condition of Definition 2 and
hence there exists a K-linear map 4, such that dce’=(c!XRei)ds, (0<i<n).
Using these relations and (45 1)4,=(1X) 45)45, we can easily check (4.&® 1)
deet=(1R®dc)deel, (0<i<m). Hence (d:®1)4:=(1&R 4dc)4c, i.e. 4o is coas-
sociative. Similarly we can verify the existence of a counit ¢.:C—K with

(Ec® l)AC = (1 ® SC)AC =1.

A===5 c
s,‘l Jsl, gec
e 1)V
s Do (Lo Do Q.E.D.

Definition 5. Let & be a categosy with finite colimits. A cosimplicial
object Ay in &7 is said to be acyclic, if the canonical morphism

(2.2) Cosimp coker (A4, = A..1)>A,
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is a monomorphism for every #>2. An augmented cosimplicial object Ay
over A_;=A is said to be acyclic if the morphism (2. 2) is a monomorphism
for every #>1 and A—>A, is a monomorphism.

Proposition 6. If Ay is a cosimplicial module over A, then
(2.3) Cosimp coker (Aps= A,_1)=(3 ' A, 1)DCokerd, 1, (n>2).
i=1

Proof. LetA,=3"¢'A, 1and C,=A, D Coker d,_:. Since 1—#, 1A, A,
is a projection, we can define ¢: A4, 1 —>C, by
(¢'x,0), for i>0,
(1—t.)e%x, pt, 1x), for i=0,
where p:A,_;—Cokerd,_; is the canonical projection. For ye A, s, we have
g%y =((1—1t*)e%y, pt,_1e%)=((1—1,)e'e®y, pd,_it,_oy)=(c'e"y, 0)=c'e"y. He-
nce %%y =¢!e®. The other relations /e’ =¢'e/~1, (i<(j) are easily verified. Thus

e° ceey 5”‘1 30’ sy en
s

An-Z 7> An—l = — Cn
satisfies the cosimplicial relation. Suppose that
50, (TN 5"_1 0’ ceey n
A, ( ) A (f f ) X

satisfies the cosimplicial relations. Using the unique representation

y=7> > ehighe.glry; o
r=1n2i1>i2>>i;21

of an element of A4,, we put
f=2 X fheredy .
r=1n2i1>>i,21
Since (X170 (—1)1f)d,.1=0, we can define f(%o)= > 1(—1)fi(x0) where %,
is the canonical image of xo& A, ;. Hence we have a linear map f:C,—>X,
which satisfies fi= fe! (0<<¢<m). The uniqueness of f is easily verified.
Therefore C,=Cosimp coker (A,_:= A._1). Q.E.D.

gr=

n-1

Corollary 7. If C,=Cosimp coker(A,_:= A,_.), then
C.=Coker(d,_;: A, A, ).
Proof. If we put
d(x, y)=d'x for (x,y)e A, PCokerd,_,=C,
then (e --r,em ) (G0,
Ao ? 2 Aot 2
(@, -, 07°2) (@°, -, 8" 1)
satisfy the cosimplicial relation (cf. Proposition 3). Put #,=(1—¢"9""1)-.-
(1—¢'6%), (>1), then £,=0 on A, and t,=1 on Cokerd,_;, hence Co=t.(4.D
Cokerd,_;)=Cokerd,_;. Q.E.D.

n

Note that the similar results also hold for augmented cosimplicial coalgebras.
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Corollary 8. If Ey is an acyclic augmented cosimplicial module, and
if C.=Cosimp coker(E, ;= E,_;), n>1),
a:C,— E, the canonical map,

then there exists a K-linear map p: E,—C, such that 9'g=d', (0<i<n), and
pa=1.

Proposition 9. A cosimplicial module Ay is acyclic if and only if the
associated cochain complex Ay—>A,—>--—A,—>--- is acyclic. An augmented
cosimplicial module Ay over A is acyclic if and only if the associated
cochain complex 0—>A—>A,—>A,—>--—A,—--- is acyclic.

Proof. By Proposition 6 and its Corollary, C,=A4,PDC..
The canonical map f,:C,—A, is of the form

1D/ A®C > A DA,

Hence f, is a monomorphism if and only if so is fn. Q.E.D.

Lemma 10. (Cosimplicial Five Lemma)

Given an integer n>2 and a morphism 0y:E4—>By of cosimplicial
modules. Suppose that the sequence B,_,= B,_1= B, is acyclic, E,=Cosimp
coker (E, 2= E,_ ), 0, 2 is an epimorphism and 0,_, is a monomorphism,
then 6, is a monomoyrphism.

En—iz: En—l:: @n
071-2 1011—1 3 0n
Bn—Z >Bn—1 an

Proof. 1f xKerf,, then 6, ,(3'x)=6'0,(x)=0 (0<i<n). Since 0,_; is
a monomorphism, 6'x=0 therefore xeE,. It suffices to show that Kerf,=
(Ker#,)NE,=0. Since

Bn—Z :tn—ZBn—Z :tn—Zan—2(En—2) :0n-2tn-2(En—2) :0n—2(E.n—2)’

we get a commutative diagram with exact rows.

ALy L Ry, S
10 i |é,
Bt D p
By the usual Five Lemma, 0, is a monomorphism. Q.E.D.

Given a module M and a positive integer #, we define a cosimplicial module
M as follows.
M,=0, (0<k<n-1),
Mﬂ—l = M’
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M, =Cosimp coker(M;_.=>M,_,), (k>n).
Especially, M, M,,e:M, —=M,and §:M,=M,_, are represented as follows.
M,=MPMP---PM, (n+1 times),
¢! is the i-th injection, (0<i<n),
0i(mg, My, =+, M) =M+, (0<i<n—1),
M,={(m, —m, m, ---, (—1)"m)|me M},

we have the following diagram of isomorphisms

Mn—l _— Mn
d,
Morevoer, assume that A4 is an augmented coalgebra over a coalgebra A and
M is a two sided A-comodule. Then M, is a two-sided A;-comodule via the
morphism (¢!)*e: A—>A,. Hence the direct sum By =As@® My is an augmented
coalgebra over A such that B,=A,*M, for each k. We denote By=A*M,.

Since the inclusion M =M, —>A,_*M,_1=B,_; is a coderivation, the com-
’

T
posite map M ——> M,—> B, is also a coderivation. 7/:M—B, is called the
canonical coderivation. If Ay is acyclic then By is also acylic.

Proposition 11. If Ey is an acyclic augmented cosimplicial coalgebra
over a coalgebra A, then theve exists a cosimplicial coalgebra map 0y: Ex—>
G+ A over the identity of A.

A-——*Eok—__:_’_El = Eo 2
H §01 '02
Go4:>GA : GA:--

Proof. We shall construct 6, by induction on %. If #=0, then the assertion
is obvious.

Let C,, ¢, &', a, and B be the same as in Corollary 8 and let 6,:C,—G,A
be the map with 8,ei=¢'0,_;, (0<i<n).

Eu -2 e En-‘ —=—=—=F

'0,,-2 Onr |
| N
G, A= G, , A== "G,A
By the cofreeness of G,A, there exists a unique coalgebra map 6,:E,—G,A

such that 7,.10,=%,-10.8, where 7,.1=%g,.,4 (see p.57). Using relations
Pn1€0=1, 9,_sei=e""1y, 5, (0<i<n),0" 1,1 =9,-20" (0<s<n—1), we can check
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Pno10,.8'=1,_160,_,, (0<i<n). We get 0,6'=¢'0,_;, since the both side are
coalgebra maps. Similarly, we have 9,_20'0,=7,_.0,_10" and hence 6'0,=6,_,0",
0<i<n—1). Q.E.D.

§ 3. Interpretation of H*(M, A)
In this section, A is a coalgebra and M is a two sided A-comodule.

Definition 12. An a~ugrnented cosimplicial coalgebra Eyx over A with
a K-isomorphism 7:M—E; is called a two term extension of A by M, if it
satisfies the following conditions:
(1) Ex is acyclic,
(2) E, is the cosimplicial cokernel of E, ;= FE, 4, for r>2,
(3) 7 makes the following diagram commutative
4y + 44
M———(AQM)D MR A)
rl cano.

E, (") As @ E2) D (E: Q) ()" Ao)
N n

E, E:QE,
4dg,

Definition 13. Let (Ey, 7) and (E4/,t’) be two term extensions of A
by M. A morphism ¢y:Ex—>Ey’ is defined to be a morphism of augmented
cosimpliclal coalgebras such that =1,

If there exists a sequence of morphisms of extensions

3.1 EL < Ey > E3RElS > Er 5 E
then E4° and E4?" are called to be equivalent, denoted by E°~ E*".
Let Ay« be an augmented cosimplicial coalgebra over A and f:M—A4, a
normal coderivation #-cocycle. Denote by By=Ax*M the coidealization.
Put E, =Ker(t,"p—fq)
= {a'l"m | aEAn—l’ MEMn—b tneo(a):f(m)} ’
where p:B,_1—>A._1, ¢:B,_1—>M,_1=M are the canonical projections. Since
elA, . CE,_;, (0<i<n—1), we can define
E,=Cosimp coker(A,_:= E,_,).
We shall show E,_, is a subcoalgebra of B,_;. If ac A,_,, meM,_, and t,%a)
= f(m), then
AAntneo(a) =AAnf(m),
d4,2,%a)=((e)"e® )y, ,(m)+ (f &R () )l (m).
Operating £, 0° on the both side of the above equation, we get
(£ @ 1)M4, (@) =(fR () e)dy, (M),
((t°p—Sfq) ®1)dp,_(a+m)=0.
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Hence 43, (a+m)eE,.1 K B, _;.
Symmetrically we get 4p,_(a+m)EB,_1Q E,_1, and hence

dp, (a+m)e(E,.iQ B, )N (B QE.1)=E, 1 QFE,_;.
By Proposition 4, E, has the canonical (and unique) structure of a coalgebra.
By Lemma 10, E, is a submodule of B,, therefore E, is a subcoalgebra of B,.
Define a map t:M—B,=A,® M, by
t(m)= f (m)+7'(m)
where 7: M —> B, is the canonical coderivation. Since d,,1f(m)=0, f(m)=d (a)
for some a€ A,_;, and therefore t(m)=d,(a+m). Hence t(M)=Imd,=E,.

proj.
Since v/: M ~—>B —5M, is a monomorphism, z: M—E, is a monomor-

phism, and therefore 7: M—E is an isomorphism. Denoting by E(A, f) the
cosimplicial coalgebra Ex defined as above and by 6y4:By—> A4 the canonical
projection, we obtain the following proposition.

Proposition 14. Let Ay be an acyclic augmented cosimplicial coalge-
bra over A, and f:M—A, a normal coderivation n-cocycle. Then there
exists an acyclic cosimplicial coalgebra E(Ax, f) over A with a normal
coderivation ©:M—E(Ax, f). and a morphism oy:E(Ay, f)—>Ay of cosim-
plicial coalgebra such that o, is an isomorphism for k<n—2, f=o,v and
t: M=E(Ay, fn

E(A*’ f)O = :E(A*, f)n—Z :>E(A*’ f)n—l :>E(A*’ f)n
T
Jo Hﬂ'n-z lgn—l J/O'n \ M
/
AO:'_——>“' ::’An—z fm——— An—l 4 An

In particular, if Ax=GxA we write E(Ax, f)=E(f), which we shall refer to
as the standard #-term extension of A by M.

Proposition 15. If two normal coderivation 2-cocycles f and f’ are
cohomologous, then E(Ax, f)~E(Ax, f').

A——)Ao E(AI*, f)1 g E(A‘*: f)z
4| o I
= E(A*,f)z

Proof. 1f f and f’ are cohomologous, there exists a normal coderivation
h:M—>A,; such that f — f’=d,h, and therefore d,t,(x —hm)= f(m)—d.h(m)=
f'(m) for (x, m)€E(Ax, f);. We can define a linear map ¢1:E(Ax, f)1—>
E(Ay, f1): by ¢i(x, m)=(x—hm, m). It is easy to see ¢e'=¢’, (1=0,1) and
0°=08%,. Next, we should prove that ¢, is a coalgebra map. Let p: A;*M—>A;,
q:A*M—M be projections, and let i: A;—>A,*M, j: M—>A*M be inclusions.
Thus ¢; =ip—ihq+iq. Note that d4,h=(e'e Q@ h)dy'+(hRete)dy",
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Apca, - =dapru=0EQ1)da, p+(e'e @ j)du'q+(j Qie'e)du"q.
By straightforward calculations, we obtain (¢ Q ¢1)dea., n: =4dE4s r).P1e
The existence of a required morphism ¢ follows from the universal pro-
perty of cosimplicial cokernel (see proposition 4).
¢, is an isomorphism with the inverse ¢, !(x, m)=(x+hm, m) and hence

¢ is also isomorphism. Especidlly ¢, induces an isomorphism of E(Ax, f):
/_/
and E(Ax, f7)2. Q.E.D.

Proposition 16. If Ey is a two term extension of A by M, then therve
exists a normal coderivation 2-cocycle f:M—>G,A and a morphism of ex-
tension ¢x:Ex—E(f).

Proof. By Proposition 11 there is a morphism 6y: Ex—>G4+A of augmen-
ted cosimplicial coalgebras, Using a normal coderivation 2-cocycle t:M—E,
in Definition 12 we put f =80,r, which is also a normal coderivation 2-cocycle.
Let 0 =7714¢°: E;—>M, then #,6°0, =0,t:c°=f0 and we get a linear map ¢; =46,
+0' :El_)E(f)l C GlA*M.
It follows from Definition 12 that (1) #:)4dg,r=(c% X 7)d,".
(" @ 21260 dE, = (1 QR t2)dE,t6° = (% R 7))o,
Operating 6°@ 77!, we get (1R 0)dg,=(c @ 1), 0. Similarly we get (6 X 1)4E,
=(1&e)dy"0. Therefore
(910 $1)4p,=(0: Q0140 QR 0+0& b1+ R o)k,
=4, 4014 (0,6 @ 1)dylc+ (1R 016)dy 70
=4, am(01+0)
=g 5,91
Namely ¢, is a coalgebra map. Let ¢o=0,, then it is easy to see ¢;ei=c'¢g, for
1=0, 1 and 6°@; =¢d°. Therefore we obtain a coalgebra map ¢, such that ¢2§"
=¢'gy, (0<i<2) and d'¢,=¢,0%,, (0<i<1). ¢, induces an isomorphism of E;
onto E(f). by the following commutative diagram

g

% | | .

M ;ﬁEZ g > E(f);——> M.

Q.E.D.

Proposition 17. If ¢y :Ex—E(f) and ¢« Ex—E(f’) are morphisms
from a two term extension of A by M to the standard two term extensions
of Aby M, then f and f' are cohomologous.

Proof. By Proposition 16, we get the following commutative diagram.
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A—FE, &= E, & Ez

b \
A ‘—’Gl/L—E(f)l E(f)
g 02
A——GAT=GAT=G,A
‘ o) UZ?N'
A——G A2 E(f")EE(f"): M
Lﬁo Jor Jor
A— E,=—F = E,

Put 0,=0,¢; and 0,/=0,/¢/, (1<i<2), since E;=Cosimp coker (Ey= E;) and
the morphisms

By EE) (000000

satisfies the cosimplicial relations, we have a coalgebra map «:E>—>G;A such
that (we®, we!, we?) =(6,0°, 6/, 6,). Put y=1£,(0,/6°—8%); —w+6'6,), then dqyet
=t2(02’—02)e", (OSZSZ), hence dzT:tz(ﬁz,—az) and dz)"l':tzf/—tzf:f/—f.
Since 7 is a linear combination of coalgebra maps and ¢ is a coderivation, so
h=yt is a coderivation, and since 6°4=d%c=0, & is normal. Therefore we

proved f— f'=d,h. Q.E.D.

Proposition 18. If E(f)~E(f"), then f and f’ are cohomologous.
Proof. If E(f)~E(f’), there exists a sequence (3.1) of morphisms of
extensions with Ex’=FE(f), Ex*=E(f’). By Proposition 16 there are normal
coderivation 2-cocycles f; and morphisms of extensions Ex*—>E(f,), (1<i<7).
E,! E, 2t
v N YN v N
E(f)  Ey Ji“*”‘z E(f")
|
E(f)  E(f:-)
Therefore f and f’ are cohomologous by Proposition 17. Q.E.D.

Theorem. Let H*(M, A) be the second cosimplicial cohomology of a
coalgebra A with a coefficient comodule M and Ex*(M, A) the set of all
equivalence classes of two term extensions of A by M. Then there is a
bijection between Ex*(M, A) and H*(M, A).

Proof. Let [ f] denote the cohomology class containing f, and [E(f)]
the equivalence class of E(f). Then from Proposition 15 we can define a map

@ : [f1~>[E(f)]: HA(M, A)—>Ex*(M, A).

By Proposition 16, we see that @ is a surjection, and @ is an injection by Pro-
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position 18. Hence @ is a bijection. Q.E.D.
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