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§1. Introduction
Let G be a compact cnnected Lie qroup and p be a prime. Consider the
following three conditions :
1.1) H*(G;Z) is p-torsion free,
1.2) H*(G;Z,) is generated by universally transgressive elements,
(1.3) H*(G;Z,) is generated by primitive elements.
As is well known (1. 1) is equivalent to the following (1.1).
1.1 H*(G:;Z,) =A (x4, -+, x,) where deg x; = odd.

By Borel’s results in [7], (1.1") implies (1.2) and (1.2) implies (1. 3).
Browder [16] showed that if p is an odd prime then (1. 3) implies (1.1). On
the other hand if p =2 then (1. 3) does not imply (1.2) and (1.2) does not
imply (1.1). In fact G =80 (#), n >3, satisfies (1. 2) but does not satisyfy
(1.1). If G=S8Spin(2*+1), k>4, then G satisfies (1. 3) but does not satisfy
1.2).

In[117] Borel gave a characterization of (1. 1) by making use of elementary
p-grous in G. The purpose of this paper is to give a characterization of (1.2)
by making use of elementary 2-group in G. Note that if x is universally trans-
gressive (resp. primitive) then x?% is also universally transgressive (resp. pri-
mitive). So (1.2) (resp. (1.3)) is equivalent to the following (1.2') (resp.
1. 3)).

(1.2") H*(G;Z,) has a simple system of universally transgressive
Zenerators,

(1.3) H*(G;Z,) has a simple system of primitive generators.

Note that the number of simple system is an invariant of G (cf. §2). We

denote this number by s(G) (cf. §5). Then the main theorem of this paper

is the following :

Theorem 6.1. Let G be a compact connected Lie group. Then the
Sollowing three conditions are equivalent :
(6.1) s(G)<I1:(G) where I,(G) is the 2-rank of G (cf. § 5),
6.2) s =106,
(6.3) G satisfies (1.2).

To prove this theorem we use May’s spectral sequence [27] (cf. § 3) and
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the Filenberg-Moore spectral sequence [33], [34] (cf. §5). We also use the
result of Quillen [32].

The paper is organized as follows :

In § 2 we introdue some algebraic definitions and tools used after. In § 3
May’s spectral sequence which converges to Cotor4 (&, k), where A is a Hopf
algebra over a field % is considered. In § 4 CotorPe® (Z,, Z,), the E;-term of
May’s spectral sequence for some Hopf algebras over Z,, is computed by making
use of the method of [367]. In § 5 some topological tools are given. In § 6 the
main theorem of this paper is proved. In § 7 some properties of G satisfying
(1. 2) are given. The final two sections, § 8 and § 9, are applications of § 7.
In § 8 cohomology mod 2 of some homogeneous spaces are given and in §9
cohomology operations of H*(BF;Z,) are determined.

A compact connected Lie group G satisfing (1. 2) has various good proper-
ties (cf. § 7). For examples H*(BG;Z,) is a polynomial algebra and
H*(BV ; Z,) is a free H*(BG;Z,)-module, where V is a maximal dimen-
sional elementary 2-group of G.

§ 2. Definitions and algebraic tools.
Let R be a field or the rational integer ring Z. Let A=} A; be a graded

20
commutative R-algebra in the sence of Milnor-Moore [28]. If A is connected
then A has a unique augmentation ¢ : A > R (see § 1 of [28]). Then we put

as follows :

Definition 2. 1. A =Kere. A is called the augmentation ideal.

If A is of finite type and R is a field then we put as follow :

Definition 2. 2. P.S.(A; R)=P.S.(4)= i (rank,A)t'e Z[[{]1].

i=o

If Jat' and S bt € Z[[t]], X at'> > bt means a, = b, for any 7 > 0.

If P.S.(A;R) is a rational function of ¢ the following definition is due to
Quillen [31] (cf. § 2 of [327] [261]).

Definition 2. 3. dim (A;R) =the order of a pole at {=1.

Note that if A is a finitely generated connected R algebra, P.S.(4;R) is
a rational function of Z.
Moreover P.S.(A) satisfies the following :

2.1) P.S.(A)=P() /1; (1—1t%),
where ay, -+, @, are positive integers and P (¢) € Z[t]. (See Lemma 2.7
of [32].)

If P.S.(A) and P.S.(B) satisfy (2.1) and P.S. (A) > P.S.(B), then
dim (A;k) >dim(B;k) (see P. 137 of [13]).

For the details of the following definition the reader is refered to [30] or
Appendix 6 of vol. II of [38].

Definition 2. 4. A sequence of (homogeneous) elements {x,,---, x, € A}
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is called a regular sequence (or a prime sequence) if x; is not a zero divisor in
A/ (%, -, x,_,) forany i=1,2, -, 5.

Letkbeafield. Let X;, 1<i<#n+h,and Y, 1 < j < #n, be indeterminants,
where X; and Y'; have positive degrees. Note that if the characteristic of & is
not 2 then the degree of X;and Y, is even. Let {ry, :--, 7,} is a regular sequence
in the graded polynomial algebra 2[ X, ---, X, ] Put A’=k[ Xy, -+, Xoinl/
(ry, -+, 7n)and A =k[Y,, -, Y, ]. Let f:A—>A’ be a homomorphism of graded
algebras. Then we have the following:

Proposition 2.5. A’ is a finite A-module under f if and only if {f
Xy, fY.)} is a regular sequence in A’. Moreover A’ is a free A-
module. (Proof is given in p. 209 [30].)

Put A”=k[ X}, ---, X, 1. As a particular case of Proposition 2. 5:

Corollary 2.6. Let f:A—>A" be a homomorphism of graded algebra
then A" is a finite A-module under f if and only if {f (Y,), -, f(Y.)} is
a regular sequence in A. Moreover A" is a free A-module.

(Proof is given in p. 209 of [30] or [4].)

Let P be a commutative ring with unit.
Definition 2.7. Spec(P) = {¥; a prime ideal of P and {3 P}.
(For details the reader is refered to chap. 2 of [15] or [19].)

Note that (0) € Spec(P) if and only if P is an integral domain. In par-
ticular a polynomial algebra is an integral domain. So we have the following:

Proposition 2.8. If P is a polynomial algebra then (0) is a unique
minimal prime ideal (c¢f. §7).
Let R =Z; then we use the following definition.

Definition 2.10. A sequence of elements {xi, ---, x,E A} is called a sim-
ple system of generators if {x;"---x;e;, =0 or 1} is a module base of A.

Notation 2.11. A =4(x,, -, x,) if {x,---,x,} is a simple system of
generators of A.

Note that if A =4(xy, -+, x,),P.8.(A;Z,) = (1+¢degx1)... (1 +-fdeg=1) and
so P.S.(A;Z,) € Z[ ¢].

Proposition 2.12. [If {x, -, x,} and {y,, ---, y.} are both simple sys-
tems of generators of A, then n=m and there exists o € X, such that deg
yi=degx,;, 1=1,2,---,n, where 3, is the symmetric group of order n.

Proof. P.S.(A;Z,)e Z[t] and Z[t] is a unique factorization domain
[38] and so the result follows. Q.E.D.

Definition 2.13. If A =4(x,, -, x,) then we put s(A4) =n.

Note that if A =4 (xy, --+, x,) then {x4, ---, x,} is a simple system of gener-
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ators of A.

§ 3. May’s spectral sequence.
Let (A, ¢) be a Hopf algebra over a field £ with an augmentation ¢: A—>k.
Let 1 (A) =Ker e. Then we put as follows:

Definition 3.1. (F,(4A)=A if p>0
{Fp (A)=I(A)? if p<L0.
Then E (A) =3 F,(A) /F,_1(A) is also a Hopf algebra (cf. Milnor-Moore
[28]). Moreover the following is known :

Proposition 3.2. (E,(A), ¢o) is primitively generated where ¢, is the
induced diagonal map ¢o:Eq(A)>E(ARQA)=Ey(A)QE (A). (See7.4
of Milnor-Moore [287].)

Let C(A) be the cobar construction of A (cf. §4). Then by making use
of a suitable filtration of C (A), May constructed a spectral sequence as follows
[277:

Theorem 3.3. There exists a spectral sequence of algebra E,, r>1,
satisfying the following conditions:

i) E;=Cotorfe® (k, k),

ii) E.=gr (Cotor”(k, k)).
For the proof see [27].

Remark 3.4. C(A)=AQRT (I(A)), where T (I(A)) is the free tensor
algebra over I (A) (cf. §4).

May used a filtration induced by F, in Definition 3. 1.
In the next section we compute E;-term of this spectral sequence.

§4. Primitively generated Hopf algebras over Z,.

Let A be Hopf algebra over Z, with a commutative multiplication. We
also assume that P. S. (4, Z,) is a polynomial. Then the following is due to
Milnor-Moore [28]:

Lemma 4.1. i) A=ZJx, 2./ ®2"" -, 2.2 as algebra,
ii) E.(A)=A as algebra.

To compute the Ei-term of May’s spectral sequence we use the twised
tensor product construction due to Brown ([17], [21] or [36]).

Let (A, ) be a graded coalgebra over a field £ with augmentation 7:2—>
A. We may consider A=k J(A) where J(A) =Coker 7. Let L be a graded
submodule of J(A). Let ¢:L—>A be the inclusion and : A—>L be a map sat-
isfying fo¢c=1;. Let s: L—>sL be the suspension. Let § =s¢f and z=c¢os7%. Let
T(sL) be a free tensor algebra and I be the ideal of T'(sL) generated by Im¢
(6 8) (Ker 0), where ¢ is the multiplication of T'(sL). Let X =T(sL)/I. Then
the map d = —¢°(@®8)opot on sL define a map d:X—>X satisfying dod =0
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(cf. §1 of [367]). Since d-0+¢+(®8)o¢ =0 holds, we now can construct the
twisted tensor product construction X =A® X with respect to 8. That is X
=A® X is an A-comodule with the differential operator

d=1Rd+ (1R¢) - (1QIR1) - ($X1).

If 6 is the projection A =k J(A)—>J(A) and L = J(A) then X is C(4);
the cobar construction of A.

So if 4 is the projection (X, d) is a quotient of the cobar construction. So

if (X,d) is acyclic H(X, d) = Cotor* (k, k) as algebra (cf. [21] or [36]).
Now consider the following Hopf algebra (Ao, ¢o) : Ao = Z:[ %4, +-+, X1/

(xlzilﬂ, .ee, xnzi"ﬂ) as algebra and bo(x:) =0 for i=1,2, -, n, where @ (x)
=6 (x) +xR1+1Rx.

Let L={x1, .2, %1%, -+, 2.2, . %, 2,2, -+, 2"}, 0: A;—>L be the pro-
jection and y,; = s(x?) for x;# € L. Then we can easily prove the following:

Lemma 4.2. L is a simple system of primitive generators of A,.

Let 1= (ey,0, €1,15 ***» €nyin) foOr €;,;=00r 1,
Let

x'=x

Let ]= (51’ "',63) and ],’: (61,, “',63’) fOI' 6i+51, é 1 alld S = i1+“'+in+n.
Put J+ ] = (e1+el, -+, 6,+¢/). Let | J|=e;+---+e¢, then we can easily prove
the following:

Lemma 4.3. ¢, (") = X sz Rz

+J7 =

Soif |[I|>83, 2’ Lorx” & L. If |I|=2,thatis x'=x+x" for x,x' € L,
So(xex) =22 RQL1+1QRQxx"+2'Qx+xQx’. Clearly Kerf is generated by
W I1=>2) I |I1>3,¢0R0)¢=0. If |I|=2, $(0@0)¢y(xx") =g (s,
sx’) +¢ (sx’, sx) =[sx, sx’].

Clearly d(x) =¢(0R0) (x®1+1®x) =0 for x€ L. So X =4,X =
A®Z,[sL]. d(x®1) =(1®¢) - (1XIK]1)  ($®1) (xX1) = (1X¢) - (1&
IRD(*RIRI+1Rxr®1) =1®s((x) for x€ L and so d(1®s(x))=0.
Now we compare this with Koszul resolution of the exterior algebra A (xy,,,
X115 s Xiirs ***» Xmi0s ***s Xmyin) - Clearly these are chain equivalent and so (X, d)
is acyclic. So we have the following:

Theorem 4.4. Cotor(Z,, Z;) = Z>[sL] as algebra.

S0t 21t +27ey, ity Sn0 ek 2ey g,

So by Lemma 4. 1 and Theorem 4. 4 we can compute the E;-term of May’s
spectral sequence for some Hopf algebra over Z.,.

§5. Topological tools.

In this section various topological tools used after are introduced. Let G
be a compact connected Lie group and p be a prime, then H*(G; Z,) is a Hopf
algebra over Z,. So H*(G;Z,) has a simple system of generators. So we
define as follows:
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Definition 5.1. s(G) =s(H*(G;Z,)) (cf. §2).
Let G be a compact Lie group then the following definition is due to [13]:

Definition 5.2. /,(@) is the dimension of a maximal dimensional eleme-
ntary p-group in G.

The following theorem is due to Venkov [37].
Theorem 5.3. H*(BG;Z,) is finitely generated.

So P.S.(BG;Z,) =P.S.(H*BG;Z,); Z,) is a rational function of #. So
dim (H*(BG; Z,); Z,) < 0.

Theorem 5.4. [,(G)=dim (H*(BG;Z,);Z,).

The above theorem is Corollary 7.8 of Quillen [32]. (See also [31].)
The part [, (G) <dim (H*(BG;Z,) ; Z,) is due to [13].

The following two theorems are also due to Quillen:

Theorem 5.5. Let G and G’ be compact Lie groups and f:G—G’ be a
homomorphism of Lie groups. Then H*(BG;Z,) is a finite H* (BG';Z,)
module under f* if and only if Kerf is a finite group and (ord (Kerf),
p) =1. (See Corollary 2. 4 of [32].)

Theorem 5.6. i) Let & (G;p) be all conjugacy classes of eleme-
ntary p-groups in G. Then the correspondence @:57(G)—>Spec(H* (BG;
Z,)) given by ® (V) =Keri*; H¥(BG;Z,)>H*(BV ;Z,) /J0 is an injection.

i) @WV)cd V') if and only if there exists g € G such that gV'g™ C
V.

iii) The correspondence @ gives a one-one corrvespondence between
conjugacy classes of maximal elementary p-groups and minimal prime
ideals of H*(BG; Z,).

iv) P&Spec(H*(BG;Z,)) is contained in Im @ if and only if Y is
homogeneous and invariant under 2',i>0, where P' is the Steenrod
reduced power operation.

Proof. Put X = {one point} in Proposition 11.2 and Theorem 12.1 of
[32]. See else [31]. Note that H*(BZ,;Z>) is a polynomial algebra.

Remark 5.7. i) If G is a closed subgroup of G’ then by Theorem 5. 5
H.(BG;Z,) is a finite H*(BG;Z,)-module for any p.

ii) We can prove Theorem 5. 3 by Theorem 5. 5 as follows: Since G is a
closed subgroup of U (V) for sufficiently large N. So H*(BG;Z,) is a finite
H*(BU (N);Z,) = Z,[ci, -+, cx] module. But as is well known H*(BU (N);
Z,) is Noetherian and so is H*(BG;Z,) (cf. [37]).

iii) The part /,(G) <dim (BG;Z,);Z,) is also proved by Theorem 5. 5.

Let G be a compactly generated topological monoid (e.g. a compact Lie
group). In 1959 Eilenberg-Moore constructed a new type of spectral sequence
as follows:
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Theorem 5.8. There exists a spectral sequence of algebra {E.(G),
d,(G)} such that

(1) E.(G) =Cotor#"\¢: 20 (Z,, Z,),

(2) E.(G)=gr(H*(BG;Z),)),

(3) Furthermore, this spectral sequence satisfies naturality for a
homomorphism f:G—>G'. (See [33] and [34].)

Remark 5.9. The above spectral sequence is very useful for computing
H*(BG;Z,). In fact it collapses if G satisfies (1. 2). This is an easy proof of
Borel’s theorem (Proposition 16. 1 of [7]) (cf. §6).

ii) The above spectral sequence is usually called the Eilenberg-Moore
spectral sequence.

§ 6. Main theorm
The purpose of this section is to prove the following theorem.

Theorem 6.1. Let G be a compact connected Lie group and s(G) = n.
Then the following three conditions are equivalent:

(6.1) [(G)>s(@),
(6. 2) 1, (G) =s(@),
(6. 3) G satisfies (1.2).

For the proof of this theorem we need the following Lemma 6. 2.

Lemma 6.2. (6.2) is equivalent to the follwing (6. 4):
(6.4) May’s spectral in Theorem 3.3 collapses for A=H*(G;Z,)
and the Eilenberg-Moore spectral sequence collapses for G.

Proof. The part (6. 4) implies (6. 2):

Since the two spectral sequences collapse, by easy arguments H* (BG; Z,)
=2Zs[y1, s ¥.1. Thus [,(G) =dim (H*(BG;Z,);Z,) =s(G) by Theorem 5. 4.

The part (6. 2) implies (6. 4):

If the spectral sequence in Corollary 3.4 collapses, Cotor*(Z,, Z;) =
Z,[ ¥, -+, ¥.] where n =5(G). So we only need the following Lemma 6. 3.

Lemma 6.3. Let k be a field and R=Fk[y,, -, y.]. Let d:R—>R be a
derivation, d*=0 and d+#0 then P.S.(H(R;d)<P.S.(R)-(1—t*) for
some a > 0.

Proof of Lemma 6.2 (continued). If the spectral sequence of May does
not collapse, by Lemma 6.3 P.S.(Cotor!(Z,, Z,)) K P.S.(Z,[y1, -+, ¥.1) ¢
(1—1¢°) for some a>0. So P.S.(H*(BG;Z;)) < P.S.(Z:[y1, -+, y.1)» (1 —12)
and so dim (H*(BG;Z,))<n. If May’s spectral sequence collapses and the
Eilenberg-Moore spectral sequence does not collapse then also by Lemma 6. 3

dim (E.(G); Z,) <n=s(G). Q.E.D.
Proof of Lemma 6. 3.
Since d is a derivation and d #+ 0 we may assume that d(y,) = f#0. Let
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I be the ideal of R generated by f. Consider the following diagram:

Kerd—%> R/I
|
Kerd/Imd=H (R;d),
where ¢ and p are natural projections. Note that Ker¢ =KerdNI and
Kerp =Imd.

If g Ker¢ then g =9:+ f for g, € R. Then d(9) =d(g:)  f, since d (f)
=d?*(Y,)=0. But g€ Kerd and R is an intergral domain, d(g,) =0. So
d(gi+y1) =+¢1f==+¢9 andso Ker p D Ker¢. Thus P.S.(R/I) >P.S.(H (R;
d)). But P.S.(R/I) =P.S.(R) « (1—#9&f) and so the result follows. Q.E.D.

Proof of Theorem 6.1. Put A=H*(G;Z,).

(6.1) implies (6.2): Consider the following two spectral sequences in (6. 4):

E,=Z,Jy4, -, y.]=>Cotor*(Z,, Z,),

E, (G) = Cotor*(Z3, Z,) = H* (BG,Zz) .

Clearly P.S.(H*(BG;Z5)) < P.S.(Z,[y1, -+, ¥.]) so dim (H*(BG;Z5); Z,) <
7 thus [, (G) < n. (6. 2) clearly implies (6. 1). So (6. 1) and (6. 2) are equivalent.
(6.3) implies (6.2):

Since G satisfies (1. 3), Cotor4(Z;, Z2) = Zo[ ¥1, -+, ¥.]. But G satisfies
(1. 2) each y; is a parmanent cycle and so H*(BG;Z,) = Z,[ y;, +*+, ¥, ]. Note
that this is an easy proof of Borel’s theorem (§ 9 of [97]). So we have (6. 4).

Clearly (6. 4) implies (6. 3) and so (6.2) implies (6. 3). Thus (6. 2) and
(6. 3) are equivalent. Q.E.D.

Now we give some examples.
Let /(@) be the rank of G. Note that /,(G) >/ (G) for any p and [,(G) =
I(@) for almost any p. If [,(G) >I(G) then H4(G;Z) has p-torsion.

Examples 6.4. i) If G satisfies (1.1) l,(G)=1(G). Note that any
maximal elementary 2-group is contained in a maximal torus.

ii) G =80 n) satisfies (1.2) and s(SOn))=10:(S0n))=n—1,

ili) G =S8pin(n), n> 10 does not satisfy (1.2) ([30]),

iv) G = Es does not satisfy (1. 2) but 1, (Es) =1 (E,)

(cf. Example 7. 12).

Proposition 6.5. i) s(Spin(#n))=®m—1) —[log.(n—1)],
i) /:(Spin(n)) =n—log: R(n),
where R (n) is the Radon-Hurwitz number (§ 6 of [30]).

Proof. i) is due to Borel [9] and ii) is due to Quillen [307]. Q.E.D.

By iii) of Examples 6. 4, s(Spin(n)) >1,(Spin(n)) for n > 10.

Due to Borel-Siebenthal [14] E;s contains a closed connected subgroup H
of local type Ds and n; (H) = Z,. Then we can easily get the following:

Lemma 6.6. H is SO (16) or Ss(16) (Semi-Spin (16))

(cf. p. 330 of [5]).
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Due to [26], Es does not satisfy (1.2). Due to [3], s(Es) =15. So by
Theorem 6. 1, [, (Es) < 14. Since /(SO (16)) =15, H is not SO(16).

Propositon 6.7. H is Ss(16).
The homogeneous space Es/Ss(16) is an irreducible symmetric space and

denoted by EVIII ([187]). See also [20].

We use the following notations:

i) (ay, -+, a,) is a diagonal matrix
i) dn)={£@Q,--,1)sSpn)}. a,
iti) Py, -,n)=8Spm) X--XSpn;)/4d(ni+---+ny).
iv) 4; is the j-hold diagonal map.
v) 4:SpQ)={(a,--,a)Spk);acs Sp(1)}.
Remark 6.9. 4(n,+---+mn;) is contained in the center of Sp(#;+---+
n;). So P(n,, -+, n;) is a compact connected Lie group. Since m; (P (4, -,

n;)) = Zs, P(ny, --+,n;) does not satisfy (1.1).
We can construct examples satisfing (1. 2) by making use of P (#,, --, n;).

Notations 6. 8. a 0
~. |€Spn).
0

Let i
4(n,)— Sp(n,)
X : X

4(n) — : :
4; x : X
4(n;)—> Sp(ny)
be the inclusion (m=#n,+---4+n;). Then as is well known:
(6.5) H*(BA(n); Zy) = Zy[ p], degp=1.
H*(B(4(n,) X---XA4ny); Zs)) = gng* (B4 (ny) 5 Z»)
=Z[t;, -, t;], degt,=1.
H*(B(Sp(1) X--x8p(1)); Z,) =@ H*(BSp(1) ; Z,)
=Z2[ql.l’ o+, q1,7), degqy =4 ’
Note that 4;*(t,) = p and i*(q1.,) =t
So we have the following:
Lemma 6.10. If one of {n, -, n;} is odd, s (P (ny, -+, n,)) =n+1.
Proof. Consider the Serre spectral sequence for the fibering
Sp () X+ XSpn)>P ny, -, n;) >Bd(n).

The above result follows from (6. 5) and Lemma 10. 1 of [8]. Since V () in
[23] is contained in P (#y, *++, #;), Lo (P (14, -++, 1;) ) =n+1 for any #ny, -+, n;.

Thus we have the following:

Theorem 6.11. If one of {ny,--,n,;} is odd, P (ny,---,n;) satisfies (1. 2).
Example 6.12. H*(BP(1,3); Z2) =Z:[ 32, Y35 Y45 V85 Y12

Remark 6.13. H*(BPSp(2n+1); Z,) is determined in [23].
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§ 7. Properties of compact connected Lie groups satisfing (1. 2)
Let G be a compact connected Lie group satisfing (1.2). Then we get
the following:

Theorem 7.1. i) Every maximal elementary 2-group is conjugate
to each other.

ii) Let V be one of the maximal elementary 2-groups then the Serre
spectral sequence for the fibering

(7.1) G¢/v-L.Bv_.B¢
with Z, coefficient collapses.

iii) In paticular i*:H*(BG;Z,) >H*(BV;Z,) is injective, p*:H*
(BV;Z,)>H*(G/V;Z,) is surjective and H* (BV ;Z;) is a free H* (BG ;
Z,) -module.

Remark 7.2. We can compute cohomology operation of H*(BG;Z,)
and H*(BG;Z,) by iii) of Theorem 7. 1.

Proof of Theorem 7. 1.
i) Since H*(BG;Z,) is a polynomial algebra, Spec (H* (BG;Z,)) has
a unique maximal point (i.e. H*(BG;Z;) has a unique minimal prime ideal)
(0). By iii) of Theorem 5. 6 every conjugacy class of maximal elementary 2-
groups of G corresponds to a maximal point of Spec (H* (BG;Z,)). So we get
i) of the above theorem.
ii) Consider the principal ¢ bundle

(7.2) ¢ G/ v—By.
The Serre spectral sequence for (7. 2) with Z; coefficient has the following E»-
term:

Ez;H*(BV;Zz)@H*(G,ZZ) ZH*(BV,Z2)®A(x1, ) xn)

where {x,, +-, x,} is the simplesystem generators of G satisfing (1. 2) and n=/,
(@). Since {x,, -+, x,} is universally transgressive, {x;, ---, x,} is transgressive
with respect to (7.2). Put ¢ (x;) =y, € H*(BG;Z;) then H*(BG;Z,) = Z,
[y, ¥a]. Butly(G) =n and so H*(BV;Z,) = Z,[ t,, -+-,t,] where deg f; =1.
By i) of Remark 5. 7 and Corollary 2. 6, {i*(y,), -+, 1% (y,)} is a regular seque-
nce. Since x; is transgressive with ' (x;) = i* (x;) where 7’ is the transgression
in (7.2), E21=0if ¢ # 0. So p* is surjective and we get ii) of above theorem.
iii) is easy. Q.E.D.

Remark 7.3. We can also prove ii) of Theorem 7.1 by making use of
the following fact:

{t*(y1), -+, 1*(y,)} is a regular sequence and so H*(BV;Z,) is a free
H*(BG;Z,)-module (cf. Corollary 2. 6). The result follows from the following
spectral sequence:

E.=Toru«se;z,) (Z2, H* (BV ; Z5))= H*(G/V ; Z5) (ct. [4].
Example 7.4. Compact connected simple G satisfing (1.2) is clas-
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sified in [23].
1) If G satisfies (1.1),V is containd in a maximal torus.
i) IfG=8S0n) V is as follows:

.0
V:l(e )eSO(n);si= +1b = (Z)"t  (See [12])
0

en

i) If G=GyV is given in § 10 of [12].

iv) If G=S8pin(7), Spin(8), Spin(9) or F,,V is given in [11] and 1)
of Theorem 7.1 is proved in [107] by making use of the Lefschetz fixed
point theovem and in [117.

v) G=PSp@2n+1) then V is given in [23].

Remark 7.5. i) The above Theorem 7.1 is pointed out by Borel for
special cases ([9]).

ii) If G satisfies (1. 1) and maximal elementary 2-groups are replaced by
maximal tori then the corresponding results are well known for any prime p.

iii) If Z; isreplaced by @, and maximal elementary 2-groups are replaced
by maximal tori then the corresponding results are also well known for any
compact connected Lie group. (See Borel [9]. See also [1].)

Let (G,U) be a pair of a compact connected Lie group and its closed
subgroup. We consider the following conditions for (G, U)
(7.3) G satisfies (1.2) and H*(BU ;Z,) = Zy[ 11, +, tasn ]/ (71, *++, 71), where

n=10(G) and {ry, -+, 7.} is a regular sequence in ZJ[t, -, tninl.

Remark 7.6. We can prove that dim (k[¢y, -, tnen )/ (71, oo, 1) R) S 10
if and only if {7y, -+, 7.} is a regular sequence in E[#;, -, f+n ]

Now we prove the following:

Theorem 7.7. If (G,U) satisfies (7. 3) we have the following:
i)  The Serre spectral sequence for the fibering

(7. 4) G/U-%> BU - BG
with Z; coefficient collapses.

ii) So i* is injective, p* is surjective and H* (BU;Z;) is a free H*
(BG; Z,)-module under p*.

Proof The proof is similar to the proof of Theorem 7. 1.

Proposition 7. 8. If U is one of the following, (G,U) satisfies (7. 3).
i)  An extra special 2-group in G and 1,(U) =1,(G@),
ii) A closed connected subgroup of G satisfing (1.2) and l,(U) =
1, (G).

For i) see [30] and ii) is clear.

Examples 7.9. The following (G,U) satisfies (7. 3):
i) If Hye(G;Z) and Hy(U;Z) arve 2-torsion free and 1(G)=1(U)
where [ (G) is the rank of G. Note that in this case | (@) =1,(R).
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ii) (F,, Spin(9)), (F., Spin(8)), (Spin(7),G,) et.c.
(See V. of Borel [8].)
i) G=Spn) and U=V (n) in [23].

Remark 7.10. Borel-Hirzebruch defined the 2-root of G by making use
of Ad|V, where Ad:G—>Aut(9) is the adjoint representation of G ([12]). If
G satisfies (1. 2), by i) of Theorem 7.1, 2-root is an invariant of G. But if &
does not satisfy (1.2) we must consider all conjugacy classes of maximal
elementary 2-groups.

Remark 7.11. If the pair (G,U) satisfies (7.3) we can compute the

cohomology operations of H*(BG;Z,) by making use Im ¢* and the cohomo-
logy operations of H*(BU ; Z,).

Example 7.12. E does not satisfy (1.2) ([25]). Due to [2], s(Es) =
7 and 1(Es) =6, so l;(E¢) =6. PutV,and V, as follows:
E63F4DV1:(Z2)5,
EioT¢ DOV, =(Z,)".
Then V. is not contained in any maximal torus. So Eg has at least two
different conjugacy classes of maximal elementary 2-groups.

Remark 7.13. Due to Kono-Mimura [25],
H*(BEs;Z,) =Z3[ ¥4, Yo, Y15 Y105 Y185 V32, V34, Yas 1/ 1,
where [ is the ideal generated by y:¥10, Y718, ¥7¥s« and y3,+---, and deg y;, = 1.
Then @ (V1) = (¥10, Y18, ¥s4) and @ (V) = (7).

§8. Cohomology mod 2 of some homogeneous spaces
In this section cohomology mod 2 of some homogeneous spaces are com-

puted. In this section G (resp. F,) is a compact connected simple Lie group

of type G, (resp. F'y). Then the following is well known ([7]):

H*(Gy3 Zy) = Zo[ %3]/ (x:*) Q A (x5), where deg x; =1 and Sqx; = xs,

G, satisfies (1. 2),

H*(BG3; Z,) = Z,[ ys, Yo, Y71, wheve degy; =1, ¥s = Sq%y: and y, =
Sq°ys.

H* (F4,Z2) = Zzl:x;;]/(x34) ®A (xs, X1s5, xza) s where degx,- =1 Xs =
Sq%xs and x.3 = Sq°%1s,

(8.2) A{F,satisfies (1.2),

H*(BF ;Z5) = Zo[ ¥4, Yo, Y15 Y16, Y24, where deg y; =1, ¥ = Sq*ys, ¥z
=Sq¢’ys and y:1=Sq*yie.

H*(SU (n); Z) = A(es, €5, -+, €2,_1), where dege; =1,

8.1)

(8.3) H*(BSU (n); Z) = Z[c3,Cs,*+,C, ], where deg c; = 2i and ¢, = t(es;_1).
8. 4) H*(Spn); Z) = A(es, €1, -+, €4,_1), Where dege; =1,

) H*(BSp(n); Z) = ZLq1, -+, q.] where degq, = 4i and q; =t (€4;-1)
8.5) H*(BSO (n); Z;) = Z.Lwz, ws, -+, w, ], where degw; =i and cohomo-

logy operations are determined by Wuw’s formula.
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Due to Borel-Siebenthal [14] G; contains a closed connected subgroup H
of type 4;X A;. The homogeneous space G/ H is an irreducible symmetric
space and denoted by G (cf. Cartan [18]). Then we can easily get:

Lemma 8.1. H is isomorphic to one of the following:

(8.6) Sp(1) xSp(1),

(8.7) Sp(1) xS0 (3) = Ss(4),
(8.8) SO (4),

(8.9) S0 (3) XSO (3).

By the argument of 2-rank (8.9) is impossible. Since H*(B(Sp(1) X
Sp(1)); Z,) = Z5[q1, q.], where degq, = degq,’ = 4, i*(ys) = i*(y2) =0, where
i:H—G@ is the inclusion. So it is impossible by Theorem 5.5. On the other
hand if (8.7) or (8. 8) is true then (G, H) satisfies (7. 3). So we have:

Lemma 8.2. If (8.7) or (8.8) is true then {i* (ys),i*(ys),i*(y7)} is a
regular sequence.

Note that H*(B(Sp (1) XS0(3)); Z.) = H*(BSp(1);Z.) X H*(BSO(3);
Z;) = Z:[q: 1R Z [ w:, ws] as algebra over &7, So if (8. 8) is true then #* (yy)
= aq,+pw,? for a, B Z;. Then i*(y,) = Sqg%* (ys) =0. So it is impossible.
Thus we have the following:

Lemma 8.3. H=S0(4) as Lie group.®

By (8. 1) and (8 5) i* (y4) =al, +ﬁW22, i* (ye) = awsW, +ﬁW32 and * (y'{)
= awsw; for o, = Z,. By Lemma 8.2, a,3=1.

Thus by Theorem 7. 7, we have the following:

Theorem 8.4. H*(G;Z,) = Z [ w., ws]/(w:*+ws?, w.w;), where w,=
o* w; for p:G—>BSO0 (4), and so Sq'w, = ws.

Let # (@) be the total Wu class of G and W (G) be the total Stiefel-Whitney
class of G. Then by Wu’s formula [29], we have the following:

Theorem 8.5. i) u(G)=1+w,+ws+w,?
11) W (G) == 1+ﬁ22'+w32+i)24.
Remark 8.6. The above Theorem 8.4 and ii) of Theorem 8.5 are
proved in [12] by making use of Caylay number and the 2-root of Go.

Due to Borel-Siebenthal [147] F'4 contains a closed connected subgroup, K
of local type A; XC;. The homogeneous space F,/K is an irreducible sym-
metric space denoted by FI [18]. By the similar argument we have:

Theorem 8.7. i) K=P(1,3)=Sp(1)-Sp(3) for Sp(1)NSp(3) =Z.,
i) P.S(FI)=P.S.(G)« (1+18) « (14212).

Remark 8.8. To determine H*(FI;Z;), u(FI), and W (FI) we need
cohomology operations of H* (BK ;Z,).

i) Due to Baum-Browder (p.330 of [5]) S8(4)=S0(4) as Lie group. But it is not true.
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Now we consider an example of different type. F (n) =Sp n)/SU (n),
n=2. Then Sp(n) and SU (n) satisfy (1.2) but (Sp (n), SU (n)) does not
satisfy (7. 3), since [,(Sp(n)) =n and I,(SU (n)) =n—1. Let i:SU (n)—>
Sp (n) be the inclusion. Note that
(8.10) *(q.) = <_1)i,-+£2i (=1)csee for ¢,=0 ([7]).

So i*(q,) = —2c,. By the Serre exact sequence [35] for the fibering
F (n) >BSU (n) >BSp (n), we have the following

Lemma 8. 9.
0, 0<i<3

Hi(F(n);Z)= Z, i—4

Now we consider the Serre spectral sequence for the fibering
(8.12) Sp(n)—>F (n)—>BSU (n)
with Z; coefficient.

E;=Zs[cs, 3,0, €, 1Q A (3, €2, -+, €40_1),
where ¢; and e,;_; are the mod 2-reduction of ¢; and e4;_;. Since e4;_; is unive-
rsally transgressive, €4;_; is transgressive with respect to this fibering. = (es;_1)
=1i*(q;) =c,;* by the mod 2 reduction of (8.10) for j=2,3,:--,#, and = (e3)
=0. Clearly {t(e:), -+, v (€1,_1)} is a regular sequence. Thus we have:
E.= A(es, C2y C3y **°, C,,).

Thus H*(F (n); Z,) is generated by s € H®(F (n); Z;) and ¢; = p*¢;, 2<i <
n. Clearly ¢,2=0.

Since HY(F (n); Z) = Z,, Sq'es + 0. But H*(F(n); Z,) = Z, generated by
C; so Sq'e; = ¢;. By the dimensional reason Sg%¢; =0 since H®(F (n); Z,) =
0. Thus e,2 = Sq’¢; = Sq'Sq%; = 0. Now we have the following:

Theorm 8.10. H*(F (n); Z,) =A(es, Cs, C3, **+, Cu).
Cohomology operations are computed by Wu’'s formula and Sq'es = ¢, and
quzs =0.

Remark 8.11. Note that p* is not surjective. We can also compute
H*(F (n); Z,) by making use of the spectral sequence in Remark 7. 3. In fact
this spectral sequence collapses (see Baum [4]).

§9. Cohomology operations of H*(BF,;Z,)

The purpose of this section is to determine the cohomology operations of
H*(BF,;Z,). Since the pair (Fy, Spin(9)) satifies (7. 3) we can use Remark
7.11.

First we determine the cohomology operations of H* (BSpin(9);Z,).
Let #:Spin(n) —>SO0 (n) be the covering projection and 4:8pin (n) >0 (2") be
the spin representation, where 2" is the Radon-Hurwitz number (Quillen [307).

Then the following is due to Quillen [30].

Theorem 9.1. i) H*(BSpin(n);Z,) =Ima*Q Z,[ex], where ex=e
= wo (4). :
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i) w;(d4)#0if and only if i =0,2"—2"1 20 —20"2 ... 2h 27 2t where
r=0,107r2.

iil)  {wun (4), won_gn1(d), +++, Wor_or (4), won (4)} is a regular sequence in
H*(BSpin(n); Z,).

For details see § 6 of [30].

The following Theorem 9. 2 is easily proved:

Theorem 9.2. Sqg!(e) =w;(d)+e. So Sqi(e) #0 if and only if i=0,
2001 L 22T 2R,

Proof. Since H*(BO (2"); Z,) =Z.[w/, ---, w's], where w’; is the i-th
universal Stiefel-Whitney class. By Wu’s formula [8], Sq'(w's») = w';w's.
But e = 4*(w'y) and w;(4) = 4*w,’. So Sq'(e) = Sq' (4*w'y) = 4*Sq'w's =
4% (W' w'a) = (d*w';) (d*w'y) = w; (d)e. Q.E.D.

Pemark 9.3. If x = Imz* then we can compute Sqi(x) by Wu’s for-
mula.

Example 9.4. n#=8then Z=3 and »=0.

H*(BSpin(8); Z,;) = Z:[ w,, ws, w1, Ws, €s ], where w; is the z* image of
the ¢-th universal Stiefel Whitney class in H*(BSO(8); Z:) and deges =8.
Since wy (4) # 0 so w4 (4) = w, and so we have the following:

wo(4) =1, wi(d) =ws, wes(d) =ws, w:(4) =w, and ws(d4) = es.

Example 9.5. #=9then =4 and r=0.
H*(BSpin(9); Z;) = Z,[ w,, we, W+, Ws, €16, where w;, €;5 are as above.
We may put ws(4) = aws+ pw,® for a, fE Z,.

Then Wi (A) = alWglWy +‘Bw62,
w4 (4) = awswes+ pw-?,
and Wis (A) = alWsglly.

By iii) of Theorem 9.1, a =8 =1 and so we have the following:
In H¥*(BSpin(9); Z,)

€16 i= 0
€16 (Ws+w,?) i—=38
€16 (WsWs+we?) 1=12
9.1) Sqt(e1s) = €16 (WsWs~+wr?) =14
e16Wsll7 i=15
elgz 1= 16
0 others.

Let i:Spin(9) > F, be the inclusion. Then the following is well known:

Lemma 9.6. H*(BF,;Z,) = Z:[ Y4, Y6, Y7, Y16, V24 ] where deg v, =1, ys
=S8¢%4, ¥ =Sq°ys and y'zs = Sq%y ..

By ii) of Theorem 7.7, i* is injective. So #*(y,) = w, and so 7* (y¢) = ws
and 2*(y;) = w;. Thus we may assume that i*(y'®) = ae,s+ pws? +ywsw,? for
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Since Sq*yis is decomposable, 7*(Sq*yie) = Sq*i* (¥16) = 7Wstws® + yWste®
is also decomposable in Im#*. So y =0. On the other hand #* (y'24) = aess (s
+w,2) +Bws?w,?. By i) of Remark 5.7 and Corollary 2.6, {i* (y1e), * (324)}
is a regular sequence. So a=f=1.

Definition 9. 7. Put ¥z = 24+ y16Y4%

Then 7* (y24) =¢€4Ws+ eww.ﬁ + Ws2W42 + e1ew42 -+ w82w42 = €16Ws.

Now we can easily get the following:

Theorem 9. 10.

SO U A WNR O S

1

Proof. i*(Sq*y.s) = Sq* (e16Ws) = €16Wsts.
¥ (924)4) = €16WsWy.
Since 7* is injective, the result follows.

(Sq*yie and Sq'ys..)
Sq'y1e

Yise

[eNeNoNeoNoNeoN-]

yz4+yley42
0
0
0
Y2s¥st+Y16Y4®
0

Y2sYe+ V16Y7®
BT84
y162

[=NeNoNeNoNeoNoNe!

Sq'yes

Yas
0

0
0
BTS2
0
Yasde
BETN A
Y2y a®
0
0
0
Vs (Ya:+54°)
0
Yo (Y22t y6y4?)
Y2uY1Y4*
Y24 (Y16t Y6%Y4)
0
Y24 (¥6*+ y7%94)
Y21Y6 Y7

Y (yley4+y72ye)

Y24y

Y24)16)e

Y21Y16Y7
Va4?

Q.E.D.
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