On the 2-rank of compact connected Lie groups

By
Akira KONO

(Received Feb. 10, 1976)

§ 1. Introduction

Let \boldsymbol{G} be a compact cnnected Lie qroup and p be a prime. Consider the following three conditions:
(1.1) $H^{*}(\boldsymbol{G} ; \boldsymbol{Z})$ is p-torsion free,
(1.2) $H^{*}\left(\boldsymbol{G} ; \boldsymbol{Z}_{p}\right)$ is generated by universally transgressive elements,
(1.3) $H^{*}\left(\boldsymbol{G} ; \boldsymbol{Z}_{p}\right)$ is generated by primitive elements.

As is well known (1.1) is equivalent to the following (1.1').
(1. $\left.1^{\prime}\right) H^{*}\left(\boldsymbol{G} ; \boldsymbol{Z}_{p}\right)=\Lambda\left(x_{1}, \cdots, x_{n}\right)$ where $\operatorname{deg} x_{i}=$ odd.

By Borel's results in [7], (1.1') implies (1.2) and (1.2) implies (1.3). Browder [16] showed that if p is an odd prime then (1.3) implies (1.1). On the other hand if $p=2$ then (1.3) does not imply (1.2) and (1.2) does not imply (1.1). In fact $\boldsymbol{G}=\boldsymbol{S} \boldsymbol{O}(n), n \geq 3$, satisfies (1.2) but does not satisyfy (1.1). If $\boldsymbol{G}=\boldsymbol{S} \boldsymbol{\operatorname { p i n }}\left(2^{k}+1\right), k \geq 4$, then \boldsymbol{G} satisfies (1.3) but does not satisfy (1.2).

In [11] Borel gave a characterization of (1.1) by making use of elementary p-grous in \boldsymbol{G}. The purpose of this paper is to give a characterization of (1.2) by making use of elementary 2 -group in \boldsymbol{G}. Note that if x is universally transgressive (resp. primitive) then x^{2} is also universally transgressive (resp. primitive). So (1.2) (resp. (1.3)) is equivalent to the following (1.2') (resp. (1.3')).
(1.2') $H^{*}\left(\boldsymbol{G} ; \boldsymbol{Z}_{2}\right)$ has a simple system of universally transgressive generators,
(1. $\left.3^{\prime}\right) H^{*}\left(\boldsymbol{G} ; \boldsymbol{Z}_{2}\right)$ has a simple system of primitive generators.

Note that the number of simple system is an invariant of \boldsymbol{G} (cf. §2). We denote this number by $s(\boldsymbol{G})$ (cf. §5). Then the main theorem of this paper is the following :

Theorem 6.1. Let \boldsymbol{G} be a compact connected Lie group. Then the following three conditions are equivalent:
(6.1) $\quad s(\boldsymbol{G}) \leq l_{2}(\boldsymbol{G})$ where $l_{2}(\boldsymbol{G})$ is the 2-rank of \boldsymbol{G} (cf. §5),
(6.2) $\quad s(\boldsymbol{G})=l_{2}(\boldsymbol{G})$,
(6.3) \boldsymbol{G} satisfies (1.2).

To prove this theorem we use May's spectral sequence [27] (cf. § 3) and
the Eilenberg-Moore spectral sequence [33], [34] (cf. §5). We also use the result of Quillen [32].

The paper is organized as follows:
In § 2 we introdue some algebraic definitions and tools used after. In § 3 May's spectral sequence which converges to $\operatorname{Cotor}^{\boldsymbol{A}}(k, k)$, where \boldsymbol{A} is a Hopf algebra over a field k is considered. In $\S 4 \operatorname{Cotor}^{E_{0}(\boldsymbol{A})}\left(\boldsymbol{Z}_{2}, \boldsymbol{Z}_{2}\right)$, the E_{1}-term of May's spectral sequence for some Hopf algebras over \boldsymbol{Z}_{2}, is computed by making use of the method of [36]. In $\S 5$ some topological tools are given. In $\S 6$ the main theorem of this paper is proved. In $\S 7$ some properties of \boldsymbol{G} satisfying (1.2) are given. The final two sections, $\S 8$ and $\S 9$, are applications of $\S 7$. In $\S 8$ cohomology mod 2 of some homogeneous spaces are given and in $\S 9$ cohomology operations of $H^{*}\left(\boldsymbol{B} \boldsymbol{F}_{4} ; \boldsymbol{Z}_{2}\right)$ are determined.

A compact connected Lie group \boldsymbol{G} satisfing (1.2) has various good properties (cf. §7). For examples $H^{*}\left(\boldsymbol{B} \boldsymbol{G} ; \boldsymbol{Z}_{2}\right)$ is a polynomial algebra and $H^{*}\left(\boldsymbol{B} \boldsymbol{V} ; \boldsymbol{Z}_{2}\right)$ is a free $H^{*}\left(\boldsymbol{B} \boldsymbol{G} ; \boldsymbol{Z}_{2}\right)$-module, where \boldsymbol{V} is a maximal dimensional elementary 2-group of \boldsymbol{G}.

§ 2. Definitions and algebraic tools.

Let R be a field or the rational integer ring \boldsymbol{Z}. Let $A=\sum_{i \geq 0} A_{i}$ be a graded commutative R-algebra in the sence of Milnor-Moore [28]. If A is connected then A has a unique augmentation $\varepsilon: A \rightarrow R$ (see $\S 1$ of [28]). Then we put as follows:

Definition 2.1. $\bar{A}=\operatorname{Ker} \varepsilon . \quad \bar{A}$ is called the augmentation ideal.
If A is of finite type and R is a field then we put as follow :
Definition 2.2. P.S. $(A ; R)=$ P.S. $(A)=\sum_{i=0}^{\infty}\left(\operatorname{rank}_{R} A_{i}\right) t^{i} \in \boldsymbol{Z}[[t]]$.
If $\sum a_{i} t^{i}$ and $\sum b_{i} t^{i} \in \boldsymbol{Z}[[t]], \quad \sum a_{i} t^{i} \gg \sum b_{i} t^{i}$ means $a_{i} \geqq b_{i}$ for any $i \geq 0$.
If P.S. $(A ; R)$ is a rational function of t the following definition is due to Quillen [31] (cf. § 2 of [32] [26]).

Definition 2.3. $\operatorname{dim}(A ; R)=$ the order of a pole at $t=1$.
Note that if A is a finitely generated connected R algebra, P.S. $(A ; R)$ is a rational function of t.

Moreover P. S. (A) satisfies the following :

$$
\begin{equation*}
\text { P. S. }(A)=P(t) / \sum_{i=1}^{n}\left(1-t^{a_{i}}\right), \tag{2.1}
\end{equation*}
$$

where a_{1}, \cdots, a_{n} are positive integers and $P(t) \in \boldsymbol{Z}[t]$. (See Lemma 2.7 of [32].)

If P. S. (A) and P.S. (B) satisfy (2.1) and P.S. $(A) \gg$ P. S. (B), then $\operatorname{dim}(A ; k) \geq \operatorname{dim}(B ; k)$ (see P. 137 of [13]).

For the details of the following definition the reader is refered to [30] or Appendix 6 of vol. II of [38].

Definition 2.4. A sequence of (homogeneous) elements $\left\{x_{1}, \cdots, x_{n} \in \bar{A}\right\}$
is called a regular sequence (or a prime sequence) if x_{i} is not a zero divisor in $A /\left(x_{1}, \cdots, x_{i-1}\right)$ for any $i=1,2, \cdots, n$.

Let k be a field. Let $X_{i}, 1 \leq i \leq n+h$, and $Y_{j}, 1 \leq j \leq n$, be indeterminants, where X_{i} and Y_{j} have positive degrees. Note that if the characteristic of k is not 2 then the degree of X_{i} and Y_{j} is even. Let $\left\{r_{1}, \cdots, r_{n}\right\}$ is a regular sequence in the graded polynomial algebra $k\left[X_{1}, \cdots, X_{n+h}\right]$. Put $A^{\prime}=k\left[X_{1}, \cdots, X_{n+h}\right] /$ $\left(r_{1}, \cdots, r_{n}\right)$ and $A=k\left[Y_{1}, \cdots, Y_{n}\right]$. Let $f: A \rightarrow A^{\prime}$ be a homomorphism of graded algebras. Then we have the following:

Proposition 2.5. A^{\prime} is a finite A-module under f if and only if $\{f$ $\left.\left(Y_{1}\right), \cdots, f\left(Y_{n}\right)\right\}$ is a regular sequence in A^{\prime}. Moreover A^{\prime} is a free A module. (Proof is given in p. 209 [30].)

Put $A^{\prime \prime}=k\left[X_{1}, \cdots, X_{n}\right]$. As a particular case of Proposition 2. 5:
Corollary 2.6. Let $f: A \rightarrow A^{\prime \prime}$ be a homomorphism of graded algebra then $A^{\prime \prime}$ is a finite A-module under f if and only if $\left\{f\left(Y_{1}\right), \cdots, f\left(Y_{n}\right)\right\}$ is a regular sequence in A. Moreover $A^{\prime \prime}$ is a free A-module.
(Proof is given in p. 209 of [30] or [4].)
Let P be a commutative ring with unit.
Definition 2.7. $\quad \operatorname{Spec}(P)=\{\mathfrak{F}$; a prime ideal of P and $\mathfrak{P} \neq P\}$.
(For details the reader is refered to chap. 2 of [15] or [19].)
Note that $(0) \in \operatorname{Spec}(P)$ if and only if P is an integral domain. In particular a polynomial algebra is an integral domain. So we have the following:

Proposition 2.8. If P is a polynomial algebra then (0) is a unique minimal prime ideal (cf. §7).

Let $R=\boldsymbol{Z}_{2}$ then we use the following definition.
Definition 2.10. A sequence of elements $\left\{x_{1}, \cdots, x_{n} \in \bar{A}\right\}$ is called a sim-

Notation 2.11. $A=\Delta\left(x_{1}, \cdots, x_{n}\right)$ if $\left\{x_{1}, \cdots, x_{n}\right\}$ is a simple system of generators of A.

Note that if $A=\Delta\left(x_{1}, \cdots, x_{n}\right)$, P.S. $\left(A ; \boldsymbol{Z}_{2}\right)=\left(1+t^{\operatorname{deg} x_{1}}\right) \cdots\left(1+t^{\operatorname{deg} x_{n}}\right)$ and so P. S. $\left(A ; \boldsymbol{Z}_{2}\right) \in \boldsymbol{Z}[t]$.

Proposition 2.12. If $\left\{x_{1}, \cdots, x_{n}\right\}$ and $\left\{y_{1}, \cdots, y_{m}\right\}$ are both simple systems of generators of A, then $n=m$ and there exists $\sigma \in \Sigma_{n}$ such that deg $y_{j}=\operatorname{deg} x_{\sigma(j)}, j=1,2, \cdots, n$, where Σ_{n} is the symmetric group of order n.

Proof, P.S. $\left(A ; \boldsymbol{Z}_{2}\right) \in \boldsymbol{Z}[t]$ and $\boldsymbol{Z}[t]$ is a unique factorization domain [38] and so the result follows.
Q.E.D.

Definition 2.13. If $A=\Delta\left(x_{1}, \cdots, x_{n}\right)$ then we put $s(A)=n$.
Note that if $A=\Lambda\left(x_{1}, \cdots, x_{n}\right)$ then $\left\{x_{1}, \cdots, x_{n}\right\}$ is a simple system of gener-
ators of A.

§ 3. May's spectral sequence.

Let (A, ϕ) be a Hopf algebra over a field k with an augmentation $\varepsilon: A \rightarrow k$. Let $I(A)=\operatorname{Ker} \varepsilon$. Then we put as follows:

Definition 3.1. $\left\{F_{p}(A)=A \quad\right.$ if $p \geq 0$
$\left\{F_{p}(A)=I(A)^{-p}\right.$ if $p<0$.
Then $E_{0}(A)=\sum F_{p}(A) / F_{p-1}(A)$ is also a Hopf algebra (cf. Milnor-Moore [28]). Moreover the following is known :

Proposition 3.2. $\left(E_{0}(A), \phi_{0}\right)$ is primitively generated where ϕ_{0} is the induced diagonal map $\phi_{0}: E_{0}(A) \rightarrow E_{0}(A \otimes A) \cong E_{0}(A) \otimes E_{0}(A)$. (See 7.4 of Milnor-Moore [28].)

Let $C(A)$ be the cobar construction of A (cf. §4). Then by making use of a suitable filtration of $C(A)$, May constructed a spectral sequence as follows [27]:

Theorem 3. 3. There exists a spectral sequence of algebra $E_{r}, r \geq 1$, satisfying the following conditions:
i) $\quad E_{1}=\operatorname{Cotor}^{E_{0}(A)}(k, k)$,
ii) $\quad E_{\infty}=g r\left(\operatorname{Cotor}^{A}(k, k)\right)$.

For the proof see [27].
Remark 3.4. $C(A)=A \otimes T(I(A))$, where $T(I(A))$ is the free tensor algebra over $I(A)(c f . \S 4)$.

May used a filtration induced by F_{p} in Definition 3.1.
In the next section we compute E_{1}-term of this spectral sequence.

§ 4. Primitively generated Hopf algebras over \boldsymbol{Z}_{2}.

Let A be Hopf algebra over \boldsymbol{Z}_{2} with a commutative multiplication. We also assume that P.S. $\left(A, \boldsymbol{Z}_{2}\right)$ is a polynomial. Then the following is due to Milnor-Moore [28]:

Lemma 4. 1. i) $A=Z_{2}\left[x_{1}, \cdots, x_{n}\right] /\left(x_{1}^{2^{i_{1}+1}}, \cdots, x_{n}^{2^{i_{n}+1}}\right)$ as algebra, ii) $\quad E_{0}(A) \cong A$ as algebra.

To compute the E_{1}-term of May's spectral sequence we use the twised tensor product construction due to Brown ([17], [21] or [36]).

Let (A, ϕ) be a graded coalgebra over a field k with augmentation $\eta: k \rightarrow$ A. We may consider $A=k \otimes J(A)$ where $J(A)=$ Coker η. Let L be a graded submodule of $J(A)$. Let $\iota: L \rightarrow A$ be the inclusion and $\theta: A \rightarrow L$ be a map satisfying $\theta \circ \iota=1_{L}$. Let $s: L \rightarrow s L$ be the suspension. Let $\bar{\theta}=s \circ \theta$ and $\bar{\iota}=\iota \circ s^{-1}$. Let $T(s L)$ be a free tensor algebra and I be the ideal of $T(s L)$ generated by $\operatorname{Im} \psi$ $(\bar{\theta} \otimes \bar{\theta})(\operatorname{Ker} \bar{\theta})$, where ψ is the multiplication of $T(s L)$. Let $\bar{X}=T(s L) / I$. Then the map $\bar{d}=-\psi \circ(\bar{\theta} \otimes \bar{\theta}) \circ \phi \circ \bar{\iota}$ on $s L$ define a map $\bar{d}: \bar{X} \rightarrow \bar{X}$ satisfying $\bar{d} \circ \bar{d}=0$
(cf. § 1 of [36]). Since $\bar{d} \circ \theta+\psi \circ(\bar{\theta} \otimes \bar{\theta}) \circ \phi=0$ holds, we now can construct the twisted tensor product construction $X=A \otimes \bar{X}$ with respect to $\bar{\theta}$. That is X $=A \otimes \bar{X}$ is an A-comodule with the differential operator
$d=1 \otimes \bar{d}+(1 \otimes \psi) \circ(1 \otimes \bar{\theta} \otimes 1) \circ(\phi \otimes 1)$.
If θ is the projection $A=k \oplus J(A) \rightarrow J(A)$ and $L=J(A)$ then X is $C(A)$; the cobar construction of A.

So if θ is the projection (X, d) is a quotient of the cobar construction. So if (X, d) is acyclic $H(\bar{X}, \bar{d})=\operatorname{Cotor}^{4}(k, k)$ as algebra (cf. [21] or [36]).

Now consider the following Hopf algebra (A_{0}, ϕ_{0}): $A_{0}=\boldsymbol{Z}_{2}\left[x_{1}, \cdots, x_{n}\right] /$ $\left(x_{1}{ }^{i_{1}+1}, \cdots, x_{n}{ }^{2^{i_{n}+1}}\right)$ as algebra and $\bar{\phi}_{0}\left(x_{i}\right)=0$ for $i=1,2, \cdots, n$, where $\bar{\phi}_{0}(x)$ $=\phi_{0}(x)+x \otimes 1+1 \otimes x$.

Let $L=\left\{x_{1}, x_{1}{ }^{2}, x_{1}{ }^{4}, \cdots, x_{1}{ }^{i_{1}}, \cdots, x_{n}, x_{n}{ }^{2}, \cdots, x_{n}{ }^{i^{i}}\right\} . \theta: A_{0} \rightarrow L$ be the projection and $y_{i j}=s\left(x_{i}{ }^{2 j}\right)$ for $x_{i}{ }^{2 j} \in L$. Then we can easily prove the following:

Lemma 4.2. L is a simple system of primitive generators of A_{0}.
Let $I=\left(\varepsilon_{1,0}, \varepsilon_{1,1}, \cdots, \varepsilon_{n, i_{n}}\right)$ for $\varepsilon_{i, j}=0$ or 1 .
Let
$x^{I}=x_{1}^{\varepsilon_{1,0}}+2 \varepsilon_{1,1}+\cdots+2^{i_{1} \varepsilon_{1, i_{1}}}{ }_{n} x_{n}^{\varepsilon_{n, 0}}+\cdots+2^{i_{n}} \varepsilon_{n, i_{n}}$.
Let $J=\left(\varepsilon_{1}, \cdots, \varepsilon_{s}\right)$ and $J^{\prime}=\left(\varepsilon_{1}^{\prime}, \cdots, \varepsilon_{s}^{\prime}\right)$ for $\varepsilon_{i}+\varepsilon_{i}^{\prime} \leqq 1$ and $s=i_{1}+\cdots+i_{n}+n$. Put $J+J^{\prime}=\left(\varepsilon_{1}+\varepsilon_{1}^{\prime}, \cdots, \varepsilon_{s}+\varepsilon_{s}^{\prime}\right)$. Let $|J|=\varepsilon_{1}+\cdots+\varepsilon_{s}$ then we can easily prove the following:

Lemma 4. 3. $\phi_{0}\left(x^{I}\right)=\sum_{J+J^{\prime}=I} x^{J} \otimes x^{J^{\prime}}$.
So if $|I| \geq 3, x^{J} \notin L$ or $x^{J^{\prime}} \notin L$. If $|I|=2$, that is $x^{I}=x \cdot x^{\prime}$ for $x, x^{\prime} \in L$, $\phi_{0}\left(x \cdot x^{\prime}\right)=x \cdot x^{\prime} \otimes 1+1 \otimes x \cdot x^{\prime}+x^{\prime} \otimes x+x \otimes x^{\prime}$. Clearly $\operatorname{Ker} \theta$ is generated by $\left\{x^{I} ;|I| \geq 2\right\}$. If $|I| \geq 3, \psi(\bar{\theta} \otimes \bar{\theta}) \phi_{0}=0$. If $|I|=2, \psi(\bar{\theta} \otimes \bar{\theta}) \phi_{0}\left(x \cdot x^{\prime}\right)=\psi(s x$, $\left.s x^{\prime}\right)+\phi\left(s x^{\prime}, s x\right)=\left[s x, s x^{\prime}\right]$.

Clearly $\bar{d}(x)=\psi(\bar{\theta} \otimes \bar{\theta})(x \otimes 1+1 \otimes x)=0$ for $x \in L$. So $X=A_{0} \otimes \bar{X}=$ $A_{0} \otimes \boldsymbol{Z}_{2}[s L] . d(x \otimes 1)=(1 \otimes \psi) \circ(1 \otimes \bar{\theta} \otimes 1) \circ\left(\phi_{0} \otimes 1\right)(x \otimes 1)=(1 \otimes \psi) \circ(1 \otimes$ $\bar{\theta} \otimes 1)(x \otimes 1 \otimes 1+1 \otimes x \otimes 1)=1 \otimes s(x)$ for $x \in L$ and so $d(1 \otimes s(x))=0$. Now we compare this with Koszul resolution of the exterior algebra $\Lambda\left(x_{1,0}\right.$, $\left.x_{1,1}, \cdots, x_{1, i_{1}}, \cdots, x_{n, 0}, \cdots, x_{n, i_{n}}\right)$. Clearly these are chain equivalent and so (X, d) is acyclic. So we have the following:

Theorem 4.4. $\operatorname{Cotor}^{A_{0}}\left(\boldsymbol{Z}_{2}, \boldsymbol{Z}_{2}\right) \cong \boldsymbol{Z}_{2}[s L]$ as algebra.
So by Lemma 4.1 and Theorem 4.4 we can compute the E_{1}-term of May's spectral sequence for some Hopf algebra over \boldsymbol{Z}_{2}.

§ 5. Topological tools.

In this section various topological tools used after are introduced. Let \boldsymbol{G} be a compact connected Lie group and p be a prime, then $H^{*}\left(\boldsymbol{G} ; \boldsymbol{Z}_{p}\right)$ is a Hopf algebra over \boldsymbol{Z}_{p}. So $H^{*}\left(\boldsymbol{G} ; \boldsymbol{Z}_{2}\right)$ has a simple system of generators. So we define as follows:

Definition 5.1. $s(\boldsymbol{G})=s\left(H^{*}\left(\boldsymbol{G} ; \boldsymbol{Z}_{2}\right)\right)(\mathrm{cf} . \S 2)$.
Let \boldsymbol{G} be a compact Lie group then the following definition is due to [13]:
Definition 5.2. $l_{p}(\boldsymbol{G})$ is the dimension of a maximal dimensional elementary p-group in \boldsymbol{G}.

The following theorem is due to Venkov [37].
Theorem 5.3. $H^{*}\left(\boldsymbol{B} \boldsymbol{G} ; \boldsymbol{Z}_{p}\right)$ is finitely generated.
So P.S. $\left(\boldsymbol{B} \boldsymbol{G} ; \boldsymbol{Z}_{p}\right)=\mathbf{P} . \mathbf{S} .\left(H^{*}\left(\boldsymbol{B} \boldsymbol{G} ; \boldsymbol{Z}_{p}\right) ; \boldsymbol{Z}_{p}\right)$ is a rational function of t. So $\operatorname{dim}\left(H^{*}\left(\boldsymbol{B} \boldsymbol{G} ; \boldsymbol{Z}_{p}\right) ; \boldsymbol{Z}_{p}\right)<\infty$.

Theorem 5.4. $l_{p}(\boldsymbol{G})=\operatorname{dim}\left(H^{*}\left(\boldsymbol{B} \boldsymbol{G} ; \boldsymbol{Z}_{p}\right) ; \boldsymbol{Z}_{p}\right)$.
The above theorem is Corollary 7.8 of Quillen [32]. (See also [31].) The part $l_{p}(\boldsymbol{G}) \leq \operatorname{dim}\left(H^{*}\left(\boldsymbol{B} \boldsymbol{G} ; \boldsymbol{Z}_{p}\right) ; \boldsymbol{Z}_{p}\right)$ is due to [13].

The following two theorems are also due to Quillen:
Theorem 5.5. Let \boldsymbol{G} and \boldsymbol{G}^{\prime} be compact Lie groups and $f: \boldsymbol{G} \rightarrow \boldsymbol{G}^{\prime}$ be a homomorphism of Lie groups. Then $H^{*}\left(\boldsymbol{B} \boldsymbol{G} ; \boldsymbol{Z}_{p}\right)$ is a finite $H^{*}\left(\boldsymbol{B} \boldsymbol{G}^{\prime} ; \boldsymbol{Z}_{p}\right)$ module under f^{*} if and only if $\operatorname{Ker} f$ is a finite group and (ord ($\operatorname{Ker} f$), $p)=1$. (See Corollary 2.4 of [32].)

Theorem 5.6. i) Let $\mathscr{A}(\boldsymbol{G} ; p)$ be all conjugacy classes of elementary p-groups in \boldsymbol{G}. Then the correspondence $\Phi: \mathscr{A}(G) \rightarrow \operatorname{Spec}\left(H^{*}(\boldsymbol{B} \boldsymbol{G}\right.$; $\left.Z_{p}\right)$) given by $\Phi(\boldsymbol{V})=\operatorname{Ker} i^{*} ; H^{*}\left(\boldsymbol{B} \boldsymbol{G} ; Z_{p}\right) \rightarrow H^{*}\left(\boldsymbol{B} \boldsymbol{V} ; Z_{p}\right) / \sqrt{ } 0$ is an injection.
ii) $\Phi(\boldsymbol{V}) \subset \Phi\left(\boldsymbol{V}^{\prime}\right)$ if and only if there exists $g \in \boldsymbol{G}$ such that $g \boldsymbol{V}^{\prime} g^{-1} \subset$ V.
iii) The correspondence Φ gives a one-one correspondence between conjugacy classes of maximal elementary p-groups and minimal prime ideals of $H^{*}\left(\boldsymbol{B} \boldsymbol{G} ; \boldsymbol{Z}_{p}\right)$.
iv) $\mathfrak{B} \in \operatorname{Spec}\left(H^{*}\left(\boldsymbol{B} \boldsymbol{G} ; \boldsymbol{Z}_{p}\right)\right)$ is contained in $\operatorname{Im} \Phi$ if and only if \mathfrak{B} is homogeneous and invariant under $\mathscr{P}^{i}, i \geq 0$, where \mathscr{P}^{i} is the Steenrod reduced power operation.

Proof. Put $X=\{$ one point $\}$ in Proposition 11.2 and Theorem 12.1 of [32]. See else [31]. Note that $H^{*}\left(\boldsymbol{B} \boldsymbol{Z}_{2} ; \boldsymbol{Z}_{2}\right)$ is a polynomial algebra.

Remark 5.7. i) If \boldsymbol{G} is a closed subgroup of \boldsymbol{G}^{\prime} then by Theorem 5.5 $H_{*}\left(\boldsymbol{B} \boldsymbol{G} ; \boldsymbol{Z}_{p}\right)$ is a finite $H^{*}\left(\boldsymbol{B} \boldsymbol{G} ; \boldsymbol{Z}_{p}\right)$-module for any p.
ii) We can prove Theorem 5.3 by Theorem 5.5 as follows: Since \boldsymbol{G} is a closed subgroup of $\boldsymbol{U}(N)$ for sufficiently large N. So $H^{*}\left(\boldsymbol{B} \boldsymbol{G} ; \boldsymbol{Z}_{p}\right)$ is a finite $H^{*}\left(\boldsymbol{B} \boldsymbol{U}(N) ; \boldsymbol{Z}_{p}\right)=\boldsymbol{Z}_{p}\left[c_{1}, \cdots, c_{N}\right]$ module. But as is well known $H^{*}(\boldsymbol{B} \boldsymbol{U}(N) ;$ $\left.\boldsymbol{Z}_{p}\right)$ is Noetherian and so is $H^{*}\left(\boldsymbol{B} \boldsymbol{G} ; \boldsymbol{Z}_{p}\right)$ (cf. [37]).
iii) The part $\left.l_{p}(\boldsymbol{G}) \leq \operatorname{dim}\left(\boldsymbol{B} \boldsymbol{G} ; \boldsymbol{Z}_{p}\right) ; \boldsymbol{Z}_{p}\right)$ is also proved by Theorem 5.5.

Let \boldsymbol{G} be a compactly generated topological monoid (e.g. a compact Lie group). In 1959 Eilenberg-Moore constructed a new type of spectral sequence as follows:

Theorem 5.8. There exists a spectral sequence of algebra $\left\{E_{r}(\boldsymbol{G})\right.$, $\left.d_{r}(\boldsymbol{G})\right\}$ such that
(1) $E_{2}(\boldsymbol{G})=\operatorname{Cotor}^{H^{*}\left(\boldsymbol{G} ; \boldsymbol{Z}_{p}\right)}\left(\boldsymbol{Z}_{p}, \boldsymbol{Z}_{p}\right)$,
(2) $E_{\infty}(\boldsymbol{G})=\operatorname{gr}\left(H^{*}\left(\boldsymbol{B} \boldsymbol{G} ; \boldsymbol{Z}_{p}\right)\right)$,
(3) Furthermore, this spectral sequence satisfies naturality for a homomorphism $f: \boldsymbol{G} \rightarrow \boldsymbol{G}^{\prime} . \quad$ (See [33] and [34].)

Remark 5.9. The above spectral sequence is very useful for computing $H^{*}\left(\boldsymbol{B} \boldsymbol{G} ; \boldsymbol{Z}_{p}\right)$. In fact it collapses if \boldsymbol{G} satisfies (1.2). This is an easy proof of Borel's theorem (Proposition 16.1 of [7]) (cf. §6).
ii) The above spectral sequence is usually called the Eilenberg-Moore spectral sequence.

§ 6. Main theorm

The purpose of this section is to prove the following theorem.
Theorem 6.1. Let \boldsymbol{G} be a compact connected Lie group and $s(\boldsymbol{G})=n$. Then the following three conditions are equivalent:

$$
\begin{align*}
& l_{2}(\boldsymbol{G}) \geq s(\boldsymbol{G}), \tag{6.1}\\
& l_{2}(\boldsymbol{G})=s(\boldsymbol{G}), \\
& \boldsymbol{G} \text { satisfies }(1.2) .
\end{align*}
$$

For the proof of this theorem we need the following Lemma 6.2.
Lemma 6.2. (6.2) is equivalent to the follwing (6.4):
(6.4) May's spectral in Theorem 3.3 collapses for $A=H^{*}\left(\boldsymbol{G} ; \boldsymbol{Z}_{2}\right)$ and the Eilenberg-Moore spectral sequence collapses for \boldsymbol{G}.

Proof. The part (6.4) implies (6.2):
Since the two spectral sequences collapse, by easy arguments $H^{*}\left(\boldsymbol{B} \boldsymbol{G} ; \boldsymbol{Z}_{2}\right)$ $=\boldsymbol{Z}_{2}\left[y_{1}, \cdots, y_{n}\right]$. Thus $l_{2}(\boldsymbol{G})=\operatorname{dim}\left(H^{*}\left(\boldsymbol{B} \boldsymbol{G} ; \boldsymbol{Z}_{2}\right) ; \boldsymbol{Z}_{2}\right)=s(\boldsymbol{G})$ by Theorem 5. 4.

The part (6.2) implies (6.4):
If the spectral sequence in Corollary 3.4 collapses, $\operatorname{Cotor}^{4}\left(\boldsymbol{Z}_{2}, \boldsymbol{Z}_{2}\right)=$ $\boldsymbol{Z}_{2}\left[\bar{y}_{1}, \cdots, \bar{y}_{n}\right]$ where $n=s(\boldsymbol{G})$. So we only need the following Lemma 6. 3.

Lemma 6.3. Let k be a field and $R=k\left[y_{1}, \cdots, y_{n}\right]$. Let $d: R \rightarrow R$ be a derivation, $d^{2}=0$ and $d \neq 0$ then $\mathbf{P} . \mathbf{S} .(H(R ; d)) \ll \mathbf{P} . \mathbf{S} .(R) \cdot\left(1-t^{a}\right)$ for some $a>0$.

Proof of Lemma 6.2 (continued). If the spectral sequence of May does not collapse, by Lemma 6.3 P.S. (Cotor $\left.{ }^{4}\left(\boldsymbol{Z}_{2}, \boldsymbol{Z}_{2}\right)\right) \ll \mathbf{P} . \mathbf{S} .\left(\boldsymbol{Z}_{2}\left[y_{1}, \cdots, y_{n}\right]\right) \cdot$ $\left(1-t^{a}\right)$ for some $a>0$. So P. S. $\left(H^{*}\left(\boldsymbol{B} \boldsymbol{G} ; \boldsymbol{Z}_{2}\right)\right) \ll \mathbf{P} . \mathbf{S} .\left(\boldsymbol{Z}_{2}\left[y_{1}, \cdots, y_{n}\right]\right) \cdot\left(1-t^{a}\right)$ and so $\operatorname{dim}\left(H^{*}\left(\boldsymbol{B} \boldsymbol{G} ; \boldsymbol{Z}_{2}\right)\right)<n$. If May's spectral sequence collapses and the Eilenberg-Moore spectral sequence does not collapse then also by Lemma 6. 3 $\operatorname{dim}\left(E_{\infty}(\boldsymbol{G}) ; \boldsymbol{Z}_{2}\right)<n=s(\boldsymbol{G})$.
Q.E.D.

Proof of Lemma 6. 3.
Since d is a derivation and $d \neq 0$ we may assume that $d\left(y_{1}\right)=f \neq 0$. Let
I be the ideal of R generated by f. Consider the following diagram:

where ψ and p are natural projections. Note that $\operatorname{Ker} \psi=\operatorname{Ker} d \cap I$ and $\operatorname{Ker} p=\operatorname{Im} d$.

If $g \in \operatorname{Ker} \psi$ then $g=g_{1} \cdot f$ for $g_{1} \in R$. Then $d(g)=d\left(g_{1}\right) \cdot f$, since $d(f)$ $=d^{2}\left(Y_{1}\right)=0$. But $g \in \operatorname{Ker} d$ and R is an intergral domain, $d\left(g_{1}\right)=0$. So $d\left(g_{1} \cdot y_{1}\right)= \pm g_{1} f= \pm g$ and so $\operatorname{Ker} p \supset \operatorname{Ker} \psi$. Thus P. S. $(R / I) \gg$ P. S. $(H(R ;$ $d)$). But P. S. $(R / I)=$ P. S. $(R) \cdot\left(1-t^{\operatorname{deg} f}\right)$ and so the result follows. Q.E.D.

Proof of Theorem 6.1. Put $A=H^{*}\left(\boldsymbol{G} ; \boldsymbol{Z}_{2}\right)$.
(6.1) implies (6.2): Consider the following two spectral sequences in (6.4):
$E_{1}=\boldsymbol{Z}_{2}\left[y_{1}, \cdots, y_{n}\right] \Rightarrow \operatorname{Cotor}^{4}\left(\boldsymbol{Z}_{2}, \boldsymbol{Z}_{2}\right)$,
$E_{2}(\boldsymbol{G})=\operatorname{Cotor}^{A}\left(\boldsymbol{Z}_{2}, \boldsymbol{Z}_{2}\right) \Rightarrow H^{*}\left(\boldsymbol{B} \boldsymbol{G} ; \boldsymbol{Z}_{2}\right)$.
Clearly P. S. $\left(H^{*}\left(\boldsymbol{B} \boldsymbol{G} ; \boldsymbol{Z}_{2}\right)\right) \ll \mathbf{P} . \mathbf{S} .\left(\boldsymbol{Z}_{2}\left[y_{1}, \cdots, \boldsymbol{y}_{n}\right]\right)$ so $\operatorname{dim}\left(H^{*}\left(\boldsymbol{B} \boldsymbol{G} ; \boldsymbol{Z}_{2}\right) ; \boldsymbol{Z}_{2}\right) \leq$ n thus $l_{2}(\boldsymbol{G}) \leq n$. (6.2) clearly implies (6.1). So (6.1) and (6.2) are equivalent. (6.3) implies (6.2):

Since \boldsymbol{G} satisfies (1.3), $\operatorname{Cotor}^{\boldsymbol{A}}\left(\boldsymbol{Z}_{2}, \boldsymbol{Z}_{2}\right)=\boldsymbol{Z}_{2}\left[y_{1}, \cdots, \boldsymbol{y}_{n}\right]$. But \boldsymbol{G} satisfies (1.2) each y_{i} is a parmanent cycle and so $H^{*}\left(\boldsymbol{B} \boldsymbol{G} ; \boldsymbol{Z}_{2}\right)=\boldsymbol{Z}_{2}\left[\bar{y}_{1}, \cdots, \bar{y}_{n}\right]$. Note that this is an easy proof of Borel's theorem (§ 9 of [9]). So we have (6.4).

Clearly (6.4) implies (6.3) and so (6.2) implies (6.3). Thus (6.2) and (6.3) are equivalent.
Q.E.D.

Now we give some examples.
Let $l(\boldsymbol{G})$ be the rank of \boldsymbol{G}. Note that $l_{p}(\boldsymbol{G}) \geq l(\boldsymbol{G})$ for any p and $l_{p}(\boldsymbol{G})=$ $l(\boldsymbol{G})$ for almost any p. If $l_{p}(\boldsymbol{G})>l(\boldsymbol{G})$ then $H_{*}(\boldsymbol{G} ; \boldsymbol{Z})$ has p-torsion.

Examples 6.4. i) If \boldsymbol{G} satisfies (1.1) $l_{2}(\boldsymbol{G})=l(\boldsymbol{G})$. Note that any maximal elementary 2-group is contained in a maximal torus.
ii) $\boldsymbol{G}=\boldsymbol{S O}(n)$ satisfies (1.2) and $s(\boldsymbol{S O}(n))=l_{2}(\boldsymbol{S O}(n))=n-1$,
iii) $\boldsymbol{G}=\boldsymbol{\operatorname { S p i n }}(n), n \geq 10$ does not satisfy (1.2) ([30]),
iv) $\boldsymbol{G}=\boldsymbol{E}_{6}$ does not satisfy (1.2) but $l_{2}\left(\boldsymbol{E}_{6}\right)=l\left(\boldsymbol{E}_{6}\right)$
(cf. Example 7.12).
Proposition 6. 5. i) $s(\boldsymbol{S p i n}(n))=(n-1)-\left[\log _{2}(n-1)\right]$,
ii) $\quad l_{2}(\boldsymbol{\operatorname { S p i n }}(n))=n-\log _{2} R(n)$, where $R(n)$ is the Radon-Hurwitz number (§ 6 of [30]).

Proof. i) is due to Borel [9] and ii) is due to Quillen [30]. Q.E.D.
By iii) of Examples 6.4, $s(\boldsymbol{\operatorname { S p i n }}(n))>l_{2}(\boldsymbol{\operatorname { S p i n }}(n))$ for $n \geq 10$.
Due to Borel-Siebenthal [14] \boldsymbol{E}_{8} contains a closed connected subgroup \boldsymbol{H} of local type \boldsymbol{D}_{8} and $\pi_{1}(\boldsymbol{H})=\boldsymbol{Z}_{2}$. Then we can easily get the following:

Lemma 6.6. \boldsymbol{H} is $\boldsymbol{S O}$ (16) or $\boldsymbol{S s}$ (16) (Semi-Spin(16))
(cf. p. 330 of [5]).

Due to [26], \boldsymbol{E}_{8} does not satisfy (1.2). Due to [3], $s\left(\boldsymbol{E}_{8}\right)=15$. So by Theorem 6. 1, $l_{2}\left(\boldsymbol{E}_{8}\right) \leq 14$. Since $l_{2}(\boldsymbol{S O}(16))=15, \boldsymbol{H}$ is not $\boldsymbol{S O}$ (16).

Propositon 6. 7. \boldsymbol{H} is $\boldsymbol{S s}$ (16).
The homogeneous space $\boldsymbol{E}_{8} / \boldsymbol{S} \boldsymbol{s}(16)$ is an irreducible symmetric space and denoted by EVIII ([18]). See also [20].

We use the following notations:
Notations 6. 8.
$\begin{array}{lll}\text { Notations 6. 8. } \\ \text { i) } & \left(a_{1}, \cdots, a_{n}\right) \text { is a diagonal matrix } \\ \text { ii) } & \boldsymbol{\Delta}(n)=\{ \pm(1, \cdots, 1) \in \boldsymbol{S} \boldsymbol{p}(n)\} .\end{array} \quad\left(\begin{array}{lll}a_{1} & & 0 \\ 0 & a_{n}\end{array}\right) \in \boldsymbol{S} \boldsymbol{p}(n)$.
iii) $P\left(n_{1}, \cdots, n_{j}\right)=\boldsymbol{S} \boldsymbol{p}\left(n_{1}\right) \times \cdots \times \boldsymbol{S} \boldsymbol{p}\left(n_{j}\right) / \boldsymbol{\Delta}\left(n_{1}+\cdots+n_{j}\right)$.
iv) Δ_{j} is the j-hold diagonal map.
v) $\boldsymbol{\Delta}_{k} \boldsymbol{S} \boldsymbol{p}(1)=\{(\alpha, \cdots, \alpha) \in \boldsymbol{S} \boldsymbol{p}(k) ; \alpha \in \boldsymbol{S} \boldsymbol{p}(1)\}$.

Remark 6.9. $\Delta\left(n_{1}+\cdots+n_{j}\right)$ is contained in the center of $\boldsymbol{S} \boldsymbol{p}\left(n_{1}+\cdots+\right.$ $\left.n_{j}\right)$. So $\boldsymbol{P}\left(n_{1}, \cdots, n_{j}\right)$ is a compact connected Lie group. Since $\pi_{1}\left(\boldsymbol{P}\left(n_{1}, \cdots\right.\right.$, $\left.\left.n_{j}\right)\right)=\boldsymbol{Z}_{2}, \boldsymbol{P}\left(n_{1}, \cdots, n_{j}\right)$ does not satisfy (1.1).

We can construct examples satisfing (1.2) by making use of $\boldsymbol{P}\left(n_{1}, \cdots, n_{j}\right)$. Let
be the inclusion $\left(n=n_{1}+\cdots+n_{j}\right)$. Then as is well known:

$$
\begin{align*}
& H^{*}\left(\boldsymbol{B} \boldsymbol{\Delta}(n) ; \boldsymbol{Z}_{2}\right)=\boldsymbol{Z}_{2}[\mu], \operatorname{deg} \mu=1 . \tag{6.5}\\
& \left.H^{*}\left(\boldsymbol{B}\left(\boldsymbol{\Delta}\left(n_{1}\right) \times \cdots \times \boldsymbol{\Delta}\left(n_{j}\right)\right) ; \boldsymbol{Z}_{2}\right)\right)=\underset{k=1}{\bigotimes_{k}} H^{*}\left(\boldsymbol{B} \boldsymbol{\Delta}\left(n_{k}\right) ; \boldsymbol{Z}_{2}\right) \\
& \quad=\boldsymbol{\boldsymbol { Z } _ { 2 }}\left[t_{1}, \cdots, t_{j}\right], \operatorname{deg} t_{k}=1 . \\
& H^{*}\left(\boldsymbol{B}(\boldsymbol{S} \boldsymbol{p}(1) \times \cdots \times \boldsymbol{S} \boldsymbol{p}(1)) ; \boldsymbol{Z}_{2}\right)=\otimes_{j} H^{*}\left(\boldsymbol{B S} \boldsymbol{p}(1) ; \boldsymbol{Z}_{2}\right) \\
& \quad=\boldsymbol{Z}_{2}\left[q_{1,1}, \cdots, q_{1, j}\right], \operatorname{deg} q_{1, k}=4 .
\end{align*}
$$

Note that $\bar{\Delta}_{j}{ }^{*}\left(t_{k}\right)=\mu$ and $i^{*}\left(q_{1, k}\right)=t_{k}{ }^{4}$.
So we have the following:
Lemma 6.10. If one of $\left\{n_{1}, \cdots, n_{j}\right\}$ is odd, $s\left(P\left(n_{1}, \cdots, n_{j}\right)\right)=n+1$.
Proof. Consider the Serre spectral sequence for the fibering

$$
\boldsymbol{S} \boldsymbol{p}\left(n_{1}\right) \times \cdots \times \boldsymbol{S} \boldsymbol{p}\left(n_{j}\right) \rightarrow \boldsymbol{P}\left(n_{1}, \cdots, n_{j}\right) \rightarrow \boldsymbol{B} \boldsymbol{\Delta}(n) .
$$

The above result follows from (6.5) and Lemma 10.1 of [8]. Since $\boldsymbol{V}(n)$ in [23] is contained in $\boldsymbol{P}\left(n_{1}, \cdots, n_{j}\right), l_{2}\left(\boldsymbol{P}\left(n_{1}, \cdots, n_{j}\right)\right) \geq n+1$ for any n_{1}, \cdots, n_{j}.

Thus we have the following:
Theorem 6.11. If one of $\left\{n_{1}, \cdots, n_{j}\right\}$ is odd, $\boldsymbol{P}\left(n_{1}, \cdots, n_{j}\right)$ satisfies (1.2).
Example 6. 12. $H^{*}\left(\boldsymbol{B P}(1,3) ; \boldsymbol{Z}_{2}\right) \cong \boldsymbol{Z}_{2}\left[y_{2}, y_{3}, y_{4}, y_{8}, y_{12}\right]$.
Remark 6.13. $H^{*}\left(\boldsymbol{B P S} \boldsymbol{p}(2 n+1) ; \boldsymbol{Z}_{2}\right)$ is determined in [23].

§ 7. Properties of compact connected Lie groups satisfing (1.2)

Let \boldsymbol{G} be a compact connected Lie group satisfing (1.2). Then we get the following:

Theorem 7.1. i) Every maximal elementary 2-group is conjugate to each other.
ii) Let \boldsymbol{V} be one of the maximal elementary 2-groups then the Serre spectral sequence for the fibering

$$
\begin{equation*}
\boldsymbol{G} / \boldsymbol{V} \xrightarrow{p} \boldsymbol{B} \boldsymbol{V} \xrightarrow{i} B \boldsymbol{G} \tag{7.1}
\end{equation*}
$$

with \boldsymbol{Z}_{2} coefficient collapses.
iii) In paticular $i^{*}: H^{*}\left(\boldsymbol{B} \boldsymbol{G} ; \boldsymbol{Z}_{2}\right) \rightarrow H^{*}\left(\boldsymbol{B V} ; \boldsymbol{Z}_{2}\right)$ is injective, $p^{*}: H^{*}$ $\left(\boldsymbol{B V} ; \boldsymbol{Z}_{2}\right) \rightarrow H^{*}\left(\boldsymbol{G} / \boldsymbol{V} ; \boldsymbol{Z}_{2}\right)$ is surjective and $H^{*}\left(\boldsymbol{B} \boldsymbol{V} ; \boldsymbol{Z}_{2}\right)$ is a free $H^{*}(\boldsymbol{B} \boldsymbol{G}$; $\left.\boldsymbol{Z}_{2}\right)$-module.

Remark 7.2. We can compute cohomology operation of $H^{*}\left(\boldsymbol{B} \boldsymbol{G} ; \boldsymbol{Z}_{2}\right)$ and $H^{*}\left(\boldsymbol{B} \boldsymbol{G} ; \boldsymbol{Z}_{2}\right)$ by iii) of Theorem 7.1.

Proof of Theorem 7. 1.
i) Since $H^{*}\left(\boldsymbol{B} \boldsymbol{G} ; \boldsymbol{Z}_{2}\right)$ is a polynomial algebra, $\operatorname{Spec}\left(H^{*}\left(\boldsymbol{B} \boldsymbol{G} ; \boldsymbol{Z}_{2}\right)\right)$ has a unique maximal point (i.e. $H^{*}\left(\boldsymbol{B} \boldsymbol{G} ; \boldsymbol{Z}_{2}\right)$ has a unique minimal prime ideal) (0). By iii) of Theorem 5.6 every conjugacy class of maximal elementary 2 groups of \boldsymbol{G} corresponds to a maximal point of $\operatorname{Spec}\left(H^{*}\left(\boldsymbol{B} \boldsymbol{G} ; \boldsymbol{Z}_{2}\right)\right)$. So we get i) of the above theorem.
ii) Consider the principal \boldsymbol{G} bundle

$$
\begin{equation*}
\boldsymbol{G} \xrightarrow{\rho} \boldsymbol{G} / \boldsymbol{V} \xrightarrow{i} \boldsymbol{B} \boldsymbol{V} . \tag{7.2}
\end{equation*}
$$

The Serre spectral sequence for (7.2) with \boldsymbol{Z}_{2} coefficient has the following $E_{2^{-}}$ term:

$$
E_{2} \cong H^{*}\left(\boldsymbol{B} \boldsymbol{V} ; \boldsymbol{Z}_{2}\right) \otimes H^{*}\left(\boldsymbol{G} ; \boldsymbol{Z}_{2}\right)=H^{*}\left(\boldsymbol{B} \boldsymbol{V} ; \boldsymbol{Z}_{2}\right) \otimes \boldsymbol{\Delta}\left(x_{1}, \cdots, x_{n}\right)
$$

where $\left\{x_{1}, \cdots, x_{n}\right\}$ is the simplesystem generators of \boldsymbol{G} satisfing (1.2) and $n=l_{2}$ (\boldsymbol{G}). Since $\left\{x_{1}, \cdots, x_{n}\right\}$ is universally transgressive, $\left\{x_{1}, \cdots, x_{n}\right\}$ is transgressive with respect to (7.2). Put $\tau\left(x_{i}\right)=y_{i} \in H^{*}\left(\boldsymbol{B} \boldsymbol{G} ; \boldsymbol{Z}_{2}\right)$ then $H^{*}\left(\boldsymbol{B} \boldsymbol{G} ; \boldsymbol{Z}_{2}\right)=\boldsymbol{Z}_{2}$ $\left[y_{1}, \cdots, y_{n}\right]$. But $l_{2}(\boldsymbol{G})=n$ and so $H^{*}\left(\boldsymbol{B} \boldsymbol{V} ; \boldsymbol{Z}_{2}\right)=\boldsymbol{Z}_{2}\left[t_{1}, \cdots, t_{n}\right]$ where $\operatorname{deg} t_{1}=1$. By i) of Remark 5. 7 and Corollary 2.6, $\left\{i^{*}\left(y_{1}\right), \cdots, i^{*}\left(y_{n}\right)\right\}$ is a regular sequence. Since x_{i} is transgressive with $\tau^{\prime}\left(x_{i}\right)=i^{*}\left(x_{i}\right)$ where τ^{\prime} is the transgression in (7.2), $E_{\infty}^{\mathrm{p}, \mathrm{q}}=0$ if $q \neq 0$. So ρ^{*} is surjective and we get ii) of above theorem. iii) is easy.
Q.E.D.

Remark 7. 3. We can also prove ii) of Theorem 7.1 by making use of the following fact:
$\left\{i^{*}\left(y_{1}\right), \cdots, i^{*}\left(y_{n}\right)\right\}$ is a regular sequence and so $H^{*}\left(\boldsymbol{B} \boldsymbol{V} ; \boldsymbol{Z}_{2}\right)$ is a free $H^{*}\left(\boldsymbol{B} \boldsymbol{G} ; \boldsymbol{Z}_{2}\right)$-module (cf. Corollary 2.6). The result follows from the following spectral sequence:

$$
\left.E_{2}=\operatorname{Tor}_{H^{*}\left(\boldsymbol{B} G ; \boldsymbol{Z}_{2}\right)}\left(\boldsymbol{Z}_{2}, H^{*}\left(\boldsymbol{B} \boldsymbol{V} ; \boldsymbol{Z}_{2}\right)\right) \Rightarrow H^{*}\left(\boldsymbol{G} / V ; \boldsymbol{Z}_{2}\right) \text { (cf. [4] }\right)
$$

Example 7.4. Compact connected simple \boldsymbol{G} satisfing (1.2) is clas-
sified in [23].
i) If \boldsymbol{G} satisfies (1.1), \boldsymbol{V} is containd in a maximal torus.
ii) If $\boldsymbol{G}=\boldsymbol{S O}(n) \boldsymbol{V}$ is as follows:

$$
\boldsymbol{V}=\left\{\left(\begin{array}{cc}
\varepsilon_{1} & 0 \\
& \ddots
\end{array}\right) \in \boldsymbol{S} \boldsymbol{O}(n) ; \varepsilon_{i}= \pm 1\right\} \cong\left(\boldsymbol{Z}_{2}\right)^{n-1} . \quad \text { (See [12].) }
$$

iii) If $\boldsymbol{G}=\boldsymbol{G}_{2}, \boldsymbol{V}$ is given in $\S 10$ of [12].
iv) If $\boldsymbol{G}=\boldsymbol{S p i n}(7), \boldsymbol{S p i n}(8), \boldsymbol{S p i n}(9)$ or $\boldsymbol{F}_{4}, \boldsymbol{V}$ is given in [11] and i) of Theorem 7.1 is proved in [10] by making use of the Lefschetz fixed point theorem and in [11].
v) $\boldsymbol{G}=\boldsymbol{P S} \boldsymbol{p}(2 n+1)$ then \boldsymbol{V} is given in [23].

Remark 7.5. i) The above Theorem 7.1 is pointed out by Borel for special cases ([9]).
ii) If \boldsymbol{G} satisfies (1.1) and maximal elementary 2 -groups are replaced by maximal tori then the corresponding results are well known for any prime p.
iii) If \boldsymbol{Z}_{2} is replaced by \boldsymbol{Q}, and maximal elementary 2 -groups are replaced by maximal tori then the corresponding results are also well known for any compact connected Lie group. (See Borel [9]. See also [1].)

Let $(\boldsymbol{G}, \boldsymbol{U})$ be a pair of a compact connected Lie group and its closed subgroup. We consider the following conditions for ($\boldsymbol{G}, \boldsymbol{U}$)
(7.3) $\quad \boldsymbol{G}$ satisfies (1.2) and $H^{*}\left(\boldsymbol{B U} ; \boldsymbol{Z}_{2}\right)=\boldsymbol{Z}_{2}\left[t_{1}, \cdots, t_{n+h}\right] /\left(r_{1}, \cdots, r_{h}\right)$, where $n=l_{2}(\boldsymbol{G})$ and $\left\{r_{1}, \cdots, r_{n}\right\}$ is a regular sequence in $\boldsymbol{Z}_{2}\left[t_{1}, \cdots, t_{n+n}\right]$.
Remark 7.6. We can prove that $\operatorname{dim}\left(k\left[t_{1}, \cdots, t_{n+h}\right] /\left(r_{1}, \cdots, r_{n}\right) ; k\right) \leqq n$ if and only if $\left\{r_{1}, \cdots, r_{h}\right\}$ is a regular sequence in $k\left[t_{1}, \cdots, t_{n+h}\right]$.

Now we prove the following:
Theorem 7.7. If $(\boldsymbol{G}, \boldsymbol{U})$ satisfies (7.3) we have the following:
i) The Serre spectral sequence for the fibering

$$
\begin{equation*}
\boldsymbol{G} / \boldsymbol{U} \xrightarrow{\rho} B \boldsymbol{U} \xrightarrow{i} B G \tag{7.4}
\end{equation*}
$$

with \boldsymbol{Z}_{2} coefficient collapses.
ii) So i^{*} is injective, ρ^{*} is surjective and $H^{*}\left(\boldsymbol{B} \boldsymbol{U} ; \boldsymbol{Z}_{2}\right)$ is a free H^{*} ($\boldsymbol{B} \boldsymbol{G} ; \boldsymbol{Z}_{2}$)-module under ρ^{*} 。

Proof The proof is similar to the proof of Theorem 7.1.
Proposition 7. 8. If \boldsymbol{U} is one of the following, ($\boldsymbol{G}, \boldsymbol{U}$) satisfies (7.3).
i) An extra special 2-group in \boldsymbol{G} and $l_{2}(\boldsymbol{U})=l_{2}(\boldsymbol{G})$,
ii) A closed connected subgroup of \boldsymbol{G} satisfing (1.2) and $l_{2}(\boldsymbol{U})=$ $l_{2}(\boldsymbol{G})$.
For i) see [30] and ii) is clear.
Examples 7.9. The following $(\boldsymbol{G}, \boldsymbol{U})$ satisfies (7.3):
i) If $H_{*}(\boldsymbol{G} ; \boldsymbol{Z})$ and $H_{*}(\boldsymbol{U} ; \boldsymbol{Z})$ are 2-torsion free and $l(\boldsymbol{G})=l(\boldsymbol{U})$ where $l(\boldsymbol{G})$ is the rank of \boldsymbol{G}. Note that in this case $l(\boldsymbol{G})=l_{2}(\boldsymbol{G})$.
ii) ($\left.\boldsymbol{F}_{4}, \boldsymbol{\operatorname { S p i n }}(9)\right),\left(\boldsymbol{F}_{4}, \boldsymbol{S p i n}(8)\right),\left(\operatorname{Spin}(7), \boldsymbol{G}_{2}\right)$ e.t.c. (See V. of Borel [8].)
iii) $\boldsymbol{G}=\boldsymbol{S} \boldsymbol{p}(n)$ and $\boldsymbol{U}=\tilde{\boldsymbol{V}}(n)$ in [23].

Remark 7.10. Borel-Hirzebruch defined the 2 -root of \boldsymbol{G} by making use of $A d \mid \boldsymbol{V}$, where $A d: \boldsymbol{G} \rightarrow \operatorname{Aut}(\mathscr{G})$ is the adjoint representation of \boldsymbol{G} ([12]). If \boldsymbol{G} satisfies (1.2), by i) of Theorem 7.1, 2-root is an invariant of \boldsymbol{G}. But if \boldsymbol{G} does not satisfy (1.2) we must consider all conjugacy classes of maximal elementary 2 -groups.

Remark 7.11. If the pair $(\boldsymbol{G}, \boldsymbol{U})$ satisfies (7.3) we can compute the cohomology operations of $H^{*}\left(\boldsymbol{B} \boldsymbol{G} ; \boldsymbol{Z}_{2}\right)$ by making use $\operatorname{Im} i^{*}$ and the cohomology operations of $H^{*}\left(\boldsymbol{B U} ; \boldsymbol{Z}_{2}\right)$.

Example 7.12. E_{6} does not satisfy (1.2) ([25]). Due to [2], $s\left(\boldsymbol{E}_{6}\right)=$ 7 and $l\left(\boldsymbol{E}_{6}\right)=6$, so $l_{2}\left(\boldsymbol{E}_{6}\right)=6$. Put \boldsymbol{V}_{1} and \boldsymbol{V}_{2} as follows:

$$
\begin{aligned}
& \boldsymbol{E}_{6} \supset \boldsymbol{F}_{4} \supset \boldsymbol{V}_{1}=\left(\boldsymbol{Z}_{2}\right)^{5}, \\
& \boldsymbol{E}_{6} \supset \boldsymbol{T}^{6} \supset \boldsymbol{V}_{2}=\left(\boldsymbol{Z}_{2}\right)^{6} .
\end{aligned}
$$

Then V_{1} is not contained in any maximal torus. So \boldsymbol{E}_{6} has at least two different conjugacy classes of maximal elementary 2-groups.

Remark 7. 13. Due to Kono-Mimura [25],

$$
H^{*}\left(\boldsymbol{B} \boldsymbol{E}_{6} ; \boldsymbol{Z}_{2}\right)=\boldsymbol{Z}_{2}\left[y_{4}, y_{6}, y_{7}, y_{10}, y_{18}, y_{32}, y_{34}, y_{48}\right] / I,
$$

where I is the ideal generated by $y_{7} y_{10}, y_{7} y_{18}, y_{7} y_{34}$ and $y_{34}^{2}+\cdots$, and deg $y_{i}=i$. Then $\Phi\left(\boldsymbol{V}_{1}\right)=\left(y_{10}, y_{18}, y_{34}\right)$ and $\Phi\left(\boldsymbol{V}_{2}\right)=\left(y_{7}\right)$.

§ 8. Cohomology mod 2 of some homogeneous spaces

In this section cohomology mod 2 of some homogeneous spaces are computed. In this section \boldsymbol{G}_{2} (resp. \boldsymbol{F}_{4}) is a compact connected simple Lie group of type \boldsymbol{G}_{2} (resp. \boldsymbol{F}_{4}). Then the following is well known ([7]):

```
\(\left\{\begin{array}{l}H^{*}\left(\boldsymbol{G}_{2} ; \boldsymbol{Z}_{2}\right)=\boldsymbol{Z}_{2}\left[x_{3}\right] /\left(x_{3}{ }^{4}\right) \otimes \Lambda\left(x_{5}\right), \text { where } \operatorname{deg} x_{i}=i \text { and } S q^{2} x_{3}=x_{5}, \\ \boldsymbol{G}_{2} \text { satisfies }(1.2), \\ H^{*}\left(\boldsymbol{B} \boldsymbol{G}_{2} ; \boldsymbol{Z}_{2}\right)=\boldsymbol{Z}_{2}\left[y_{4}, y_{6}, y_{7}\right], \text { where } \operatorname{deg} y_{i}=i, y_{6}=S q^{2} y_{4} \text { and } y_{7}= \\ \quad S q^{3} y_{4} .\end{array}\right.\)
\(\left(H^{*}\left(\boldsymbol{F}_{4} ; \boldsymbol{Z}_{2}\right)=\boldsymbol{Z}_{2}\left[x_{3}\right] /\left(x_{3}{ }^{4}\right) \otimes \Lambda\left(x_{5}, x_{15}, x_{23}\right)\right.\), where \(\operatorname{deg} x_{i}=i x_{5}=\)
        \(S q^{2} x_{3}\) and \(x_{23}=S q^{8} x_{15}\),
\(\left\{\boldsymbol{F}_{4}\right.\) satisfies (1.2),
\(H^{*}\left(\boldsymbol{B} \boldsymbol{F}_{4} ; \boldsymbol{Z}_{2}\right)=\boldsymbol{Z}_{2}\left[y_{4}, y_{6}, y_{7}, y_{16}, y_{24}\right]\), where \(\operatorname{deg} y_{i}=i, y_{6}=S q^{2} y_{4}, y_{7}\)
\(\quad=S q^{3} y_{4}\) and \(y_{24}=S q^{8} y_{16}\).
\(H^{*}(\boldsymbol{S U}(n) ; \boldsymbol{Z})=\Lambda\left(e_{3}, e_{5}, \cdots, e_{2 n-1}\right)\), where \(\operatorname{deg} e_{i}=i\),
\(H^{*}(\boldsymbol{B S U}(n) ; \boldsymbol{Z})=\boldsymbol{Z}\left[c_{2}, c_{3}, \cdots, c_{n}\right]\), where \(\operatorname{deg} c_{i}=2 i\) and \(c_{i}=\tau\left(e_{2 i-1}\right)\).
\(\left\{H^{*}(\boldsymbol{S p}(n) ; \boldsymbol{Z})=\Lambda\left(e_{3}, e_{7}, \cdots, e_{4 n-1}\right)\right.\), where \(\operatorname{deg} e_{i}=i\),
\(\left\{H^{*}(\boldsymbol{B S} \boldsymbol{p}(n) ; \boldsymbol{Z})=\boldsymbol{Z}\left[q_{1}, \cdots, q_{n}\right]\right.\) where \(\operatorname{deg} q_{i}=4 i\) and \(q_{i}=\tau\left(e_{4 i-1}\right)\)
\(\left\{H^{*}\left(\boldsymbol{B S O}(n) ; \boldsymbol{Z}_{2}\right)=\boldsymbol{Z}_{2}\left[w_{2}, w_{3}, \cdots, w_{n}\right]\right.\), where \(\operatorname{deg} w_{i}=i\) and cohomo-
logy operations are determined by Wu's formula.
```

Due to Borel-Siebenthal [14] \boldsymbol{G}_{2} contains a closed connected subgroup H of type $\boldsymbol{A}_{1} \times \boldsymbol{A}_{1}$. The homogeneous space $\boldsymbol{G}_{2} / \boldsymbol{H}$ is an irreducible symmetric space and denoted by \boldsymbol{G} (cf. Cartan [18]). Then we can easily get:

Lemma 8.1. \boldsymbol{H} is isomorphic to one of the following:

$$
\begin{align*}
& \boldsymbol{S p}(1) \times \boldsymbol{S} \boldsymbol{p}(1), \tag{8.6}\\
& \boldsymbol{S p}(1) \times \boldsymbol{S O}(3)=\boldsymbol{S s}(4), \tag{8.7}\\
& \boldsymbol{S O}(4), \tag{8.8}\\
& \boldsymbol{S O}(3) \times \boldsymbol{S O}(3) . \tag{8.9}
\end{align*}
$$

By the argument of 2 -rank (8.9) is impossible. Since $H^{*}(\boldsymbol{B}(\boldsymbol{S} \boldsymbol{p}(1) \times$ $\left.\boldsymbol{S} \boldsymbol{p}(1)) ; \boldsymbol{Z}_{2}\right) \cong \boldsymbol{Z}_{2}\left[q_{1}, q_{1}{ }^{\prime}\right]$, where $\operatorname{deg} q_{1}=\operatorname{deg} q_{1}{ }^{\prime}=4, i^{*}\left(y_{6}\right)=i^{*}\left(y_{7}\right)=0$, where $i: \boldsymbol{H} \rightarrow \boldsymbol{G}$ is the inclusion. So it is impossible by Theorem 5.5. On the other hand if (8.7) or (8.8) is true then ($\boldsymbol{G}, \boldsymbol{H}$) satisfies (7.3). So we have:

Lemma 8.2. If (8.7) or (8.8) is true then $\left\{i^{*}\left(y_{4}\right), i^{*}\left(y_{6}\right), i^{*}\left(y_{7}\right)\right\}$ is a regular sequence.

Note that $H^{*}\left(\boldsymbol{B}(\boldsymbol{S p}(1) \times \boldsymbol{S O}(3)) ; \boldsymbol{Z}_{2}\right)=H^{*}\left(\boldsymbol{B S} \boldsymbol{p}(1) ; \boldsymbol{Z}_{2}\right) \otimes H^{*}(\boldsymbol{B S O}(3) ;$ $\left.\boldsymbol{Z}_{2}\right) \cong \boldsymbol{Z}_{2}\left[q_{1}\right] \otimes \boldsymbol{Z}_{2}\left[w_{2}, w_{3}\right]$ as algebra over $\mathscr{A}_{2} . \quad$ So if (8.8) is true then $i^{*}\left(y_{4}\right)$ $=\alpha q_{1}+\beta w_{2}{ }^{2}$ for $\alpha, \beta \in \boldsymbol{Z}_{2}$. Then $i^{*}\left(y_{7}\right)=S q^{3} i^{*}\left(y_{4}\right)=0$. So it is impossible. Thus we have the following:

Lemma 8. 3. $H=\boldsymbol{S O}(4)$ as Lie group. ${ }^{\text {i) }}$
By (8.1) and (8.5) $i^{*}\left(y_{4}\right)=\alpha w_{4}+\beta w_{2}{ }^{2}, i^{*}\left(y_{6}\right)=\alpha w_{4} w_{2}+\beta w_{3}{ }^{2}$ and $i^{*}\left(y_{7}\right)$ $=\alpha w_{4} w_{3}$ for $\alpha, \beta \in \boldsymbol{Z}_{2}$. By Lemma 8. 2, $\alpha, \beta=1$.

Thus by Theorem 7.7, we have the following:
Theorem 8.4. $H^{*}\left(\boldsymbol{G} ; \boldsymbol{Z}_{2}\right)=\boldsymbol{Z}_{2}\left[\bar{w}_{2}, \bar{w}_{3}\right] /\left(\bar{w}_{2}{ }^{3}+\bar{w}_{3}{ }^{2}, \bar{w}_{2}{ }^{2} \bar{w}_{3}\right)$, where $\bar{w}_{i}=$ $\rho^{*} w_{i}$ for $\rho: \boldsymbol{G} \rightarrow \boldsymbol{B S O}$ (4), and so $S q^{1} \bar{w}_{2}=\bar{w}_{3}$.

Let $u(\boldsymbol{G})$ be the total $W u$ class of \boldsymbol{G} and $W(\boldsymbol{G})$ be the total Stiefel-Whitney class of \boldsymbol{G}. Then by W 's formula [29], we have the following:

Theorem 8.5. i) $u(\boldsymbol{G})=1+\bar{w}_{2}+\bar{w}_{3}+\bar{w}_{2}{ }^{2}$,
ii) $W(\boldsymbol{G})=1+\bar{w}_{2}{ }^{2}+\bar{w}_{3}{ }^{2}+\bar{w}_{2}{ }^{4}$.

Remark 8.6. The above Theorem 8.4 and ii) of Theorem 8.5 are proved in [12] by making use of Caylay number and the 2 -root of \boldsymbol{G}_{2}.

Due to Borel-Siebenthal [14] \boldsymbol{F}_{4} contains a closed connected subgroup, \boldsymbol{K} of local type $\boldsymbol{A}_{1} \times \boldsymbol{C}_{3}$. The homogeneous space $\boldsymbol{F}_{4} / \boldsymbol{K}$ is an irreducible symmetric space denoted by $\boldsymbol{F I}$ [18]. By the similar argument we have:

Theorem 8. 7. i) $\boldsymbol{K}=\boldsymbol{P}(1,3)=\boldsymbol{S p}(1) \cdot \boldsymbol{S} \boldsymbol{p}(3)$ for $\boldsymbol{S p}(1) \cap \boldsymbol{S p}(3)=\boldsymbol{Z}_{2}$,
ii) P.S. $(\boldsymbol{F} \boldsymbol{I})=$ P. S. $(\boldsymbol{G}) \cdot\left(1+t^{8}\right) \cdot\left(1+t^{12}\right)$.

Remark 8.8. To determine $H^{*}\left(\boldsymbol{F I} ; \boldsymbol{Z}_{2}\right), \boldsymbol{u}(\boldsymbol{F I})$, and $W(\boldsymbol{F I})$ we need cohomology operations of $H^{*}\left(\boldsymbol{B K} ; \boldsymbol{Z}_{2}\right)$.

[^0]Now we consider an example of different type. $\boldsymbol{F}(n)=\boldsymbol{S} \boldsymbol{p}(n) / \boldsymbol{S U}(n)$, $n \geqq 2$. Then $\boldsymbol{S} \boldsymbol{p}(n)$ and $\boldsymbol{S} \boldsymbol{U}(n)$ satisfy (1.2) but ($\boldsymbol{S} \boldsymbol{p}(n), \boldsymbol{S} \boldsymbol{U}(n)$) does not satisfy (7.3), since $l_{2}(\boldsymbol{S p}(n))=n$ and $\boldsymbol{l}_{2}(\boldsymbol{S} \boldsymbol{U}(n))=n-1$. Let $i: \boldsymbol{S U}(n) \rightarrow$ $\boldsymbol{S p}(n)$ be the inclusion. Note that

$$
\begin{equation*}
i^{*}\left(q_{i}\right)=(-1)^{i} \sum_{j+k=2^{i}}(-1)^{j} c_{j} c_{k} \text { for } c_{1}=0 \tag{8.10}
\end{equation*}
$$

So $i^{*}\left(q_{1}\right)=-2 c_{2}$. By the Serre exact sequence [35] for the fibering $\boldsymbol{F}(n) \rightarrow \boldsymbol{B S U}(n) \rightarrow \boldsymbol{B S} \boldsymbol{p}(n)$, we have the following

Lemma 8.9.

$$
H^{i}(\boldsymbol{F}(n) ; \boldsymbol{Z}) \cong \begin{cases}0, & 0<i \leq 3 \\ \boldsymbol{Z}_{2}, & i=4\end{cases}
$$

Now we consider the Serre spectral sequence for the fibering

$$
\begin{equation*}
\boldsymbol{S p}(n) \rightarrow \boldsymbol{F}(n) \rightarrow \boldsymbol{B S U}(n) \tag{8.12}
\end{equation*}
$$

with \boldsymbol{Z}_{2} coefficient.

$$
E_{2}=\boldsymbol{Z}_{2}\left[c_{2}, c_{3}, \cdots, c_{n}\right] \otimes \Lambda\left(e_{3}, e_{7}, \cdots, e_{4 n-1}\right),
$$

where c_{i} and $e_{4 j-1}$ are the mod 2-reduction of c_{i} and $e_{4 j-1}$. Since $e_{4 j-1}$ is universally transgressive, $e_{4 j-1}$ is transgressive with respect to this fibering. $\tau\left(e_{4 j-1}\right)$ $=i^{*}\left(q_{j}\right)=c_{j}{ }^{2}$ by the mod 2 reduction of (8.10) for $j=2,3, \cdots, n$, and $\tau\left(e_{3}\right)$ $=0$. Clearly $\left\{\tau\left(e_{7}\right), \cdots, \tau\left(e_{4 n-1}\right)\right\}$ is a regular sequence. Thus we have:

$$
E_{\infty}=\Lambda\left(e_{3}, c_{2}, c_{3}, \cdots, c_{n}\right)
$$

Thus $H^{*}\left(\boldsymbol{F}(n) ; \boldsymbol{Z}_{2}\right)$ is generated by $\bar{e}_{3} \in H^{3}\left(\boldsymbol{F}(n) ; \boldsymbol{Z}_{2}\right)$ and $\bar{c}_{i}=\rho^{*} c_{i}, 2 \leq i \leq$ n. Clearly $\bar{c}_{i}{ }^{2}=0$.

Since $H^{4}(\boldsymbol{F}(n) ; \boldsymbol{Z})=\boldsymbol{Z}_{2}, S q^{1} \bar{e}_{3} \neq 0$. But $H^{4}\left(\boldsymbol{F}(n) ; \boldsymbol{Z}_{2}\right)=\boldsymbol{Z}_{2}$ generated by $\overline{\boldsymbol{c}}_{2}$ so $S q^{1} \bar{e}_{3}=\bar{c}_{2}$. By the dimensional reason $S q^{2} \bar{e}_{3}=0$ since $H^{5}\left(\boldsymbol{F}(n) ; \boldsymbol{Z}_{2}\right)=$ 0 . Thus $\bar{e}_{3}{ }^{2}=S q^{3} \bar{e}_{3}=S q^{1} S q^{2} \bar{e}_{3}=0$. Now we have the following:

Theorm 8.10. $H^{*}\left(\boldsymbol{F}(n) ; \boldsymbol{Z}_{2}\right)=\Lambda\left(\bar{e}_{3}, \bar{c}_{2}, \bar{c}_{3}, \cdots, \bar{c}_{n}\right)$.
Cohomology operations are computed by Wu's formula and $S q^{1} \bar{e}_{3}=\bar{c}_{2}$ and $S q^{2} \bar{e}_{3}=0$.

Remark 8.11. Note that ρ^{*} is not surjective. We can also compute $H^{*}\left(\boldsymbol{F}(n) ; \boldsymbol{Z}_{2}\right)$ by making use of the spectral sequence in Remark 7. 3. In fact this spectral sequence collapses (see Baum [4]).

§ 9. Cohomology operations of $H^{*}\left(\boldsymbol{B F} \boldsymbol{F}_{4} ; \boldsymbol{Z}_{2}\right)$

The purpose of this section is to determine the cohomology operations of $H^{*}\left(\boldsymbol{B} \boldsymbol{F}_{4} ; \boldsymbol{Z}_{2}\right)$. Since the pair ($\left.\boldsymbol{F}_{4}, \boldsymbol{S} \boldsymbol{\operatorname { p i n }}(9)\right)$ satifies (7.3) we can use Remark 7. 11.

First we determine the cohomology operations of $H^{*}\left(\boldsymbol{\operatorname { S S p }} \boldsymbol{\operatorname { p i n }}(9) ; \boldsymbol{Z}_{2}\right)$. Let $\pi: \boldsymbol{S p i n}(n) \rightarrow \boldsymbol{S O}(n)$ be the covering projection and $\boldsymbol{\Delta}: \boldsymbol{S p i n}(n) \rightarrow \boldsymbol{O}\left(2^{n}\right)$ be the spin representation, where 2^{h} is the Radon-Hurwitz number (Quillen [30]).

Then the following is due to Quillen [30].
Theorem 9.1. i) $H^{*}\left(\boldsymbol{B S p i n}(n) ; \boldsymbol{Z}_{2}\right)=\operatorname{Im} \pi^{*} \otimes \boldsymbol{Z}_{2}\left[e_{2^{n}}\right]$, where $e_{2^{n}}=\boldsymbol{e}$ $=w_{2^{n}}(\boldsymbol{\Delta})$.
ii) $w_{i}(\boldsymbol{\Delta}) \neq 0$ if and only if $i=0,2^{h}-2^{h-1}, 2^{h}-2^{h-2}, \cdots, 2^{h}-2^{r}, 2^{h}$, where $r=0,1$ or 2 .
iii) $\left\{w_{2^{n}}(\boldsymbol{\Delta}), w_{2^{h-2^{h-1}}}(\boldsymbol{\Delta}), \cdots, w_{2^{n}-2^{r}}(\boldsymbol{\Delta}), w_{2^{h}}(\boldsymbol{\Delta})\right\}$ is a regular sequence in $H^{*}\left(\boldsymbol{B S p i n}(n) ; \boldsymbol{Z}_{2}\right)$.

For details see $\S 6$ of [30].
The following Theorem 9.2 is easily proved:
Theorem 9.2. $S q^{1}(e)=w_{i}(\boldsymbol{\Delta}) \cdot e . \quad S o S q^{i}(e) \neq 0$ if and only if $i=0$, $2^{h}-2^{h-1}, \cdots, 2^{h}-2^{r}, 2^{h}$.

Proof. Since $H^{*}\left(\boldsymbol{B O}\left(2^{h}\right) ; \boldsymbol{Z}_{2}\right) \cong \boldsymbol{Z}_{2}\left[w_{1}{ }^{\prime}, \cdots, w^{\prime}{ }_{2}\right]$, where w_{i}^{\prime} is the i-th universal Stiefel-Whitney class. By Wu's formula [8], $S q^{i}\left(w_{2^{n}}^{\prime}\right)=w_{i}^{\prime} w_{2^{n}}^{\prime}$. But $e=\Delta^{*}\left(w_{2^{n}}{ }^{n}\right)$ and $w_{i}(\boldsymbol{\Delta})=\boldsymbol{\Delta}^{*} w_{i}{ }^{\prime}$. So $S q^{i}(e)=S q^{i}\left(\boldsymbol{\Delta}^{*} w_{2^{n}}^{\prime}\right)=\boldsymbol{\Delta}^{*} S q^{i} w_{2^{n}}^{\prime}=$ $\Delta^{*}\left(w_{i}^{\prime} w_{2^{n}}^{\prime}\right)=\left(\boldsymbol{\Delta}^{*} w_{i}^{\prime}\right)\left(\boldsymbol{\Delta}^{*} w_{2^{n}}^{\prime}\right)=w_{i}(\boldsymbol{\Delta}) e$.
Q.E.D.

Pemark 9. 3. If $x \in \operatorname{Im} \pi^{*}$ then we can compute $S q^{i}(x)$ by Wu's formula.

Example 9.4. $n=8$ then $h=3$ and $r=0$.
$H^{*}\left(\boldsymbol{B S p i n}(8) ; \boldsymbol{Z}_{2}\right)=\boldsymbol{Z}_{2}\left[w_{4}, w_{6}, w_{7}, w_{8}, e_{8}\right]$, where w_{i} is the π^{*} image of the i-th universal Stiefel Whitney class in $H^{*}\left(\boldsymbol{B S O}(8) ; \boldsymbol{Z}_{2}\right)$ and $\operatorname{deg} e_{8}=8$. Since $w_{4}(\boldsymbol{\Delta}) \neq 0$ so $w_{4}(\boldsymbol{\Delta})=w_{4}$ and so we have the following:

$$
w_{0}(\boldsymbol{\Lambda})=1, w_{4}(\boldsymbol{\Lambda})=w_{4}, w_{6}(\boldsymbol{\Lambda})=w_{6}, w_{7}(\boldsymbol{\Lambda})=w_{7} \text { and } w_{8}(\boldsymbol{\Lambda})=e_{8}
$$

Example 9.5. $n=9$ then $h=4$ and $r=0$.
$H^{*}\left(\boldsymbol{B S p i n}(9) ; \boldsymbol{Z}_{2}\right)=\boldsymbol{Z}_{2}\left[w_{4}, w_{6}, w_{7}, w_{8}, e_{16}\right]$, where w_{i}, e_{16} are as above.
We may put $w_{8}(\boldsymbol{\Delta})=\alpha w_{8}+\beta w_{4}{ }^{2}$ for $\alpha, \beta \in \boldsymbol{Z}_{2}$.
Then

$$
\begin{aligned}
& w_{12}(\boldsymbol{\Delta})=\alpha w_{8} w_{4}+\beta w_{6}{ }^{2}, \\
& w_{14}(\boldsymbol{\Delta})=\alpha w_{8} w_{6}+\beta w_{7}^{2}, \\
& w_{15}(\boldsymbol{\Delta})=\alpha w_{8} w_{7} .
\end{aligned}
$$

and
By iii) of Theorem 9. 1, $\alpha=\beta=1$ and so we have the following:
In $H^{*}\left(\boldsymbol{B S} \boldsymbol{\operatorname { p i n }}(9) ; \boldsymbol{Z}_{2}\right)$

$$
S q^{i}\left(e_{16}\right)= \begin{cases}e_{16} & i=0 \tag{9.1}\\ e_{16}\left(w_{8}+w_{4}{ }^{2}\right) & i=8 \\ e_{16}\left(w_{8} w_{4}+w_{6}{ }^{2}\right) & i=12 \\ e_{16}\left(w_{8} w_{6}+w_{7}{ }^{2}\right) & i=14 \\ e_{66} w_{8} w_{7} & i=15 \\ e_{16}{ }^{2} & i=16 \\ 0 & \text { others. }\end{cases}
$$

Let $i: \boldsymbol{S p i n}(9) \rightarrow \boldsymbol{F}_{4}$ be the inclusion. Then the following is well known:
Lemma 9. 6. $H^{*}\left(\boldsymbol{B} \boldsymbol{F}_{4} ; \boldsymbol{Z}_{2}\right)=\boldsymbol{Z}_{2}\left[y_{4}, y_{6}, y_{7}, y_{16}, y^{\prime}{ }_{24}\right]$ where $\operatorname{deg} y_{i}{ }^{(1)}=i, y_{6}$ $=S q^{2} y_{4}, y_{7}=S q^{3} y_{4}$ and $y^{\prime}{ }_{24}=S q^{8} y_{16}$.

By ii) of Theorem 7.7, i^{*} is injective. So $i^{*}\left(y_{4}\right)=w_{4}$ and so $i^{*}\left(y_{6}\right)=w_{6}$ and $i^{*}\left(y_{7}\right)=w_{7}$. Thus we may assume that $i^{*}\left(y^{16}\right)=\alpha e_{16}+\beta w_{8}{ }^{2}+\gamma w_{8} w_{4}{ }^{2}$ for
$\alpha, \beta, \gamma \in \boldsymbol{Z}_{2}$.
Since $S q^{4} y_{16}$ is decomposable, $i^{*}\left(S q^{4} y_{16}\right)=S q^{4} i^{*}\left(y_{16}\right)=\gamma w_{8} w_{4}{ }^{3}+\gamma w_{8} w_{6}{ }^{2}$ is also decomposable in $\operatorname{Im} i^{*}$. So $\gamma=0$. On the other hand $i^{*}\left(y^{\prime}{ }_{24}\right)=\alpha e_{16}\left(w_{8}\right.$ $\left.+w_{4}{ }^{2}\right)+\beta w_{8}{ }^{2} w_{4}{ }^{2}$. By i) of Remark 5. 7 and Corollary 2.6, $\left\{i^{*}\left(y_{16}\right), i^{*}\left(y^{\prime}{ }_{24}\right)\right\}$ is a regular sequence. So $\alpha=\beta=1$.

Definition 9. 7. Put $y_{24}=y^{\prime}{ }_{24}+y_{16} y_{4}{ }^{2}$.
Then $i^{*}\left(y_{24}\right)=e_{16} w_{8}+e_{16} w_{4}{ }^{2}+w_{8}{ }^{2} w_{4}{ }^{2}+e_{16} w_{4}{ }^{2}+w_{8}{ }^{2} w_{4}{ }^{2}=e_{16} w_{8}$.
Now we can easily get the following:
Theorem 9.10. ($S q^{i} y_{16}$ and $S q^{i} y_{24 .}$)

i	$S q^{i} y_{16}$	$S q^{i} y_{24}$
0	y_{16}	y_{24}
1	0	0
2	0	0
3	0	0
4	0	$y_{24} y_{4}$
5	0	0
6	0	$y_{24} y_{6}$
7	0	$y_{24} y_{7}$
8	$y_{24}+y_{16} y_{4}{ }^{2}$	$y_{24} y_{4}{ }^{2}$
9	0	0
10	0	0
11	0	0
12	$y_{24} y_{4}+y_{16} y_{4}{ }^{2}$	$y_{24}\left(y_{6}{ }^{2}+y_{4}{ }^{3}\right)$
13	0	0
14	$y_{24} y_{6}+y_{16} y_{7}{ }^{2}$	$y_{24}\left(y_{7}{ }^{2}+y_{6} y_{4}{ }^{2}\right)$
15	$y_{24} y_{7}$	$y_{24} y_{7} y_{4}{ }^{2}$
16	$y_{16}{ }^{2}$	$y_{24}\left(y_{16}+y_{6}{ }^{2} y_{4}\right)$
17	0	0
18	0	$y_{24}\left(y_{6}{ }^{3}+y_{7}{ }^{2} y_{4}\right)$
19	0	$y_{24} y_{6}{ }^{2} y_{7}$
20	0	$y_{24}\left(y_{16} y_{4}+y_{7}{ }^{2} y_{6}\right)$
21	0	$y_{24} y_{7}{ }^{3}$
22	0	$y_{24} y_{16} y_{6}$
23	0	$y_{24} y_{16} y_{7}$
24	0	$y_{24}{ }^{2}$

Proof. $\quad i^{*}\left(S q^{4} y_{24}\right)=S q^{4}\left(e_{16} w_{8}\right)=e_{16} w_{8} w_{4}$. $i^{*}\left(y_{24} y_{4}\right)=e_{16} w_{8} w_{4}$.
Since i^{*} is injective, the result follows.
Q.E.D.

References

[1] J. Adams: Lectures on Lie groups, Benjamin (1969).
[2] S. Araki: Cohomology mod 2 of the compact exceptional groups E_{6} and E_{7}, J. Math. Osaka City Univ., 12 (1961) 43-65.
[3] S. Araki-Y. Shikata: Cohomology mod 2 of the compact exceptional group E_{8}, Proc. Japan Acad., 37 (1961), 619-622.
[4] P. F. Baum: On the cohomology of homogeneous spaces, Topology, 7 (1968), 15-38.
[5] P. F. Baum-W. Browder: The cohomology of quotient of classical groups, Topology, 3 (1965), 305-336.
[6] A. Borel: La cohomologie mod 2 de certain espaces homogenes, Com. Math. Helv., 27 (1953), 165-197.
[7] A. Borel: Sur la cohomologie des espaces fibres principaux et des espaces homogenes de groupes de Lie compacts, Ann. of Math., 57 (1953), 115-207.
[8] A. Borel: Sur l'homologie et la cohomologie des groupes de Lie compacts connexes, Amer. J. Math., 76 (1954), 273-342.
[9] A. Borel: Topology of Lie groups and characteristic classes, Bull. A. M. S., 61 (1955), 397-432.
[10] A. Borel : Seminar on transformation groups, Ann. of Math. Studies, no. 46, Princeton, 1960.
[11] A. Borel : Sous-groupes Commutatifs et torsions des groupes de Lie compacts connexes, Tôhoku Math. J., 13 (1961), 216-240.
[12] A. Borel-F. Hirebruch: Characteristic classes and homogeneous spaces, I, Amer. J. Math., 80 (1958), 495-538.
[13] A. Borel-J-P. Serre : Sur certains surs-groupes des groupes de Lie compacts, Comm. Math. Helv., 27 (1953), 128-139.
[14] A. Borel-J. de Siebenthal: Les sous-groupes fermés connexes de rang maximum des groupes de Lie clos, Comm. Math. Helv., 23 (1949-50), 200-221.
[15] N. Bourbaki: Elements de mathematique algebre commutative.
[16] W. Browder: Homology rings of groups, Amer. J. Math. 90 (1968), 318-333.
[17] E. H. Brown, Jr.: Twisted tensor products, I, Ann. of Math., 69 (1959), 223-246.
[18] E. Cartan: Sur certaines formes riemanniennes remarquables de géométrie a groupe fondamental simple, Ann. Sci. Ecole Norm. Sup., 44 (1927), 345-467.
[19] A. Grothendieck: Elements de geometrie algebrique, I. H. E. S. Publ., 4 (1960).
[20] M. Ise: Theory of symmetric spaces (in Japanese), I, II, Sugaku, 11 (1959), 76-93, 13 (1961), 88-107.
[21] A. Iwai-N. Shimada: A remark on resolusions for Hopf algebras, Publ. R.I. M. S. of Kyoto Univ., 1 (1966), 187-198.
[22] J. Kojima: On the Pontjagin product mod 2 of Spinor groups, Mem. Fac. Sci. Kyushu Univ., Ser. A., 11 (1957), 1-14.
[23] A. Kono: On cohomology mod 2 of the classifying spaces of non-simply connected classical Lie groups, J. of Math. Soc. Japan, 27 (1975), 281-288.
[24] A. Kono-M. Mimura: On the cohomology of the classifying space of $\boldsymbol{P S U}(4 n+2)$ and $\boldsymbol{P O}(4 n+2)$, Publ. R.I. M. S. of Kyoto Univ., 10 (1975), 691-720.
[25] A. Kono-M. Mimura: Cohomology mod 2 of the classifying space of the compact connected Lie group of type E_{6}, J. Pure and Applied Algebra, 6 (1975), 61-81.
[26] A. Kono-M. Mimura-N. Shimada: Cohomology mod 2 of the classifying space of compact 1-connected Lie group E_{7}, J. Pure and Applied Algebra, 8 (1976), 267-283.
[27] P. May: The cohomology of restricted Lie algebras and of Hopf algebras, Bull. of A. M. S., 71 (1965), 372-377.
[28] J. Milnor-J. Moore: On the structure of Hopf algebras, Ann. of Math., 81 (1965), 211294.
[29] J. Milnor-J. D. Stasheff : Characteristic classes, Aun. of Math. Studies, no. 76, Princeton.
[30] D. Quillen: The mod 2 cohomology rings of extra spacial 2-groups and spinor groups,

Math. Ann., 194 (1971), 197-212.
[31] D. Quillen: Cohomology of groups: Actes congres inter. math., (1972), Tome 2, 47-51.
[32] D. Quillen : The spectrum of an equivariant cohomology ring I, II, Ann. of Math., 94 (1971), 549-572, 573-.
[33] M. Rothenberg-N. E. Steenrod: The cohomology of classifying spaces of H-spaces, (mimeographed notes)
[34] M. Rothenberg-N. E. Steenrod: The cohomology of classifying spaces of H-spaces, Bull. AMS 71 (1965), 872-875.
[35] J. P. Serre : Homologie singulière des espaces fibrés, Ann. Math., 54 (1951), 425-505.
[36] N. Shimada-A. Iwai: On the cohomology of some Hopf algebras, Nagoya Math. J., 30 (1967), 103-111.
[37] B. B. Venkov: Cohomology algebra for some classifying spaces, Dokl. Akad. Nauk SSSR, 127 (1959), 943-944, (Math. Review 21 \#75000).
[38] O. Zariski-P. Samuel : Commutative algebra, I. II, Van Nostrand (1960).

[^0]: i) Due to Baum-Browder (p. 330 of [5]) $\boldsymbol{S s}(4)=\boldsymbol{S O}$ (4) as Lie group. But it is not true.

