
J . Math. Kyoto U n iv . (JMKYAZ)
17-1 (1977) 1-18

On the 2-rank of compact connected Lie groups

By

Akira KONO

(R eceived  Feb . 10, 1976)

§ 1. Introduction
Let G be a compact cnnected Lie group and p  be a prime. Consider the

following three conditions :
(1. 1) H* (G ;Z) is p - to r s io n  free,
(1. 2) H* (G; Z) is generated by universally transgressive elements,
(1. 3) H* (G; Z) is generated by  primitive elements.

As is well known (1. 1) is equivalent to the following (1. 1') .
(1. 1') H* (G;Zp) - A (x1, • • • , x )  where deg x i = odd.

By Borel's results in [7], (1. 1') implies (1. 2) and (1. 2) implies (1. 3) .
Browder [16] showed that if p  is an odd prime then (1. 3) implies (1. 1) . On
the other hand if p  =2 then (1. 3) does not imply (1. 2) and (1. 2) does not
imply (1. 1) . In fact G = SO ( n ) ,  n >  3, satisfies (1. 2) but does not satisyfy
(1. 1) . If G = Spin (2k +1) , k > 4, then G satisfies (1. 3) but does not satisfy
(1. 2) .

In [11] Borel gave a characterization of (1. 1) by making use of elementary
P-grous in G . The purpose of this paper is to give a characterization of (1. 2)
by making use of elementary 2-group in G. Note that if x is universally trans-
gressive (resp. primitive) then x 2 is also universally transgressive (resp. pri-
mitive) .  So (1. 2) (resp. (1. 3) ) is equivalent to the following (1. 2') (resp.
(1. 3') ) .
(1. 2 ')  H*(G;Z 2 ) h a s  a simple sy stem  o f  universally  transgressive

generators,
(1. 3 ')  H* (G; Z2 ) h as a simple system of primitive generators.
Note that the number of simple system is an invariant of G  (cf. § 2) . We
denote this number by s (G) (cf. § 5) . Then the main theorem of this paper
is the following :

Theorem 6. 1. Let G be a compact connected Lie group. Then the
following three conditions are equivalent :
(6. 1) s (G) 12 (G) where 12 (G ) is the 2-rank of G (cf. § 5),
(6.2) s (G) = 12(G) ,
(6.3) G  satisf ies (1 .2 ).

To prove this theorem we use May's spectral sequence [27 ] (cf. § 3) and
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the Eilenberg-Moore spectral sequence [33], [34] (c f. §  5 ). We also use the
result of Quillen [32].

The paper is organized as follows :
In § 2 we introdue some algebraic definitions and tools used after. In § 3

May's spectral sequence which converges to CotorA (k, k) , where A is a Hopf
algebra over a field k is considered. In § 4  CotorE° (A) (Z2, Z2), the E l -term of
May's spectral sequence for some Hopf algebras over Z2, is computed by making
use of the method of [36]. In § 5 some topological tools are given. In § 6 the
main theorem of this paper is proved. In § 7 some properties o f G satisfying
(1. 2) are given. The final two sections, § 8 and § 9, are applications of § 7.
In § 8 cohomology mod 2 o f some homogeneous spaces are given and in § 9
cohomology operations of H* (BF 4 ;Z 2 )  are determined.

A compact connected Lie group G satisfing (1. 2) has various good proper-
ties (cf. § 7). F o r  examples H* (BG; Z 2 ) is  a poly nom ial algebra and
H *(BV ; Z 2 )  is a free H* (BG;Z 2 )-module, where V is a maximal dimen-
sional elementary 2-group of G.

§ 2. Definitions and algebraic tools.
Let R be a field or the rational integer ring Z . Let A =  E A , be a graded

commutative R-algebra in the sence of Milnor-Moore [28]. If A is connected
then A has a unique augmentation s: A --> R (see § 1 o f [28 ]) . Then we put
as follows

Definition 2 .  1 .  A = Ker e. A is called the augmentation ideal.

If A is of finite type and R is a field then we put as follow :
CO

Definition 2 .  2 .  P. S. (A  ; R) =P. S. (A) -= E (rank,A,)t'E Z E t i l•
I f  E at  and E bt Z [ [ t ] ] ,  E a,t' » E ht' means a b  for any i > O.
If P. S .(A ;R ) is a rational function of t the following definition is due to

Quillen [31] (cf. § 2 of [32] [26]).

Definition 2. 3. dim (A ;R ) , - the order of a pole at t =-1.

Note that if A  is a finitely generated connected R algebra, P. S.(A ;R ) is
a rational function of t.

Moreover P. S. (A ) satisfies the following :

(2.1)P .  S .  (A )  P (t) (1—ta0 ,

where a t , • •., an are positive integers and P (t) E  ZVI. (See Lemma 2. 7
of [32].)

I f  P. S. (A ) and P. S. (B ) satisfy (2. 1) and P. S. (A )  P. S. (B), then
dim (A ; k )  dim (B ;k ) (see P.137 o f [ 13] )

For the details of the following definition the reader is refered to [30] or
Appendix 6 of vol. II of [38].

Definition 2. 4. A  sequence of (homogeneous) elements {x 1 , • • x „  Al
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is called a regular sequence (or a prime sequence) if  x t is not a zero divisor in
A/ (x i , • ••, xi_1)  for any i = 1 , 2, • n.

Let k be a field. Let X „ i G n + h , and Y,, 1 < j  < n ,  be indeterminants,
where X , and Y, have positive degrees. Note that if the characteristic of k is
not 2 then the degree of X, and Y .  e v e n .  Let {ri, • • •, r,,} is a regular sequence
in the graded polynomial algebra k[X 1, • , X h + h ]. Put A '  kEX 1, • • • , X + ]/
(r i , •••,rh ) and A  =k[Y 1, •••, Y . ] .  Let f :A—>A' be a homomorphism of graded
algebras. Then we have the following :

Proposition 2 .  5 .  A ' is a f inite A-module under f  if and only  if  If
(Y 1), •••, f (Y )  i s  a regular sequence in  A '. Moreover A ' is  a free A-
m odule . (Proof is given in p. 209 [30 ]. )

Put A" = 1 “ • , X , ] .  As a particular case of Proposition 2. 5:

Corollary 2. 6. Let f :A— >A" be a homomorphism of graded algebra
then A" is a f inite A-module under f  if and only  if  If ( Y 1 ) ,  • • • ,  f  ( Y . ) 1  is
a regular sequence in  A . Moreover A" is a free A-module.

(Proof is given in p. 209 of [30 ] or [ 4 ]. )

Let P  be a commutative ring with unit.

Definition 2 .  7 .  Spec (P )  = a  prime ideal of P  and 3  PI.
(For details the reader is ref ered to chap. 2 of [1 5 ] or [19].)

Note that (0 ) E  Spec (P )  if and only if  P  is an integral domain. In par-
ticular a polynomial algebra is an integral domain. So we have the following:

Proposition 2. 8. I f  P  is a polynomial algebra then (0 ) is a unique
minimal prim e ideal (cf . §7).

Let R  =  Z 2  then we use the following definition.

Definition 2 .  1 0 .  A sequence of elements {x 1 , •• •,A }  i s  c a l l e d  a sim-
ple system of generators i f  {x l 'i • • -xs-;e, = 0 or 1 } is a module base of A.

Notation 2 .  1 1 .  A (x i , , xn ) i f  {x1, • • •, x„} is a simple system of
generators of A.

Note that if  A = 4 (x1, • ••, x.),P.S.(A; Z2) ( 1 +  ,cieg ) • • • (14-tdegx") and
so P. S. (A; Z 2) E  Z[t].

Proposition 2 .  1 2 .  If  { x1,•••,x.} and I y i ,  • • • ,  y . 1  are both simple sys-
tems of generators of A , then n = m  and there ex ists a E  f „  such that deg
y ,=  deg x,c,) , j  =  1, 2, • n , where E„ is the symmetric group of  order n.

Pro o f . P. S. (A ; Z 2) E  Z [ t ]  and Z [ t ]  is a unique factorization domain
[38 ] and so the result follows. Q.E.D.

Definition 2 .  1 3 .  I f  A (x 1, • • • , x )  then we put s (A) = n.

Note that if A = A (x 1, • ••, xn )  then {x1, • • •, x„} is a simple system of gener-
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ators of A.

§  3 .  May's spectral sequence.
Let (A, 0) be a Hopf algebra over a field k with an augmentation s:A—>k.

Let I (A) ,  Ker s. Then we put as follows:

Definition 3. 1. JF,(A ) = A if 0
TF  (A ) = I (A) - P  i f  p < 0 .

Then E 0 (A) = E F; (A) 1 F „ _1 (A ) is also a Hopf algebra (cf. Milnor-Moore
[2 8 ]).  Moreover the following is known :

Proposition 3. 2. (E0(A ),950) is Primitively generated where 00 is the
induced diagonal map 00 :E 0 (A)—>E0 (A ® A ) E 0 (A )C )E 0 (A ). (See 7. 4
of Milnor-Moore [28]. )

Let C (A ) be the cobar construction of A  (cf. § 4). Then by making use
of a suitable filtration of C (A ), May constructed a spectral sequence as follows
[27]

Theorem 3. 3. There exists a spectral sequence of  algebra E„ r>1.,
satisfying the following conditions:

i) E  = CotorE 0( A) (k, k) ,
ii) E,,o =g r (CotorA (k, k)).

For the proof see [27].

Remark 3. 4. C (A ) = A C)T (I(A )), where T (I(A )) is the free tensor
algebra over I (A ) (cf. § 4).

May used a filtration induced by F, in Definition 3. 1.
In the next section we compute E l -term of this spectral sequence.

§  4 .  Primitively generated Hopf algebras over Z 2*

Let A  be Hopf algebra over Z 2  with a commutative multiplication. We
also assume that P. S. (A , Z 2 )  is a polynomial. Then the following is due to
Milnor-Moore [28]:

Lemma 4 .  1 .  i )  A = Z 2 [x l , • ••, xn ]l (x 1
2 i1 , • • x n ,21"+1 )  as algebra,

ii) E 0 (A)a s  algebra.

To compute the E l -term o f May's spectral sequence we use the twised
tensor product construction due to Brown ([17], [21] or [36]).

Let (A , 0) be a graded coalgebra over a field k with augmentation v:k—>
A . We may consider A = k C) J (A) where J (A) = Coker v. Let L  be a graded
submodule of J(A ) . Let c: L-->A be the inclusion and 60 : A--->L be a map sat-

isfying Ooe =---1L .  Let s : L--->sL be the suspension. Let 0 .  soe and 7= cos- '. Let
T(sL) be a free tensor algebra and / be the ideal o f T(sL) generated by Im0
(WC) W) (Ker W), where sb is the multiplication of T(sL). Let X = T(sL)I I .  Then
the map d= --0.0 - 0 0 0 .F  on sL define a m a p  X- --->X  satisfying docl =0
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(cf. § 1 of [3 6 ] ) .  Since d o 0 + 0 0 (0 .0  = 0 holds, we now can construct the
twisted tensor product construction X = A C )X  with respect to #: That is X
=A O X  is an A-co modulewith the differential operator

d = 1.0 d+ (100) (10 ( 0 0 1 ) .
If 0 is the projection A = k J  (A ) - > J (A ) and L = J (A ) then X  is C (A) ;

the cobar construction of A.
So if 0 is the projection (X, d) is a quotient of the cobar construction. So

if (X, d) is acyclic H(X, Et) = Cotord (k, k) as algebra (cf. [2 1 ] or [3 6 ]).
Now consider the following Hopf algebra (Ao, 00) Ao = Z 2  [x 1 ,  • • • s

(
x 1

2i1+1,x n 2 i ,  a s) algebra and (x i ) -= 0 for i = 1, 2, • • •, n, where q-50 (x)
-= 00(x)+ xC)1+ 1C)x.

Let L= {x1, x12, x 1 4, ..., . 0: A0 -->L be the pro-
jection and y o  =  s ( x 121 )  for x 1

2' E L . Then we can easily prove the following:

Lemma 4 .  2 .  L is a simple system of primitive generators of Ao.

Let I = (s1,0,61,1, • •, e„,,„) for ei ,J = 0 or 1.
Let

x f  =  x 1
6 1,0 +2 6 1,1+

Let J= (6 1, • • •,e,)
Put J = (ei +El', •
the following:

.. x . 6„, 0 +

and J '=  (el', ••,s1) for ei +e,' _5 l and s + • • • + i+ n .
••, es + Es t ) • Let I JI =si + • • • +e s then we can easily prove

Lemma 4 .  3 .  0 0 (xi) -= E  .e ®
J+,=,

So if I I I 3, xJE L or x 'E  L . I f  I = 2, that is xi= x•x' for x, x' E  L,
0 0 (x•x') =  x •x 'C )1 + 1 C )x •x '+ x 'C )x + x C )x '. Clearly K er0 is generated by

{xi ; lI  2 ) .  If I/1 3, ( # 0  7 -9) 95o = 0. If 11I 2, Sb (k )  r b o  (x • x') =  (sx,
sx') +0 (sx', sx) = [sx, sx'].

Clearly d(x) = çb ( (x 1+1C) x) = 0 for x E  L . So X  = A 0 O X  =
A o 0 Z 2 [sL ]. d (x 0 1 )= (100) ° (10# -01) .(0001)(x01) = (100) .(10
-#01 )(x0101+10x01 )=10s(x ) fo r  x E L  and s o  d (1C)s (x)) = O.
Now we compare this with Koszul resolution of the exterior algebra A (x 1 ,0 ,

X1,1, • • •, X j , j , •  •  • ,  X , ,  • • xn, i „ )  .  Clearly these are chain equivalent and so (X, d)
is acyclic. So we have the following:

Theorem 4. 4. CotorAo (Z2, Z2) Z 2  [ s L ]  as algebra.

So by Lemma 4. 1 and Theorem 4. 4 we can compute the E l -term of May's
spectral sequence for some Hopf algebra over Z2.

§  5 .  Topological tools.
In this section various topological tools used after are introduced. Let G

be a compact connected Lie group and p be a prime, then H* (G; Z i,) is a Hopf
algebra over Z r,. So H *(G ;Z 2) has a simple system o f generators. So we
define as follows:
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Definition 5 .  1 .  s (G) = s (H* (G; Z 2 )) (cf. § 2) .

Let G be a compact Lie group then the following definition is due to [ 13]:

Definition 5 .  2 .  lp (G) is the dimension of a maximal dimensional eleme-
ntary P-group in G.

The following theorem is due to Venkov [37].

Theorem 5. 3. H* (BG;Zp) is f initely generated.
So P. S. (BG ; Z9 ) =  P. S. (H*(BG ; Z9 ); Z )  is  a rational function o f t. So

dim (H*(BG ; Z 9 ); Zp ) <o0.

Theorem 5. 4. lp (G) = dim (H* (BG ; Z ) ; Z 9 ).

The above theorem is Corollary 7. 8 o f Quillen [32]. (See also [3 1 ]. )

The part 19 ( G )  dim (H* (BG;Zp) ;Z 9 ) is due to [13].

The following two theorems are also due to Quillen:

Theorem 5. 5. Let G and G' be compact Lie groups and f: G-->G' be a
homomorphism  of Lie groups. T hen H* (BG ; Z 9 ) is  a f inite H* (BG' ; Z9 )
module under f *  if and only  if  K e r f  is  a f inite group and (ord (Kerf),
p) =1. (See Corollary 2. 4 of [32].)

Theorem 5.6. i )  Let d  (G ;p )  b e  all conjugacy  classes of eleme-
ntary  p-groups in  G .  Then the correspondence 0:,s:Z (G) -Spec  (I-I* (BG;
Z 9 )) given by 0 (V) = Ker i*;H*(BG;Zp)-->H*(BV  ;Z 9 ) kci is an injection.

ii) (P (V) c (P (V') if  and only  if  there exists g E  G such that gV 'g - 1  c
V.

iii) The correspondence (P gives a one-one correspondence between
con jugacy  classes of maximal elementary p-groups and m inim al prime
ideals of H* (BG;Zp).

iv) $ E  Spec (H* (BG ; Z9 ) )  is contained in Tm i f  a n d  only  if  j3 is
homogeneous and invariant under g i , i>  0 ,  w here g "  is  the Steenrod
reduced power operation.

Pro o f . Put X  =  tone point} in Proposition 11. 2 and Theorem 12. 1 of
[3 2 ]. See else [31]. Note that H *(B Z 2 ;Z 2 )  is a polynomial algebra.

Remark 5. 7. i) I f  G is a closed subgroup o f G' then by Theorem 5. 5
H * (BG;Zp) is a finite H* (BG; Zp) -module for any p.

ii) We can prove Theorem 5. 3 by Theorem 5. 5 as follows: Since G is a
closed subgroup of U (N )  for sufficiently large N .  So H* (BG ; Z9 ) is a finite
H* (BU (N); Z 9 ) = 1, • • cN ] module. But as is well known H* (BU (N) ;
Z 9 ) is Noetherian and so is H* (BG ; Z9 )  (cf. [37]).

iii) The part l  (G) < dim (BG ; Z 9 ) ; Z9 ) is also proved by Theorem 5. 5
Let G be a compactly generated topological monoid (e.g. a compact Lie

group) . In 1959 Eilenberg-Moore constructed a new type of spectral sequence
as follows:
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Theorem 5. 8 .  There exists a spectral sequence of algebra {E r  (G),
dr (G)} such that

(1) E2 (G) = C o to rH "  ;  (Z r , Z r ),
(2) E 00(G) =gr (H* (BG ; p)),
(3) Furthermore, this spectral sequence satisfies naturality for a

homomorphism f :G->G'. (See [33] and [34].)

Remark 5 .  9 .  The above spectral sequence is very useful for computing
H* (BG;Z r ) .  In fact it collapses if G satisfies (1. 2) . This is an easy proof of
Borel's theorem (Proposition 16. 1 of [7]) (cf. § 6) .

ii) The above spectral sequence is usually called the Eilenberg-Moore
spectral sequence.

§  6 .  Main theorm
The purpose of this section is to prove the following theorem.

Theorem 6 .  1 .  Let G be a compact connected Lie group and s (G) = n.
Then the following three conditions are equivalent:
(6. 1) 12(G) > s (G) ,
(6. 2) 12 (G) = s (G) ,
(6. 3) G satisfies (1.2).

For the proof of this theorem we need the following Lemma 6. 2.

Lemma 6. 2. (6.2) is equivalent to the follwing (6.4):
(6.4) May's spectral in Theorem 3.3 collapses for A=H *(G ;Z2 )

and the Eilenberg-Moore spectral sequence collapses for G.

P ro o f. The part (6. 4) implies (6. 2) :
Since the two spectral sequences collapse, by easy arguments H* (BG;Z 2 )

= Z 2 [y 1, • • •, y ].  Thus 1 2 (G) = dim (H* (BG ; Z 2); Z2 ) = s (G) by Theorem 5. 4.
The part (6. 2) implies (6. 4) :
If th e  spectral sequence in  Corollary 3. 4 collapses, CotorA (Z2, Z2) =

Z2 • , j  where n = s (G) .  So we only need the following Lemma 6. 3.

Lemma 6. 3. Let k be a field and R =k[y i , • • •, y,]. Let d: R-->R be a
derivation, d 2 = 0  and d # 0  then P. S. (H (R ;d)) <P. S. (R ) • (1-te) for
some a>0.

Proof of Lemma 6.2 (continued). If the spectral sequence of May does
not collapse, by Lemma 6. 3 P. S. (Cotor" (Z 2 , Z 2 )) P. S. (Z2[Y1, •••, .Y.]) •

ta ) for some a > 0 . So P. S. (H* (BG; Z2)) <P . S. (Z2 [y i, .3'n]) • (1 - te)
and so dim (H* (B G ;Z 2 ))< n . I f  May's spectral sequence collapses and the
Eilenberg-Moore spectral sequence does not collapse then also by Lemma 6. 3
dim (E c„, (G) ; Z 2) Gn = s (G) . Q.E.D.

Proof of Lemma 6.3.
Since d is a derivation and d # 0 we may assume that d(y 1 )  = f  O. Let
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I  be the ideal of R  generated by f .  Consider the following diagram:

Ker d R/ I

Ker d/Im d = H  (R; d) ,
where 0 and p  are natural projections. Note that Ker çb = Ker d n I and
Ker p =Im d.

If g E  Ker 0 then g = g i • f  for g1 R .  Then d (g) = d (g i ) • f , since d (f)
= d ,  (Y 1 ) =  O . But g E  Ker d  and R  is an intergral domain, d (g 1 ) = O. So
d ( g i - y i ) = ± g i f  ± g  and so Ker p  Ker 0. Thus P. S. (R h )  » P. S. (H (R;
d ) ) .  But P. S. (R/ I) = P. S. (R) • (1- t d e g f )  and so the result follows. Q.E.D.

Proof of T heorem  6.1. Put A=H* (G; Z2) •
(6.1) im plies (6.2): Consider the following two spectral sequences in (6. 4) :

E 1 =  Z 2 [y1 , •  •  Y n ]  C O t O r A  ( Z 2 ) Z 2 ) 9

E 2  (G) = CotorA (Z2, Z 2 ) H* (BG; Z2) •
Clearly P. S. (H* (BG; Z2)) P. S. (Z2[y1, • • •, yn]) so dim (H* (BG; Z2); Z2) <
n thus 12 (G) < n. (6. 2) clearly implies (6. 1) . So (6. 1) and (6. 2) are equivalent.
(6. 3) implies (6. 2):

Since G  satisfies (1 . 3), CotorA (Z2, Z2) = Z2C.Y1, • • •, Y .].  But G satisfies
(1. 2) each y i is a parmanent cycle and so H* (BG ;Z 2 ) = Z2[1,•••,3 7-,,] .  Note
that this is an easy proof of Borel's theorem (§ 9 of [9]) . So we have (6. 4).

Clearly (6. 4) implies (6. 3) and so (6. 2) implies (6. 3) . Thus (6. 2) and
(6. 3) are equivalent. Q.E.D.

Now we give some examples.
Let 1(G) be the rank of G . Note that 1, (G) > 1 (G) for any p and 1, (G) =

1 (G) for almost any p . If 1, (G) > 1 (G) then H * (G;Z) has P-torsion.

Examples 6 .  4 .  i) I f  G  satisfies (I. 1) 12 (G) = 1 (G) .  Note that any
maximal elementary 2-group is contained in a maximal torus.

ii) G = SO (n) satisfies (1. 2) and s (SO (n)) = l 2 (S 0 (n)) = n-1,
iii) G = Spin (n) , n> 10 does not satisfy (1. 2) ([30]),
iv) G = Eg does not satisfy (1. 2) but 12 (E 6 )  1 (E 6 )
(cf. Example 7. 12).
Proposition 6 .5 .  i )  s (S pin (n)) = (n-1) - [ lo g 2 (n - l ) ] ,
ii) 1 2 (S pin (n)) = n-log2 R (n),

w here R(n) is the Radon-Hurwitz number (§ 6 of [30]).
Pro o f . i) is due to Borel [9] and ii) is due to Quillen [30]. Q.E.D.

By iii) of Examples 6.4, s (Spin (n))>12 (Spin (n)) for n  10.

Due to Borel-Siebenthal [ 1 4 ]  Eg contains a closed connected subgroup H
of local type Dg and r 1 (H) = Z 2 . Then we can easily get the following:

Lemma 6. 6 . H  is SO (16) or Ss (16) (Semi - Spin (16) )
(cf. p.330 of D I



We use the following notations:

Notations 6. 8.
i) (a i , • • • , an ) is a

ii) (n) = { ± (1, •
iii) P  (n1, • ••, n1) =
iv) 4  is  the j-hold
y )  zIkSP (1) -= 1(a,

al 0\
diagonal matrix ( E Sp

•., 1) E S p (n)}  . 0 a„,
S p ( n i )  x  •  x  SP (n ,)  1  (n i+ •  + n
diagonal map.
• • • ,a) E S p ( k ) ;c rE S p ( 1 ) } .

(n).

) •
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Due to [26], E 8  does not satisfy (1. 2) . Due to [3 ], s (E8) = 15. So by
Theorem 6. 1, 12 (E 8 ) 1 4 .  Since 12 (SO (16)) = 15, H is not SO (16).

Propositon 6. 7. H  is Ss (16).
The homogeneous space E 8 /Ss (16) is an irreducible symmetric space and

denoted by EVIII ( [1 8 ]). See also [20].

Remark 6. 9. 4 (n1+ • • • + n1) is contained in the center of Sp  (ni+ • • • +
n i ) .  So P (n 1 , • • • , ni )  is a compact connected Lie group. Since 7r1 (P (n 1 , • • ,
n1)) = Z2, P (n1, • • • , n j )  does not satisfy (1. 1) .

We can construct examples satisfing (1. 2) by making use of P (n i , • • • ,
Let

(n 1) S P (n 1)
X

z l(n)

(n1) S p (n i)
be the inclusion (n=11 1 + • • • -I- n1 ). Then  as is well known:
(6. 5) H* (B4 (n); Z 2) = Z 2Etti, deg p  =1 .

H* (B  ( n i )  x  •  X  .4 (n i )) ; Z 2)) CD H * ( B 4 (nk); Z2)h=1
Z  0 1 ) t j ],  deg tk =1.

H* (B  (S p (1) x•••xSp (1)) ; Z 2) = (B SP (1) ; Z2)
=Z 2[q1,1 , • • q1 , 1] ,  deg q i ,k = 4. ' 1

Note that di * (ti) = p  and i* (qi,k ) = 4 4 .

So we have the following:

Lemma 6.10. I f  one of {n1, • • • , ni }  is odd, s (P (ni, • • • , n i )) = n +1.

P ro o f  Consider the Serre spectral sequence for the fibering
S p (n i ) x • • • x SP (ni) -->P (ni, • • • , -->B zi (n) .

The above result follows from (6. 5) and Lemma 10. 1 of [8 ] .  Since V  (n) in
[23] is contained in P (n 1, • • • , ni ) , 12 ( P  (n1, • • n i )) 11+ 1  for any n1, • • • ,

Thus we have the following:

Theorem 6. 11. If one of { n1, • nil is odd, P (n1, • • n i )  satisfies (1. 2).

Example 6.12. H *  (BP (1, 3) ; Z2) Z2[Y2, Ys, Y4, Y8, Yi2].
Rem ark 6. 13. H * (BP5p  (2n +1) ; Z2) is determined in [23].
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§  7 .  Properties of compact connected Lie groups satisfing (1. 2)
Let G be a compact connected Lie group satisfing (1. 2). Then we get

the following:

Theorem 7. 1. i) Every  m axim al elem entary  2-group is conjugate
to each other.

ii) Let V be one of the maximal elementary 2-groups then the Serre
spectral sequence for the f i b e  ring

(7.1) PG/ 16 V ). IC C

with Z2 coefficient collapses.
iii) In paticular i*:H* (BG ; 2 ) -->H* (BV ;Z 2 )  i s  injective, p*: H*

(BV ; 2 ) -->H* (G1V ;Z 2 )  is surjective and H* (BV ;Z 2 )  is a free H* (BG ;
Z 2 ) -module.

Remark 7. 2. We can compute cohomology operation o f H* (BG ; Z 2 )
and H* (BG ; Z 2 ) by iii) of Theorem 7. 1.

Proof of Theorem 7.1.
i) Since H* (BG ; 2 ) is a polynomial algebra, Spec (H* (BG ; Z 2 )) has

a unique maximal point (i. e. H* (BG ; Z )  has a unique minimal prime ideal)
(0 ). B y  iii) of Theorem 5. 6 every conjugacy class of maximal elementary 2-
groups of G corresponds to a maximal point of Spec (H* (BG ; Z 2 )). So we get
i) of the above theorem.

ii) Consider the principal G bundle

(7.2)G 1 V BV.
The Serre spectral sequence for (7. 2) with Z2 coefficient has the following E2 -

term :
E 2  H* (BV ; Z 2) 0 (G ; Z 2 ) = H* (BV ; 2) (xi, ..., x )

where {x 1 , • -, xn } is the simplesystem generators of G satisfing (1. 2) and n-= 12
(G ). Since {x 1 , x i i } is universally transgressive, {x 1 , • •, x„} is transgressive
with respect to (7 . 2 ). Put r (x 1) = y, E  H* (BG ; Z 2 ) then H* (BG ; Z 2 ) = Z2

[ y i ,  •--,yd  But 12 (G) = n and so H* (BV; Z 2 ) = Z D i, • t n ]  where deg t1 -= 1.
By i) of Remark 5. 7 and Corollary 2. 6, li* (y1) , • • •, i* (y,i )} is a regular seque-
nce. Since x, is transgressive with r' (x,) = i* (x,) where r' is the transgression
in (7. 2), Eic).;"= 0 if q # 0 . So p* is surjective and we get ii) of above theorem.
iii) is easy. Q . E . D .

Remark 7. 3. We can also prove ii) of Theorem 7. 1 by making use of
the following fact:

{i* (y i ) , • • i* (y „ ) }  is a regular sequence and so H* (BV ;Z 2 )  is a free
H* (BG ; Z 2 ) -module (cf. Corollary 2. 6). The result follows from the following
spectral sequence:

E 2  T O rH * (BG;Z2) (Z21 H* (BV; Z 2 )) H* (G /V ;Z2) (cf. DI.
Example 7. 4. Compact connected simple G satisfing (1.2) is  clas-
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sified in [23].
0  If G satisfies (1.1), V is containd in a maximal torus.

If G =SO (n) V is as follows:
lei 0 \

V = E  SO (n); s i = ±1}—= (Z2) n - 1 . (See [12].)
\O en /

iii) If G = G2, V is given in § 10 of [12].
iv) I f  G = Spin (7), Spin (8), Spin (9) or F 4 , V  is given in [11] and 0

of Theorem 7. 1 is prov ed in  [10 ] by  m ak ing use of the Lefschetz fixed
point theorem and in D a

y) G = PSp (2n+1) then V is given in [23].

Remark 7. 5. i) The above Theorem 7. 1 is pointed out by Borel for
special cases ([9]).

ii) If G satisfies (1. 1) and maximal elementary 2-groups are replaced by
maximal tori then the corresponding results are well known for any prime p.

iii) If Z2 is replaced by Q, and maximal elementary 2-groups are replaced
by maximal tori then the corresponding results are also well known for any
compact connected Lie group. (See Borel [9 ]. See also [1].)

Let (G, U) be a pair of a compact connected Lie group and its closed
subgroup. We consider the following conditions for (G, U)
(7. 3) G satisfies (1.2) and H* (BU; Z 2 ) -= Z D i, • • • , tn+IT  ( 1'1, • • rh ), where

n = 12 (G) and 0- 1 , is a regular sequence in Z2[t1,

Remark 7 .  6 .  We can prove that dim (k[t i , • • •, t„,,]/ (r1 , r,,); k) n
if and only if (r 1 , • • •, rh } is a regular sequence in k[t i , •, tn+h,].

Now we prove the following:

Theorem 7. 7. If (G , U) satisfies (7.3) we have the following:
0  The Serre spectral sequence for the fibering

(7.4)G  / U BU BG
with Z2 coefficient collapses.

So i*  is injective, p* is surjective and H *  (BU ; Z 2 )
(BG; Z 2 ) -module under p*.

Pro o f  The proof is similar to the proof of Theorem 7. 1.

Proposition 7. 8. If U  is one of the following, (G, U) satisfies (7.3).
0  An extra special 2-group in G and 12 = 12 (G) ,
ii) A  closed connected subgroup of G satisfing (1.2) and 1 2 (U) =

12 (G) .

For i) see [30] and ii) is clear.

Examples 7. 9. The following (G, U) satisfies (7.3):
i) I f  H *  (G ; Z) and H * (U;Z) are 2-torsion f ree  and 1 (G) =1(U)

where 1 (G) is the rank of G . Note that in this case 1 (G) = 12 (G) .

is a free H*
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ii) (F 4 , Spin (9) ) , (F 4 , Spin (8) ), (Spin (7), G 2 )  e.t.c.
(See V. of  Borel P i )

iii) G =S p  (n) and U  = (n )  in [23].

Remark 7 . 1 0 . Borel-Hirzebruch defined the 2-root o f G by making use
of A dIV  , where A d: G—>Aut (g )  is the adjoint representation of G ([1 2 ]). If
G satisfies (1. 2) , by i) of Theorem 7. 1, 2-root is an invariant of G . But if G
does not satisfy (1. 2) w e must consider all conjugacy classes of maximal
elementary 2-groups.

Remark 7 .  1 1 .  If the pair (G, U) satisfies (7. 3) we can compute the
cohomology operations of H* (BG ; Z 2 ) by making use Im i*  and the cohomo-
logy operations of H* (BU; Z2).

Example 7 . 1 2 . E6 does not satisfy (1 .2 ) ([25 ]). Due to [2], s (E6) =
7 and 1(E 6 ) =6, so 12 (E 6 ) = 6 . Put V 1 and V 2 as follows:

E6 D 1 14 D VI = (Z2) 5 ,
E6 D  T 6 D  V2 = (Z2) 6 .

Then V 1 is not contained in  any  m ax im al torus. S o E6 has at least tw o
different con jugacy  classes of maximal elementary 2-groups.

Remark 7 . 1 3 . Due to Kono-Mimura [25],
II* (BE 6 ; Z2) Z  2EY 4 y6, y7, yi0, y18, Y32, Y34, Y40/ 1 ,

where / is the ideal generated by v  v  v  v  v  v, 7, 10, , 7, 18, 7, 34 and 314 + • • • and deg y, =
Then 0 (V1) = (.3110, Yis, Y34) and 0 (V 2) = (y7)-

§ 8. Cohomology mod 2 of some homogeneous spaces
In this section cohomology mod 2 of some homogeneous spaces are com-

puted. In this section G2 (resp. F 4 )  is a compact connected simple Lie group
of type G2 (resp. F 4 ). Then the following is well known ([7 ]):

H* (G2 ; Z 2 ) = Z 2[x3]1(x3 4 ) 0  A (x5), where deg x , = i and Sq 2 x 3 = xs,{
G 2 satisf ies (1. 2) ,
H* (B G 2 ; Z 2 ) = Z2[y4, Y6, Y7], where deg y, =  i, y6 = Sq 2y4 and y7 -=

S ey 4 .

(

H* (F 4 ; Z 2) = Z 2Dc311(x3 4 ) CD A (x5, xls, x23), w here deg x , = i x 5 =
Sq 2 x 3 and x23 = Sex15,

(8. 2) . F 4  satisf ies (1. 2) ,
H* (BF 4 ; Z 2 ) = Z 2 49 , v6, v 7, _. v 16, ., v24_,l , where deg y, = i, y 6 = Sq 2y4, y7._., ,  

=S q 3y 4 an d  Y24 = Seyie.

(8. 3) i  H * (SU (n); Z ) = A (es, e5, • • ., e2 1), where deg e, = i,
H * (B S U (n); Z) = Z[c2, c3, • • • , cal where deg ci  = 2i and c i  = r(e2i-i).

(8. 4) { H *  (Sp (n); Z ) = A (es, e7, ... , e 4.- 1), where deg e, -= i ,
H* (BS p  (n); Z ) = Z [q i , • • - , qn ] where deg q i = 4i and qi = r (e4i-i)

(8. 5)
 {  H* (B S O (n); Z2) = Z 2[11)2, w3, • • •,wn], where deg w, = i and cohomo-

logy operations are determined by W u's formula.

(8. 1)
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•D u e  to Borel-Siebenthal [14] G2 contains a closed connected subgroup H
of type A 1 X A i . The homogeneous space G2 / / /  is an irreducible symmetric
space and denoted by G (cf. Cartan [18]). Then we can easily get:

Lemma 8. 1. H is isomorphic to one of the following:
(8.6)S  p  ( 1 )  x  S  p  ( 1 )  ,
(8.7)S  p  ( 1 )  x  S O  (3) = Ss (4),
(8.8)S O  (4) ,
(8.9)S O  (3) X SO (3) .

By the argument o f 2-rank (8. 9) is impossible. Since H* (B (Sp (1) X
S p(1)); Z2) Z2[q1, gla where deg q1 = deg q1' =  4 , i* (Y6) i*(y7) = 0, where
i : H->G is the inclusion. So it is impossible by Theorem 5. 5. On the other
hand if (8. 7) or (8. 8) is true then (G, H ) satisfies (7. 3). So we have:

Lemma 8. 2. I f  (8 .7 ) or (8 .8) is true then {i* (y4), i* (ye), i* (y7)1 is a
regular sequence.

Note that H* (B (Sp (1) x SO(3)); Z 2 ) = H* (BSp (1); Z 2 )() H* (BSO (3);
Z 2 ) Z2 [q1 ] Z2 [w 2, w 3 ] as algebra over d 2 .  S o  if (8. 8) is true then i* (y4)
= aqi -1--Pw22 for a, p E Z 2 .  Then i* (y 7) = S O* (y )  = O. So it is impossible.
Thus we have the following:

Lemma 8 .  3 .  H =SO (4) as Lie group.»
By (8. 1) and (8. 5) i v*  4 , =  aw4 -i-pw2

2, i* (y6 ) = aw 4 w2 p w 3
2 and i* (y 7 )

= aw 4 w3 for a, p E Z 2 .  By Lemma 8. 2, a, ,8 = 1.
Thus by Theorem 7. 7, we have the following:

Theorem 8 .  4 .  H* (G; Z2)

P*  wi f or p:G->BSO (4), and s o
=s q

Z1R2E
2
W.= .2, R-173

3 .
11(17623

+ R .
3 2,  7722-iv-3) w here Fv, =-

Let u (G) be the total Wu class of G and W (G) be the total Stief el-Whitney
class of G. Then by Wu's formula [29], we have the following:

Theorem 8.5. i )  u (G) = 1 ± w2+ w3 w2 2,
ii) W (G) =1 + 1 7 ) 2 2  + T V 3 2 + T V 2 4 .

Remark 8 .  6 .  Th e above Theorem 8. 4 a n d  ii) o f Theorem 8. 5 are
proved in [12] by making use of Caylay number and the 2-root of G2.

Due to Borel-Siebenthal [14] F 4  contains a closed connected subgroup, K
of local type A l  X C3. The homogeneous space F 4 / K  is an irreducible sym-
metric space denoted by F I  [1 8 ].  By the similar argument we have:

Theorem 8. 7. i) K =P  (1, 3) = Sp(1) .Sp (3) f or SP (1) n SP (3) = Z2,
ii) P. S. (F i) =P . S.

Remark 8. 8. To determ ine H* (FI; Z 2 ), u (F I), and W (FI) we need
cohomology operations of H* (BK; Z2).
i )  Due to Baum-Browder (p .330 o f [ 5 ] )  Ss(4 )=S0 (4 ) as Lie group. But it is no t true.

(G) • (1-F t8 ) • (1+t 1 2 ).
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Now we consider an example o f different type. F (n) = Sp (n) I SU (n) ,
n  2 . Then Sp (n) and SU (n) satisfy (1. 2) but (Sp (n), SU (n)) does not
satisfy (7. 3) , since 1 2 (Sp (n)) =n  and 1 2 (SU (n )) =  n -1 . L e t i : SU (n) —>
Sp(n) be the inclusion. Note that
(8.10)i *  ( q , )  =  ( - 1 ) i  E  ( - 1 )  c , c ,  f o r  c = 0  (En) .

k=2z
So i* ( q 1 ) = —2c2 . By the Serre exact sequence [3 5 ] for the fibering

F (n) —>BSU (n) —>BSp (n), we have the following

Lemma 8.9.

Hi (F (n); Z) { °
z ' °. 3

Now we consider the Serre spectral sequence for the fibering
(8. 12) Sp (n) --> F (n) --> BSU (n)
with Z 2  coefficient.

E 2  -  Z 2 E C 2 , C 3 , "  •  , A (e 3 , e7 , • • •,
where c, and e4; _1 are the mod 2-reduction of c, and e41 _1. Since e4 ; _1 is unive-
rsally transgressive, e4,_1 is transgressive with respect to this fibering. r  (e_ i)
= i* (a„) = c, 2 b y  the mod 2 reduction o f (8. 10) for j  = 2, 3, • •, n, and r (e3 )
= 0 .  Clearly 17 (e7 ), • • • , r (e 4 ,i _1 )} is a regular sequence. Thus we have:

E o s  = A (e3, C2, C3, • • C,,)
Thus H* (F (n); Z2) is generated by -e, E H 3 (F (n); Z2) and Z., =  p*c„ 2 < i
n . Clearly C, 2 = 0.

Since H 4 (F (n); Z) = Z2, Sq 1 e-3# 0. But H 4 (F(n); Z2) = Z 2  generated by
C 2 SO Sq 1

-e3 = C 2 .  By the dimensional reason Sq2 -i 3 =  0 since H' (F (n); Z 2 ) =
0. Thus -J3

2 = S q7 3 = Sq 1Sq 2
-C3 = 0 . Now we have the following:

Theorm  8. 10. H* (F (n); Z2) = A (j3, c 2, c3, • • • , c.) •
Cohomology operations a re  computed by Wu's formula and  Sq 1e3 = -e, and
Sq 2 -e3 = O.

Remark 8 . 1 1 .  Note that p* is not surjective. We can also compute
H* (F (n); Z2) by making use of the spectral sequence in Remark 7. 3. In fact
this spectral sequence collapses (see Baum [4]) .

§ 9. Cohomology operations of H* (BF4;Z2)
The purpose of this section is to determine the cohomology operations of

H* (BF 4 ; Z 2 ) . Since the pair (F 4 , Spin (9)) satifies (7. 3) we can use Remark
7. 11.

First we determine the cohomology operations o f  H* (BSpin (9); Z 2).
Let r : Spin (n) —>SO (n) be the covering projection and : S pin  (n) -->0 (2") be
the spin representation, where 2" is the Radon-Hurwitz number (Quillen [30]).

Then the following is due to Quillen [30].

Theorem 9. 1. i) H* (BS pin (n) ; Z2) -= TM 7 *  0  Z 2 D 2 h 1 ,  where e2 , = e
= w2.(4).
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ii) w1 (4) #0 if  and only if i = 0, 2" — 2 4  2 h - 2 , z‘ - ‘ r ,
' s k ,  where

r = 0, 1 or 2.
iii) {w2 h (4) 3 W 2 h -2 1 -1  (4 ) w 2 2  (4 ), W 2 h  (4 )1  is a regular sequence in

H* (BS pin (n); Z 2 ) .
For details see § 6 of [30].

The following Theorem 9. 2 is easily proved:

Theorem 9. 2 .  S ql(e)=w , (d) .e. So Sq'(e) 0 if  and  only if i = 0,
•••, 24 — 2r , 2.

P ro o f. Since H* (BO (2k) ; Z2)'--- ,' Z2[14/1', • • •, w' 2 1] ,  where w', is the i-th
universal Stiefel-Whitney class. By W u's formula [8 ], Sqi (w'2 , ) = w' 1w 1

2 h.
But e = 4* (w'n )  and w, (4) = zl*wi '. SO Sqi (e) = Sqi (4*1412 ,) = 4*5q'w'2 h=
4* (w' zu/2h) = (4*u/ i) (.4*14/2,) = wi (4)e.  Q.E.D.

Pemark 9. 3 .  If X E hn 7r*  then we can compute Sqi (x) by Wu's for-
mula.

Example 9.4. n  = 8 then h = 3 and r =O.
H* (BS pin (8); Z2) = Z21-._w4, W 6 , 

1 0 7 , W 8 , 6 8 1  where w i is  the 7r* image of
the i-th universal Stiefel Whitney class in H* (BSO (8) ; Z2 )  and deg es  = 8.
Since w 4 (4) # 0 so w4 (4) w4 and so we have the following:

wo (4) = 1, w4(4) = w4, w6(4) = w6, w7(4) = w7 and w 8 (J) e8.

Exam ple 9.5. n = 9 then h= 4 and r = 0.
H* (BS pin (9) ; Z2) = Z2[w4, W 6, W 73 w8, 618], where Le i , e l s are as above.
We may put w 8 (4) = aw8+,8w4 2 for a, p  Z 2 .

Then W12 = aw8w4+ Pw6 2 ,
W 14 (X = aw8w6+ i3w7 2 ,

and W 15 (4) =  a W 8 W 7 .

By iii) of Theorem 9. 1, a = p =1 and so we have the following:
In  H* (BS pin (9) ; Z2)

 

6.18 i = 0
618 (w8+w4 2 ) i = 8
e16(w8w4+w62 ) i = 12
618 (w8w8+w7 2 ) i = 14
e16w8w7 i = 15
6182i  =  16
0 others.

(9.1)S q i  (e18 ) =

 

Let i: Spin (9) —>F4 be the inclusion. Then the following is well known:

Lemma 9.6. H *  (BF 4 ; Z 2) = Z 2 F  v  v  v  v  v  - 1 where deg y 1 '  =43, 63, 73, 163, 124,

—Sq 2y4, Y7 —  Sq 3y4 and Y 124 — S q 8y 1 8.

By ii) of Theorem 7.7, i* is injective. So i* (y 4 )  =  Iv, and so i* (y6) = ws
and i* ( y 7 )  =  w 7 . Thus we may assume that i* ( y 1 6 )  C r e 1 6 ± P w 8 2 + r w 8 w 4 2  for
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a, fi, 7 Z 2.
Since S q 4y 1 e is decomposable, i* (SeYie) = S O * (y16) = rtv8w4 2 +rw8w6 2

is also decomposable in 1m i* . So r = 0. On the other hand i* ( Y ' 2 4 )  -= ae l e  (w8

w 4 2 ) + fiw 8 2 w 4 2 . By i) of Remark 5. 7 and Corollary 2. 6, {i* (y16), i * (Y'24)}
is a regular sequence. So a = p =1.

Definition 9 .  7 .  Put Y24 = y'24 + Y ie Y 4 2 .

Then i *  (Y 2 4 ) =  e16w6+e1ew4 2 +w8 2 14)42 +e16w4 2 +w8 2 w42

= ei6w8.
Now we can easily get the following:

Theorem 9. 10. (Sqiy i e  and  S q5 124.)
Sqiy i e S q 1 y 2 4

0 Y16 Y24

1 0 0
2 0 0
3 0 0
4 0 Y24Y4

5 0 0
6 0 Y24.Y6

7 0 Y24Y7

8 Y24-1-Y16Y42 Y243742
9 0 0

10 0 0
11 0 0
12 Y24Y4 + y 16y42 y24 (y62 +3 , 42 )
13 0 0
14 Y24Y6 +Y16Y7 2 Y24 (y7 2 +y6y4 2 )
15 Y24Y7 Y24Y7Y42

16 Y162 Y24 (y3.6 +y62y4)
17 0 0
18 0 Y24 (ye +y7 2 y4)
19 0 Y24Y62Y7
20 0 Y24 (y46y4+y7 2y6)
21 0 Y24Y73
22 0 Yz4YisYe
23 0 Yz4Y16Y7
24 0 Y242

P ro o f. i* (S q 4 y 24) =-- Sq 4 (e1ew8)= e16w8w4.
i*(3124374) = e16w8w4.

Since i* is injective, the result follows. Q.E.D.

DEPARTMENT OF MATHEMATICS
KYOTO UNIVERSITY
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